
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 02 | Feb 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2190

Software Defect Classification and Defect Prioritization using Machine

Learning techniques: A Comparative Study

S. Aarthi Priyadarshni1, T. Sathya Priya2

1Research Scholar, PG & Research, Department of Computer Science, Shri Sakthi Kailassh Women’s College, Salem,
Tamil Nadu, India

2Assistant Professor, PG & Research, Department of Computer Science, Shri Sakthi Kailassh Women’s College,
Salem, Tamil Nadu, India

---***---

Abstract - Defects are imperfections in a product or a
system that indicates the product has failed to meet the stated
expectation. Software defects are deviations in actual results
from those of the expected results. A Software defect
prediction model when paired with machine learning
algorithms helps in identifying defects even while the software
is still being developed. When the defects are further classified
and prioritized based on its impact, the model greatly helps
the development team to focus keenly on potential areas of
risk. With a focus to choose an appropriate framework to build
a defect prediction model that incorporates the goals of
classification and prioritization of software defects as its key
aspects, this paper demonstrates a comparative study over the
methods used in existing models. This paper briefly outlines
some of the important techniques such as Data Preprocessing,
Feature Selection, Feature Reduction methods and
Performance Measures which are to be considered while
constructing the defect prediction framework and pursues a
literature survey on commonly used machine learning
classifiers that are recommended for such prediction models.

Key Words: Software defect prediction, Defect
Classification, Defect Prioritization, Data Preprocessing,
Machine Learning Algorithms, Performance Measures,
Feature Selection and Feature Reduction.

1.INTRODUCTION

Defect prediction models on software products has been a
very active area of research in the field of Software
Engineering. Software Defects are abnormalities that impair
the quality, function and utility of a system. They may come
from misconceptions perceived during the design; or due to
faulty modules that disrupts the integration of the software.
Most organizations follow a traditional Time-Based Release
(TBR) where the software product is planned for a release
on quarterly, half-yearly or yearly delivery. The team may
decide to postpone the release dates so that they can focus
on delivering a defect-free product; or may decide to release
the product with defects to keep up with their timelines. In
the latter case, the impact of a defective product has a huge
effect on the cost plan during the maintenance phase
spending most of their time in defect prediction and fix.

As the Software Defect Prediction models are one of the
dynamic methods to predict the reliability of the software,
the need for a technology that has the ability to change over
time becomes necessary. In this regard, machine learning
methods have the efficiency to learn the changes through
training datasets. Learning methodologies such as
supervised learning, unsupervised learning, and
reinforcement learning helps the training datasets to adapt
to new changes without any manual intervention. Thus,
machine learning approaches provide a dynamic platform
for Software Defect Prediction models.

The rest of the paper is organized as follows: Section 2:
Significance of Machine learning techniques – Section 3:
Software Defect Classification Models – 3.1 Learning
Algorithms – 3.2 Performance Measurements – 3.3
Literature Survey – Section 4: Software Defect Prioritization
Models – 4.1 Feature Selection methods – 4.2 Feature
Reduction methods – 4.3 Literature Survey – Section 5:
Comparative Analysis – Section 6: Conclusion

2. SIGNIFICANCE OF MACHINE LEARNING

Machine learning approaches when incorporated in Software
Defect Prediction models tends to dynamically predict
software defects since the model matures along the
development cycle. This section outlines a general machine
learning process to understand its benefits when used in
such models. (Fig.1)

Fig.1 Defect Prediction Model using Machine Learning
techniques

(1) Data Collection: Defect data is collected from
historical data repositories or software archives.
This data is used in training the prediction model

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 02 | Feb 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2191

and evaluating the performance of the prediction
model. Hence the defect data is divided into two
parts, namely the training datasets and test
datasets.

(2) Data Preprocessing: Machine learning models
largely depend on training datasets and test
datasets, and hence it is crucial to prepare the data
before training the prediction model. This step is
intended to clean the data using the Data
Preprocessing techniques as it greatly helps in
constructing a structured dataset. Basically, this
step involves the Data Selection process which
selects a subset of data from the given data; Data
Preprocessing cleanses and formats the selected
data and Data Transformation process scales the
preprocessed data and collates the selected feature
subsets into a single subset. The output of this step
is a Structured dataset.

(3) Machine learning algorithms: Before starting to
build a prediction model, a learning scheme is first
selected. This scheme involves the various machine
learning approaches such as the supervised,
unsupervised, and reinforcement learning
methodologies and selection of machine learning
algorithms. Different machine learning algorithms
serves different purposes, therefore choosing
appropriate algorithms is important for building an
effective model.

(4) Prediction Model: A Prediction model is built using
the selected learning scheme, appropriate machine
learning algorithms and training datasets which
trains the model in prediction.

(5) Real-time Data: These are instances which is used in
evaluating the performance of the prediction model.
In a Software defect prediction model, these
instances can be the current version of the software.

(6) Prediction Results: Predicted results which shows
the classification and prioritization of defects are
generated.

3. SOFTWARE DEFECT CLASSIFICATION MODELS
Defect Classification models categorizes the software code
attributes into defective and non-defective labels(fig.2)
based on the data collected from previous versions of the
software. This classification helps the developers to plan
their resources and focus their work keenly on defective
modules. A variety of classification techniques have been
used to build defect prediction models ranging from simple
(e.g., logistic regression) to advanced techniques (e.g.,
Multivariate Adaptive Regression Splines (MARS)).

Fig.2 Most commonly used defect classification structure

3.1 MACHINE LEARNING ALGORITHMS
In this section, we have taken five most commonly used
machine learning algorithms from the literature survey to
discuss their functionalities, advantages and limitations in
order to understand their capability and performance
accuracy while used in classification models. Our goal is to
determine a best fitting classifier for a software defect
classification model by comparing their performances. This
study involves five machine learning classifiers namely,
Naïve Bayes (NB), Support Vector Machine (SVM), Random
Forest (RF), K-nearest neighbors (KNN) and Decision Tree
(DT) which are briefly outlined below:

A. Naïve Bayes (NB): Naïve Bayes classifiers are a
family of simple probabilistic classifiers that are
based on Bayes’ theorem. They classify each pair of
features with strong assumptions that the features
are independent of each other. Naïve Bayes
classifiers are easy to implement and requires a
small amount of training data to estimate the test
data. But on the other side as disadvantages, if the
assumptions that the features are independent
holds true then it can perform better, if not, they
face ‘zero-frequency problem’ where the test data
contains variable that is not present in the training
data.

B. Support vector machine (SVM): This classifier has
the capability of both classification and regression
using a supervised learning method. It uses decision
boundaries called the hyperplane to classify
datapoints that falls on either side and categorizes
them into different classes. It is one of the most
effective and simple methods used in classification
and are considered to be effective in separating
non-linear data. But the classifier causes
overlapping issues if the hyperplane is not well-
defined. Therefore, it is important to choose an
optimal hyperplane.

C. Random Forest (RF): It is a combination of different
decision trees that functions on various subsets of
the given dataset. It takes a prediction from each
tree and selects the best vote of all predicted classes
over all trees, thus reducing the problem of
overfitting. It yields high accuracy when more
noticeable number of trees are incorporated, but
becomes less instinctive when we have enormous
collection of trees.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 02 | Feb 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2192

D. K-Nearest Neighbor (KNN): The KNN algorithm
assumes that similar things exist in close proximity.
In other words, similar things are near to each
other. 'k' in KNN is a parameter that refers to the
number of nearest neighbors that are included in
the majority of the voting process. We need to select
an appropriate K value in order to achieve the
maximum accuracy of the model. Classification is
done by a majority vote to its neighbors and the
data is assigned to the class which has the nearest
neighbor. It is very easy to implement and has a
quick calculation time, but becomes slower as the
variables increase.

E. Decision Tree (DT): They can handle both numeric
and categorical data. It breaks down the dataset into
smaller subsets as the nodes of the tree gets
developed. The output of the decision tree is a leaf
node that represents the decision. It is simple to
understand and easy to visualize but becomes
unstable when there are constant changes in the
input dataset.

3.2 PERFORMANCE MEASURES
Selection of algorithms largely influences the performance of
the working model. Therefore, it is important to evaluate the
performance of the algorithms in the prediction model by
using performance measures or also known as performance
metrics. Based on the literature survey, this section briefly
elaborates on commonly used performance measures such
as Accuracy, Precision, Recall, ROC AUC and F-measure to
indicate its appropriate place of usage.

A confusion matrix that summarizes the prediction results
contain variables such as True Positive (TP), True Negative
(TN), False Positive (FP) and False Negative (FN) whose
values evaluate the performance of the algorithms. These
variables are elaborated below:

 True Positives (TP): When the model has correctly
predicted the positive classes.

 True Negative (TN): When the model has correctly
predicted the negative classes.

 False Positive (FP): When the model’s prediction of
positive classes is incorrect

 False Negative (FN): When the model’s prediction of
negative classes is incorrect

Each performance measures are briefly elaborated below:

a) Accuracy: Accuracy is the proportion of true results
among the total number of cases examined. This is a
valid choice of measurement when there is no class
imbalance problem. It cannot be used when the
target class is sparse. The accuracy rate on the
performance of the classification algorithms is
calculated as below:

 (1)

b) Precision: This determines on what proportion of

predicted positives are truly positive. This is a valid
choice of measurement when we want to be very
sure of our predictions. Precision values are
calculated as below:

 (2)
c) Recall: This determines on what proportion of

actual positives are correctly classified. This is a
valid choice of measurement when we want to
capture as many positives as possible. Recall values
are calculated as below:

 (3)
d) ROC AUC: An ROC curve (Receiver Operating

Characteristic Curve) is a graph that shows the
performance of the classification algorithms at all
classification thresholds. This curve plots two
parameters namely True Positive Rate (TPR) and
False Positive Rate (FPR) which is calculated as
below:

 (4)

 (5)
AUC stands for Area Under the ROC curve that
measures the two-dimensional area underneath the
entire ROC curve.

e) F- Measures: This measurement is a harmonic mean
of precision and recall values and the F1 score is
between 0 and 1. This is mainly used in binary
predictions. F-Measure is calculated as below:

(6)

3.3 LITERATURE SURVEY
Romi Satria Wahono et al [1] conducted analysis to test the
performance of some of the widely used classification
algorithms and proposed an algorithm that best suited a
software defect prediction model. The research involved 10
classifiers to build classification models and their
performance were tested in 9 NASA MDP datasets. Area
under curve (AUC) was used as an accuracy indicator to
evaluate the performance of classifiers. Friedman and
Nemenyi post hoc tests were used to test the significance of
AUC differences between classifiers. The results showed that
the models using logistic regression performed best in most
NASA MDP datasets. Models based on Naïve bayes, neural
network, support vector machine and k* classifiers also
performed well although there was no significant difference
between them. However, models that involved the Decision
tree-based classifiers, linear discriminant analysis and k-
nearest neighbor tend to underperform.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 02 | Feb 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2193

David Bowes et al[2] conducted a research to determine if
different classifiers detect different types of defects. For this
purpose, four classifiers namely Random Forest, Naïve
Bayes, RPart and SVM classifiers were involved to predict
defects in NASA, open source and commercial datasets. The
level of the defect predictions produced by these classifiers
were captured in a confusion matrix and their predictions
were analyzed for each individual classifier. Although all four
classifiers showed consistent performance in predicting the
defects, the research identified that each classifier identifies
different sets of defects when exposed to different software
domains that comprised of both open-source as well as
commercial datasets. This research concluded that using a
classifier ensembles method combined with decision-making
strategies will enhance the performance of the individual
classifiers to identify a specific set of defects.

Cagatay Catal[3] suggested a semi-supervised learning
approach to classify defects. This research identified that
predicting defective modules by using only the labeled
modules was a challenging problem in the software industry.
Supervised classification approaches that were destined to
predict defects based on only a few defect data could not
perform high. Therefore, this study proposed a solution to
the above problem, by combining labeled data points with
unlabeled data points during the training phase, thus using a
semi-supervised learning method. The study involved four
semi-supervised classification methods such as Low-density
separation (LDS), Support Vector Machine (SVM),
Expectation-Maximization (EM-SEMI), and Class Mass
Normalization (CMN) methods on NASA data sets, which
were CM1, KC1, KC2, and PC1. This research concluded that
SVM and LDS algorithms outperformed CMN and EM-SEMI
algorithms. LDS algorithm performed even much better than
SVM when the data set is large. Therefore, this study
suggested LDS-based prediction approach for software
defect prediction model using a semi-supervised learning
method.

Nitish Pandey et al [4]. Misclassification of defects often
costs valuable time of the developers. Hence this research
focused on automating the classification of the defect
reports. The researchers first conducted an empirical study
to select appropriate machine learning algorithms that helps
in classifying the defect reports. For this purpose,
classification algorithms such as Naive Bayes (NB), Linear
Discriminant Analysis, K-nearest neighbors (KNN), Support
Vector Machine (SVM) with various kernels, Decision Tree
(DT) and Random Forest (RF) were applied separately to
classify defects from three open-source projects.
Performance of different algorithms were evaluated using F-
measure, average accuracy and weighted average f-
measures. Results identified that RF performs best, while
SVM with certain kernels also achieved high performance.

4. SOFTWARE DEFECT PRIORITIZATION MODELS
Defect priority defines the order in which defects will be
fixed by the developers as they indicate the impact on the
system. Higher the impact of the defect on the business,
higher is the priority of the defect. A general defect
prioritization process is depicted in fig 3.

Fig.3 A general Defect Prioritization Process

Priority levels differ from model to model such as the one
shown in fig.4 and they determine how quickly the defects
are to be fixed. However, this assignment of the priority
levels is determined manually. When a dynamic model such
as the software defect prediction model considers defect
prioritization as one of its aspects, the model exhibits
reliable advancements and helps to overcome this manual
effort.

Fig.4 Most commonly used defect priority levels

4.1 FEATURE SELECTION METHODS
Reported defects are commonly maintained using a bug
tracking system such as JIRA. Each defect report contains
details such as the summary of the defect, the affected
module and its impact on the system. A defect prioritization
model begins with feature selection process that selects a
subset of the above state features from the defect reports in
order to determine their priorities. We briefly summarize
some of the feature selection techniques commonly used in
the existing defect prioritization models as below:

A. Information Gain (IG): This technique selects
features based on the information gain with the
frequency of items. It uses a filtering approach that
ranks the subset of features in descending order, so
that we can prioritize defects with high information
gain values on the top order of the list and defects
with low information gain values are lesser
prioritized.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 02 | Feb 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2194

B. Chi-Square Test: This method helps to choose the
best features by testing the relationship between
independent category feature (predictor) and
dependent category feature (response). In feature
selection, this method aims to select features which
are highly dependent on response. Given the data of
two variables, we can get observed count O and
expected count E. Chi-Square test measures how
expected count E and observed count O deviates
from each other. This is calculated as below:

(7)
where:

c = degree of freedom
O = observed value(s)
E = expected value(s)

Information Gain and Chi-Square test are feature selection
methods used when the given set of features are categorical.
Both methods can remove distractions without losing the
categorization accuracy and hence they are highly
recommended in classification problems.

4.2 FEATURE REDUCTION METHODS
Feature reduction which is also known as dimensionality
reduction, is the process of reducing the number of features
from the given set of features without losing its originality
and important information. It decreases the number of
dimensions, making the data less sparse and more
statistically significant for machine learning applications.
Some of the commonly used feature reduction techniques in
defect prioritization models are explained below:

A. Non-negative Matrix Factorization (NMF): It is a
feature reduction technique used when there are
many unclear or weak attributes which have weak
predictability. By combining such attributes, NMF
can produce expressive patterns. NMF is often used
in text mining. In a text document, the same word
can occur in different places with different
meanings. For example, "hike" can be applied to the
outdoors or to interest rates. By combining
attributes, NMF introduces context, which is
essential for predictive power: ‘hike’ + ‘mountain’=
‘outdoor sport’ and ‘hike’ + ‘interest’ = ‘interest
rates’

B. Principle Component Analysis (PCA): Principal
component analysis (PCA) is a mathematical
algorithm that reduces the dimensionality of the
data while retaining the originality and accuracy in
the data set. It achieves this reduction by identifying
directions, called principal components, along
which the accuracy in the data is maximal. PCA is
applied to a dataset represented in the form of n x m
matrix A that results in a projection of A which is a
subset of reduced features.

4.3 LITERATURE SURVEY
Aladdin Baarah et al [5]. This research aimed at building a
prediction model that automatically determines the defect
priorities using machine learning approaches. The study
involved Information Gain (IG) for feature selection and
evaluated the proposed methodology by comparing eight
popularly used machine learning algorithms such as Naive
Bayes (NB), Naive Bayes Multinomial (NBM), Support Vector
Machine (SVM), Decision Tree (DT), Random Forest (RF),
Logistic Model Trees (LMT), Decision Rules (JRip) and K-
Nearest Neighbor. Datasets were constructed from historical
bug reports stored in JIRA bug tracking system from open-
sourced projects. Accuracy was measured using F-measure
and Area under the curve (AUC). Experimental results
showed that Logistic Model Trees (DT: LMT) outperformed
other classifiers and the overall performance has been
enhanced after applying feature selection method. The
results showed that the LMT algorithms reported the best
performance results based on all performance measures
(Accuracy= 86.31, AUC= 0.90, F-measure= 0.91).

Lian Yu et al [6]. This research created an ANN model to
prioritize software defects by adding an extra layer to
resolve the reliance between attributes of a tester and
severity. This model adopts an interactive training method
to handle new feature problems. The inputs to this ANN
model were based on dynamic testing results, such as testing
milestones and defect categories and the output was the
defect priority prediction. Researchers alienated their work
into four main steps: Defining levels for detect priorities –
Extracting attributes from defect reports – creating a three-
layer model of ANN – Error function and Backward
propagation to calculate errors and adjust weights in output
layer and middle layers. The results of the proposed model
were compared with the Bayes algorithm. The 3-fold cross-
test in both the closed test and opening test ways were
executed and the ANN model shows better qualification in
terms of recall, precision and F-measure when compared to
the Bayes approach. The comparison was carried on the
RIS2.0 software project with sample size about 2000 bug
reports.

Gitika Sharma et al [7] The proposed approach created
dictionary of critical terms which indicated the severity of
the bugs. Data sets were extracted from open-sourced
Eclipse development environment and Pre-processing was
performed on the text summary of the bug reports. Text-
Document matrix were created which consisted of columns
that represented the terms that occurred in the documents
and rows represented each bug report. Feature selection
methods such as Info-Gain and Chi Square retrieved the most
informative terms from the corpus of the matrix. A
dictionary consisting of 125 informative terms were created
and sorted in descending order according to their weights
using top k-terms approach. Bug reports were classified into
binary levels as severe and non-severe bug reports, and the
classifiers were trained using Naïve Bayes Multinomial

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 02 | Feb 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2195

(NBM) algorithm for probabilistic classification and K-
nearest neighbor (KNN) algorithm for similarity-based
classification. Results were validated using 5-fold cross
validation method, and the performance of the classifier was
evaluated using Accuracy and Precision performance
measures. Experimental results showed that KNN performed
better as it classified bug reports using common value
attributes and on the current distance, whereas NBM did not
utilize the common values and were based on some initial
probabilities. Hence, this study recommends KNN classifiers
for bug severity prediction.

Ishrat-Un-Nisa Uqaili et al[8]. By analyzing source code
modules, the research proposed an approach to categorize
and prioritize defects based on each class of the source code.
This approach trained the defect prediction model to
categorize defects into two classes: clean and buggy and
prioritize defects into three levels: clean, ordinary, and
complex where complex priority was further classified into
three sublevels: Critical bugs, Major Bugs and Non-Trivial
bugs. The proposed model used three classifiers: Random
Forest (RF), MultiLayer Perceptron (MLP) and Naive Bayes
(NB), with 4 groups of transformed datasets. The proposed
method used genetic algorithms such as Principal

Component Analysis (PCA) for feature selection technique,
Genetic Search (GenSch) to minimize correlation problem,
and SMOTE (Synthetic Minority Oversampling Technique),
Resample Filter (Res) to minimize class imbalance issues.
The research used 37 metric values as datasets which were
publicly available in software metrics and bug repository
data of four projects namely Eclipse, Pde, Mylyn, and
Equinox. The performance measures were in terms of
precision and recall. Experimental results showed that
Random forest classifier when combined with the genetic
algorithms, performed best in both defect classification and
defect severity by showcasing its precision and recall values
to be above 90%.

5. COMPARATIVE ANALYSIS
A comparative analysis [9] of the algorithms and machine
learning techniques used in the above-sited literature survey
greatly helps in understanding the efficiency of the learning
algorithms when used in such defect prediction models.
Based on the performance measures, we have tabulated a
comparison of the machine learning algorithms as shown in
Table 1 and Table 2.

Table -1: Defect Classification Models

Author
Experimental Results

Algorithms Used Evaluation Results
Romi Satria Wahono[1] LR, NB, neural network, SVM, k* classifiers AUC LR had the highest value of AUC
David Bowes et al[2] RF, NB, RPart and SVM F-measure and

Matthews’
Correlation
Coefficient (MCC)

All algorithms performed best when
applied to different datasets

Cagatay Catal[3] Low-density separation (LDS), SVM,
Expectation-Maximization (EM-SEMI), and
Class Mass Normalization (CMN)

ROC AUC SVM and LDS algorithms outperform
CMN and EM-SEMI algorithms

Nitish Pandey et al[4]. NB, linear discriminant analysis, KNN, SVM
with various kernels, DT and RF

F-measure, average
accuracy and
weighted average f-
measures

RF performed best while SVM with some
kernels also achieved high performance

Table -2: Defect Prioritization Models

Author
Experimental Results

Feature Selection Algorithms Used Evaluation Results

Aladdin Baarah
et al [5]

Information Gain (IG) NB, NBM, SVM, DT (J48),
RF, LMT, Decision Rules
(JRip) and KNN

F-measure and Area
Under the Curve (AUC).

LMT achieved better
performance with
Accuracy= 86.31, AUC=
0.90, F-measure= 0.91

Lian Yu et al [6]

Extracted during data
preprocessing

ANN and Bayes
algorithm

Recall (R), Precision (P)
and F-measure
(F)

ANN model performed
better

Gitika Sharma et
al[7]

Text-Document matrix
(TDM), Info-Gain and Chi
Square

NBM and KNN

Accuracy and Precision KNN classifiers showed
better performance

Ishrat-Un-Nisa
Uqaili et al[8]

Extracted during data
preprocessing

RF, Multilayer
Perceptron (MLP) and
NB

Precision and Recall

RF performed best with
precision and recall values
above 90%

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 02 | Feb 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2196

6. CONCLUSION
This paper presented a comparative study of the most
commonly used machine learning algorithms and
highlighted some of the key factors such as feature selection
methods and performance metrics to be considered while
developing a defect classification and prioritization model.
By citing the literature survey of some of the existing models,
this study comprehends the various approaches used for
building a classification and prioritization model. The
comparative analysis of the performance evaluation shows
that Decision Tree(DT) and Support Vector Machine have
performed well for most cases in Defect Classification
models, while Random Forest (RF) and K-nearest neighbor
(KNN) algorithms along with feature selection methods have
performed well in most cases of Defect Prioritization
models. However, each algorithm behaves contrarily to
different problems and different data types making it
difficult to recommend one algorithm that best suits a defect
prediction model. Hence, this study suggests that the choice
of the algorithm be made specific to the problem statement.

REFERENCES

[1] Romi Satria Wahono, Nanna Suryana Herman, Sabrina

Ahmad; Article in Advanced Science Letters. 20. 1945-
1950. 10.1166/asl.2014.5640

[2] David Bowes, Tracy Hall, Jean Petri´c; Software Qual J
(2018) 26, pp.525–552, Published online: 7 February
2017

[3] Cagatay Catal; Journal of Intelligent Systems 2014; vol.
23, no. 1, pp. 75–82.

[4] Nitish Pandey, Debarshi Kumar Sanyal, Abir Hudait,
Amitava Sen; Innovations Syst Softw Eng 13, pp. 279–
297 (2017), published on 24 July 2017

[5] Aladdin Baarah, Ahmad Al-oqaily, Mannam Zamzeer,
Zaher Salah, Mohammad Sallam; International Journal of
Advanced Computer Science and Applications, Vol. 10,
No. 8, 2019

[6] Lian Yu, Wei-Tek Tsai, Wei Zhao, Fang Wu; ADMA 2010,
Part II, LNCS 6441, pp. 356–367, 2010, Springer-Verlag
Berlin Heidelberg 2010

[7] Gitika Sharmaa,, Sumit Sharmaa, Shruti Gujrala; 4th
International Conference on Eco-friendly Computing
and Communication Systems, ICECCS 2015; Procedia
Computer Science 70 (2015); pp: 632 – 639

[8] Ishrat-Un-Nisa Uqaili and Syed Nadeem Ahsan; The
International Arab Journal of Information Technology,
Vol. 17, No. 1, January 2020

[9] T. Sathya Priya and Dr. T. Ramaprabha; “A Comparative
Study on the Methods Used for the Detection of Breast
Cancer”; International Journal on Recent and Innovation
Trends in Computing and Communication; Volume: 5
Issue: 9;pp: 143 – 147

