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Abstract - Defects are imperfections in a product or a 
system that indicates the product has failed to meet the stated 
expectation. Software defects are deviations in actual results 
from those of the expected results. A Software defect 
prediction model when paired with machine learning 
algorithms helps in identifying defects even while the software 
is still being developed. When the defects are further classified 
and prioritized based on its impact, the model greatly helps 
the development team to focus keenly on potential areas of 
risk. With a focus to choose an appropriate framework to build 
a defect prediction model that incorporates the goals of 
classification and prioritization of software defects as its key 
aspects, this paper demonstrates a comparative study over the 
methods used in existing models. This paper briefly outlines 
some of the important techniques such as Data Preprocessing, 
Feature Selection, Feature Reduction methods and 
Performance Measures which are to be considered while 
constructing the defect prediction framework and pursues a 
literature survey on commonly used machine learning 
classifiers that are recommended for such prediction models. 
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1.INTRODUCTION 
 
Defect prediction models on software products has been a 
very active area of research in the field of Software 
Engineering. Software Defects are abnormalities that impair 
the quality, function and utility of a system. They may come 
from misconceptions perceived during the design; or due to 
faulty modules that disrupts the integration of the software. 
Most organizations follow a traditional Time-Based Release 
(TBR) where the software product is planned for a release 
on quarterly, half-yearly or yearly delivery. The team may 
decide to postpone the release dates so that they can focus 
on delivering a defect-free product; or may decide to release 
the product with defects to keep up with their timelines. In 
the latter case, the impact of a defective product has a huge 
effect on the cost plan during the maintenance phase 
spending most of their time in defect prediction and fix. 
 

As the Software Defect Prediction models are one of the 
dynamic methods to predict the reliability of the software, 
the need for a technology that has the ability to change over 
time becomes necessary. In this regard, machine learning 
methods have the efficiency to learn the changes through 
training datasets. Learning methodologies such as 
supervised learning, unsupervised learning, and 
reinforcement learning helps the training datasets to adapt 
to new changes without any manual intervention. Thus, 
machine learning approaches provide a dynamic platform 
for Software Defect Prediction models. 
 
The rest of the paper is organized as follows: Section 2: 
Significance of Machine learning techniques – Section 3: 
Software Defect Classification Models – 3.1 Learning 
Algorithms – 3.2 Performance Measurements – 3.3 
Literature Survey – Section 4: Software Defect Prioritization 
Models – 4.1 Feature Selection methods – 4.2 Feature 
Reduction methods – 4.3 Literature Survey – Section 5: 
Comparative Analysis – Section 6: Conclusion 

 

2. SIGNIFICANCE OF MACHINE LEARNING 
 
Machine learning approaches when incorporated in Software 
Defect Prediction models tends to dynamically predict 
software defects since the model matures along the 
development cycle. This section outlines a general machine 
learning process to understand its benefits when used in 
such models. (Fig.1) 

 
 

Fig.1 Defect Prediction Model using Machine Learning 
techniques 

(1) Data Collection: Defect data is collected from 
historical data repositories or software archives. 
This data is used in training the prediction model 
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and evaluating the performance of the prediction 
model. Hence the defect data is divided into two 
parts, namely the training datasets and test 
datasets. 

(2) Data Preprocessing: Machine learning models 
largely depend on training datasets and test 
datasets, and hence it is crucial to prepare the data 
before training the prediction model. This step is 
intended to clean the data using the Data 
Preprocessing techniques as it greatly helps in 
constructing a structured dataset. Basically, this 
step involves the Data Selection process which 
selects a subset of data from the given data; Data 
Preprocessing cleanses and formats the selected 
data and Data Transformation process scales the 
preprocessed data and collates the selected feature 
subsets into a single subset. The output of this step 
is a Structured dataset. 

(3) Machine learning algorithms: Before starting to 
build a prediction model, a learning scheme is first 
selected. This scheme involves the various machine 
learning approaches such as the supervised, 
unsupervised, and reinforcement learning 
methodologies and selection of machine learning 
algorithms. Different machine learning algorithms 
serves different purposes, therefore choosing 
appropriate algorithms is important for building an 
effective model. 

(4) Prediction Model: A Prediction model is built using 
the selected learning scheme, appropriate machine 
learning algorithms and training datasets which 
trains the model in prediction. 

(5) Real-time Data: These are instances which is used in 
evaluating the performance of the prediction model. 
In a Software defect prediction model, these 
instances can be the current version of the software. 

(6) Prediction Results: Predicted results which shows 
the classification and prioritization of defects are 
generated. 

 

3. SOFTWARE DEFECT CLASSIFICATION MODELS 
Defect Classification models categorizes the software code 
attributes into defective and non-defective labels(fig.2) 
based on the data collected from previous versions of the 
software. This classification helps the developers to plan 
their resources and focus their work keenly on defective 
modules. A variety of classification techniques have been 
used to build defect prediction models ranging from simple 
(e.g., logistic regression) to advanced techniques (e.g., 
Multivariate Adaptive Regression Splines (MARS)). 

 
Fig.2 Most commonly used defect classification structure 

 

3.1 MACHINE LEARNING ALGORITHMS 
In this section, we have taken five most commonly used 
machine learning algorithms from the literature survey to 
discuss their functionalities, advantages and limitations in 
order to understand their capability and performance 
accuracy while used in classification models. Our goal is to 
determine a best fitting classifier for a software defect 
classification model by comparing their performances. This 
study involves five machine learning classifiers namely, 
Naïve Bayes (NB), Support Vector Machine (SVM), Random 
Forest (RF), K-nearest neighbors (KNN) and Decision Tree 
(DT) which are briefly outlined below: 

A. Naïve Bayes (NB): Naïve Bayes classifiers are a 
family of simple probabilistic classifiers that are 
based on Bayes’ theorem. They classify each pair of 
features with strong assumptions that the features 
are independent of each other. Naïve Bayes 
classifiers are easy to implement and requires a 
small amount of training data to estimate the test 
data. But on the other side as disadvantages, if the 
assumptions that the features are independent 
holds true then it can perform better, if not, they 
face ‘zero-frequency problem’ where the test data 
contains variable that is not present in the training 
data. 

B. Support vector machine (SVM): This classifier has 
the capability of both classification and regression 
using a supervised learning method. It uses decision 
boundaries called the hyperplane to classify 
datapoints that falls on either side and categorizes 
them into different classes. It is one of the most 
effective and simple methods used in classification 
and are considered to be effective in separating 
non-linear data. But the classifier causes 
overlapping issues if the hyperplane is not well-
defined. Therefore, it is important to choose an 
optimal hyperplane. 

C. Random Forest (RF): It is a combination of different 
decision trees that functions on various subsets of 
the given dataset. It takes a prediction from each 
tree and selects the best vote of all predicted classes 
over all trees, thus reducing the problem of 
overfitting. It yields high accuracy when more 
noticeable number of trees are incorporated, but 
becomes less instinctive when we have enormous 
collection of trees. 
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D. K-Nearest Neighbor (KNN): The KNN algorithm 
assumes that similar things exist in close proximity. 
In other words, similar things are near to each 
other. 'k' in KNN is a parameter that refers to the 
number of nearest neighbors that are included in 
the majority of the voting process. We need to select 
an appropriate K value in order to achieve the 
maximum accuracy of the model. Classification is 
done by a majority vote to its neighbors and the 
data is assigned to the class which has the nearest 
neighbor. It is very easy to implement and has a 
quick calculation time, but becomes slower as the 
variables increase. 

E. Decision Tree (DT): They can handle both numeric 
and categorical data. It breaks down the dataset into 
smaller subsets as the nodes of the tree gets 
developed. The output of the decision tree is a leaf 
node that represents the decision. It is simple to 
understand and easy to visualize but becomes 
unstable when there are constant changes in the 
input dataset. 

 

3.2 PERFORMANCE MEASURES 
Selection of algorithms largely influences the performance of 
the working model. Therefore, it is important to evaluate the 
performance of the algorithms in the prediction model by 
using performance measures or also known as performance 
metrics. Based on the literature survey, this section briefly 
elaborates on commonly used performance measures such 
as Accuracy, Precision, Recall, ROC AUC and F-measure to 
indicate its appropriate place of usage.  
 
A confusion matrix that summarizes the prediction results 
contain variables such as True Positive (TP), True Negative 
(TN), False Positive (FP) and False Negative (FN) whose 
values evaluate the performance of the algorithms. These 
variables are elaborated below: 

 True Positives (TP): When the model has correctly 
predicted the positive classes.  

 True Negative (TN): When the model has correctly 
predicted the negative classes.  

 False Positive (FP): When the model’s prediction of 
positive classes is incorrect  

 False Negative (FN): When the model’s prediction of 
negative classes is incorrect  

 
Each performance measures are briefly elaborated below:  

a) Accuracy: Accuracy is the proportion of true results 
among the total number of cases examined. This is a 
valid choice of measurement when there is no class 
imbalance problem. It cannot be used when the 
target class is sparse. The accuracy rate on the 
performance of the classification algorithms is 
calculated as below:  

 (1) 

 
b) Precision: This determines on what proportion of 

predicted positives are truly positive. This is a valid 
choice of measurement when we want to be very 
sure of our predictions. Precision values are 
calculated as below:  

 (2) 
c) Recall: This determines on what proportion of 

actual positives are correctly classified. This is a 
valid choice of measurement when we want to 
capture as many positives as possible. Recall values 
are calculated as below:  

 (3) 
d) ROC AUC: An ROC curve (Receiver Operating 

Characteristic Curve) is a graph that shows the 
performance of the classification algorithms at all 
classification thresholds. This curve plots two 
parameters namely True Positive Rate (TPR) and 
False Positive Rate (FPR) which is calculated as 
below:  

  (4)  

  (5) 
AUC stands for Area Under the ROC curve that 
measures the two-dimensional area underneath the 
entire ROC curve. 

e) F- Measures: This measurement is a harmonic mean 
of precision and recall values and the F1 score is 
between 0 and 1. This is mainly used in binary 
predictions. F-Measure is calculated as below:  

(6) 

3.3 LITERATURE SURVEY 
Romi Satria Wahono et al [1] conducted analysis to test the 
performance of some of the widely used classification 
algorithms and proposed an algorithm that best suited a 
software defect prediction model. The research involved 10 
classifiers to build classification models and their 
performance were tested in 9 NASA MDP datasets. Area 
under curve (AUC) was used as an accuracy indicator to 
evaluate the performance of classifiers. Friedman and 
Nemenyi post hoc tests were used to test the significance of 
AUC differences between classifiers. The results showed that 
the models using logistic regression performed best in most 
NASA MDP datasets. Models based on Naïve bayes, neural 
network, support vector machine and k* classifiers also 
performed well although there was no significant difference 
between them. However, models that involved the Decision 
tree-based classifiers, linear discriminant analysis and k-
nearest neighbor tend to underperform. 
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David Bowes et al[2] conducted a research to determine if 
different classifiers detect different types of defects. For this 
purpose, four classifiers namely Random Forest, Naïve 
Bayes, RPart and SVM classifiers were involved to predict 
defects in NASA, open source and commercial datasets. The 
level of the defect predictions produced by these classifiers 
were captured in a confusion matrix and their predictions 
were analyzed for each individual classifier. Although all four 
classifiers showed consistent performance in predicting the 
defects, the research identified that each classifier identifies 
different sets of defects when exposed to different software 
domains that comprised of both open-source as well as 
commercial datasets. This research concluded that using a 
classifier ensembles method combined with decision-making 
strategies will enhance the performance of the individual 
classifiers to identify a specific set of defects. 
 
Cagatay Catal[3] suggested a semi-supervised learning 
approach to classify defects. This research identified that 
predicting defective modules by using only the labeled 
modules was a challenging problem in the software industry. 
Supervised classification approaches that were destined to 
predict defects based on only a few defect data could not 
perform high. Therefore, this study proposed a solution to 
the above problem, by combining labeled data points with 
unlabeled data points during the training phase, thus using a 
semi-supervised learning method. The study involved four 
semi-supervised classification methods such as Low-density 
separation (LDS), Support Vector Machine (SVM), 
Expectation-Maximization (EM-SEMI), and Class Mass 
Normalization (CMN) methods on NASA data sets, which 
were CM1, KC1, KC2, and PC1. This research concluded that 
SVM and LDS algorithms outperformed CMN and EM-SEMI 
algorithms. LDS algorithm performed even much better than 
SVM when the data set is large. Therefore, this study 
suggested LDS-based prediction approach for software 
defect prediction model using a semi-supervised learning 
method. 
 
Nitish Pandey et al [4]. Misclassification of defects often 
costs valuable time of the developers. Hence this research 
focused on automating the classification of the defect 
reports. The researchers first conducted an empirical study 
to select appropriate machine learning algorithms that helps 
in classifying the defect reports. For this purpose, 
classification algorithms such as Naive Bayes (NB), Linear 
Discriminant Analysis, K-nearest neighbors (KNN), Support 
Vector Machine (SVM) with various kernels, Decision Tree 
(DT) and Random Forest (RF) were applied separately to 
classify defects from three open-source projects. 
Performance of different algorithms were evaluated using F-
measure, average accuracy and weighted average f-
measures. Results identified that RF performs best, while 
SVM with certain kernels also achieved high performance. 

 
 
 

4. SOFTWARE DEFECT PRIORITIZATION MODELS 
Defect priority defines the order in which defects will be 
fixed by the developers as they indicate the impact on the 
system. Higher the impact of the defect on the business, 
higher is the priority of the defect. A general defect 
prioritization process is depicted in fig 3. 

 
Fig.3 A general Defect Prioritization Process 

 
Priority levels differ from model to model such as the one 
shown in fig.4 and they determine how quickly the defects 
are to be fixed. However, this assignment of the priority 
levels is determined manually. When a dynamic model such 
as the software defect prediction model considers defect 
prioritization as one of its aspects, the model exhibits 
reliable advancements and helps to overcome this manual 
effort. 

 
Fig.4 Most commonly used defect priority levels 

 
4.1 FEATURE SELECTION METHODS 
Reported defects are commonly maintained using a bug 
tracking system such as JIRA. Each defect report contains 
details such as the summary of the defect, the affected 
module and its impact on the system. A defect prioritization 
model begins with feature selection process that selects a 
subset of the above state features from the defect reports in 
order to determine their priorities. We briefly summarize 
some of the feature selection techniques commonly used in 
the existing defect prioritization models as below: 

A. Information Gain (IG): This technique selects 
features based on the information gain with the 
frequency of items. It uses a filtering approach that 
ranks the subset of features in descending order, so 
that we can prioritize defects with high information 
gain values on the top order of the list and defects 
with low information gain values are lesser 
prioritized.  
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B. Chi-Square Test: This method helps to choose the 
best features by testing the relationship between 
independent category feature (predictor) and 
dependent category feature (response). In feature 
selection, this method aims to select features which 
are highly dependent on response. Given the data of 
two variables, we can get observed count O and 
expected count E. Chi-Square test measures how 
expected count E and observed count O deviates 
from each other. This is calculated as below:  

(7) 
where: 

c = degree of freedom 
O = observed value(s) 
E = expected value(s) 

Information Gain and Chi-Square test are feature selection 
methods used when the given set of features are categorical. 
Both methods can remove distractions without losing the 
categorization accuracy and hence they are highly 
recommended in classification problems. 
 

4.2 FEATURE REDUCTION METHODS 
Feature reduction which is also known as dimensionality 
reduction, is the process of reducing the number of features 
from the given set of features without losing its originality 
and important information. It decreases the number of 
dimensions, making the data less sparse and more 
statistically significant for machine learning applications. 
Some of the commonly used feature reduction techniques in 
defect prioritization models are explained below: 

A. Non-negative Matrix Factorization (NMF): It is a 
feature reduction technique used when there are 
many unclear or weak attributes which have weak 
predictability. By combining such attributes, NMF 
can produce expressive patterns. NMF is often used 
in text mining. In a text document, the same word 
can occur in different places with different 
meanings. For example, "hike" can be applied to the 
outdoors or to interest rates. By combining 
attributes, NMF introduces context, which is 
essential for predictive power: ‘hike’ + ‘mountain’= 
‘outdoor sport’ and ‘hike’ + ‘interest’ = ‘interest 
rates’  

B. Principle Component Analysis (PCA): Principal 
component analysis (PCA) is a mathematical 
algorithm that reduces the dimensionality of the 
data while retaining the originality and accuracy in 
the data set. It achieves this reduction by identifying 
directions, called principal components, along 
which the accuracy in the data is maximal. PCA is 
applied to a dataset represented in the form of n x m 
matrix A that results in a projection of A which is a 
subset of reduced features.  

 
 

4.3 LITERATURE SURVEY 
Aladdin Baarah et al [5]. This research aimed at building a 
prediction model that automatically determines the defect 
priorities using machine learning approaches. The study 
involved Information Gain (IG) for feature selection and 
evaluated the proposed methodology by comparing eight 
popularly used machine learning algorithms such as Naive 
Bayes (NB), Naive Bayes Multinomial (NBM), Support Vector 
Machine (SVM), Decision Tree (DT), Random Forest (RF), 
Logistic Model Trees (LMT), Decision Rules (JRip) and K-
Nearest Neighbor. Datasets were constructed from historical 
bug reports stored in JIRA bug tracking system from open-
sourced projects. Accuracy was measured using F-measure 
and Area under the curve (AUC). Experimental results 
showed that Logistic Model Trees (DT: LMT) outperformed 
other classifiers and the overall performance has been 
enhanced after applying feature selection method. The 
results showed that the LMT algorithms reported the best 
performance results based on all performance measures 
(Accuracy= 86.31, AUC= 0.90, F-measure= 0.91). 
 
Lian Yu et al [6]. This research created an ANN model to 
prioritize software defects by adding an extra layer to 
resolve the reliance between attributes of a tester and 
severity. This model adopts an interactive training method 
to handle new feature problems. The inputs to this ANN 
model were based on dynamic testing results, such as testing 
milestones and defect categories and the output was the 
defect priority prediction. Researchers alienated their work 
into four main steps: Defining levels for detect priorities – 
Extracting attributes from defect reports – creating a three-
layer model of ANN – Error function and Backward 
propagation to calculate errors and adjust weights in output 
layer and middle layers. The results of the proposed model 
were compared with the Bayes algorithm. The 3-fold cross-
test in both the closed test and opening test ways were 
executed and the ANN model shows better qualification in 
terms of recall, precision and F-measure when compared to 
the Bayes approach. The comparison was carried on the 
RIS2.0 software project with sample size about 2000 bug 
reports. 

 
Gitika Sharma et al [7] The proposed approach created 
dictionary of critical terms which indicated the severity of 
the bugs. Data sets were extracted from open-sourced 
Eclipse development environment and Pre-processing was 
performed on the text summary of the bug reports. Text-
Document matrix were created which consisted of columns 
that represented the terms that occurred in the documents 
and rows represented each bug report. Feature selection 
methods such as Info-Gain and Chi Square retrieved the most 
informative terms from the corpus of the matrix. A 
dictionary consisting of 125 informative terms were created 
and sorted in descending order according to their weights 
using top k-terms approach. Bug reports were classified into 
binary levels as severe and non-severe bug reports, and the 
classifiers were trained using Naïve Bayes Multinomial 
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(NBM) algorithm for probabilistic classification and K-
nearest neighbor (KNN) algorithm for similarity-based 
classification. Results were validated using 5-fold cross 
validation method, and the performance of the classifier was 
evaluated using Accuracy and Precision performance 
measures. Experimental results showed that KNN performed 
better as it classified bug reports using common value 
attributes and on the current distance, whereas NBM did not 
utilize the common values and were based on some initial 
probabilities. Hence, this study recommends KNN classifiers 
for bug severity prediction. 
 
Ishrat-Un-Nisa Uqaili et al[8]. By analyzing source code 
modules, the research proposed an approach to categorize 
and prioritize defects based on each class of the source code. 
This approach trained the defect prediction model to 
categorize defects into two classes: clean and buggy and 
prioritize defects into three levels: clean, ordinary, and 
complex where complex priority was further classified into 
three sublevels: Critical bugs, Major Bugs and Non-Trivial 
bugs. The proposed model used three classifiers: Random 
Forest (RF), MultiLayer Perceptron (MLP) and Naive Bayes 
(NB), with 4 groups of transformed datasets. The proposed 
method used genetic algorithms such as Principal 

Component Analysis (PCA) for feature selection technique, 
Genetic Search (GenSch) to minimize correlation problem, 
and SMOTE (Synthetic Minority Oversampling Technique), 
Resample Filter (Res) to minimize class imbalance issues. 
The research used 37 metric values as datasets which were 
publicly available in software metrics and bug repository 
data of four projects namely Eclipse, Pde, Mylyn, and 
Equinox. The performance measures were in terms of 
precision and recall. Experimental results showed that 
Random forest classifier when combined with the genetic 
algorithms, performed best in both defect classification and 
defect severity by showcasing its precision and recall values 
to be above 90%. 
 

5. COMPARATIVE ANALYSIS 
A comparative analysis [9] of the algorithms and machine 
learning techniques used in the above-sited literature survey 
greatly helps in understanding the efficiency of the learning 
algorithms when used in such defect prediction models. 
Based on the performance measures, we have tabulated a 
comparison of the machine learning algorithms as shown in 
Table 1 and Table 2. 

 
Table -1: Defect Classification Models 

Author 
Experimental Results 

Algorithms Used Evaluation Results 
Romi Satria Wahono[1] LR, NB, neural network, SVM, k* classifiers AUC LR had the highest value of AUC 
David Bowes et al[2]  RF, NB, RPart and SVM F-measure and 

Matthews’ 
Correlation 
Coefficient (MCC)  

All algorithms performed best when 
applied to different datasets  

Cagatay Catal[3]  Low-density separation (LDS), SVM, 
Expectation-Maximization (EM-SEMI), and 
Class Mass Normalization (CMN)  

ROC AUC SVM and LDS algorithms outperform 
CMN and EM-SEMI algorithms  

Nitish Pandey et al[4].  NB, linear discriminant analysis, KNN, SVM 
with various kernels, DT and RF 
 

F-measure, average 
accuracy and 
weighted average f-
measures  
 

RF performed best while SVM with some 
kernels also achieved high performance  

 
Table -2: Defect Prioritization Models 

Author 
Experimental Results 

Feature Selection Algorithms Used Evaluation Results 

Aladdin Baarah 
et al [5]  

Information Gain (IG)  NB, NBM, SVM, DT (J48), 
RF, LMT, Decision Rules 
(JRip) and KNN 

F-measure and Area 
Under the Curve (AUC).  
 

LMT achieved better 
performance with 
Accuracy= 86.31, AUC= 
0.90, F-measure= 0.91 

Lian Yu et al [6]  
 

Extracted during data 
preprocessing 

ANN and Bayes 
algorithm  

Recall (R), Precision (P) 
and F-measure  
(F)  

ANN model performed 
better  

Gitika Sharma et 
al[7]  
 

Text-Document matrix 
(TDM), Info-Gain and Chi 
Square  
 

NBM and KNN  
 

Accuracy and Precision  KNN classifiers showed 
better performance  

Ishrat-Un-Nisa 
Uqaili et al[8]  

Extracted during data 
preprocessing  
 

RF, Multilayer 
Perceptron (MLP) and 
NB 
 

Precision and Recall  
 

RF performed best with 
precision and recall values 
above 90%  
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6. CONCLUSION 
This paper presented a comparative study of the most 
commonly used machine learning algorithms and 
highlighted some of the key factors such as feature selection 
methods and performance metrics to be considered while 
developing a defect classification and prioritization model. 
By citing the literature survey of some of the existing models, 
this study comprehends the various approaches used for 
building a classification and prioritization model. The 
comparative analysis of the performance evaluation shows 
that Decision Tree(DT) and Support Vector Machine have 
performed well for most cases in Defect Classification 
models, while Random Forest (RF) and K-nearest neighbor 
(KNN) algorithms along with feature selection methods have 
performed well in most cases of  Defect Prioritization 
models. However, each algorithm behaves contrarily to 
different problems and different data types making it 
difficult to recommend one algorithm that best suits a defect 
prediction model. Hence, this study suggests that the choice 
of the algorithm be made specific to the problem statement. 
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