
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 698

Making Cross Platform Web Applications using Electron Js and Python

Dr. Sonakshi Vij1, Akash Pandey2, Harshit Jain3, Himanshu Tyagi4, Harshita Sinha5

1Assistant Professor, Department of Computer Science and Engineering, Krishna Engineering College, Ghaziabad,
Uttar Pradesh, India

2,3,4,5 Final Year Students, Department of Computer Science and Engineering, Krishna Engineering College,
Ghaziabad, Uttar Pradesh, India

---***--
Abstract - Electron is used to make cross platform web
applications using web frameworks or languages as javascript,
HTML or CSS. Shifting from tkinter to electron was a very good
idea for this project. We made a fully deployable electron
application that is running our face authentication software
fully written on python initially. Generally electron uses
Node.js to communicate from the backend server, so here
python3 is used as the backend for communication. This makes
the User Interface of this application more appealing and
intuitive without reducing any functionality of the system.

Key Words: Electron-Python Web Application, Face
Authentication, ZerorPc, Electron GUI

1. INTRODUCTION

Electron as a framework is a new concept for making
desktop applications programmed on web technologies.
Many Web apps shifted their codebase to electron with
added functionalities and the ease of coding in web
frameworks.

It’s easier to maintain and the main codebase is used and
fully deployed as a desktop application used by any
operating system. Electron with python as a backend is an
innovative idea of deploying python applications as web
apps running on a flask server or an RPC That can
communicate between the python code running on Web
server with the server’s backend in node JS. We found
Zerorpc as the best RPC in this use case as flask is a heavy
and resource hungry. In our project the old tkinter GUI
looked very less appealing and basic. The problems we had
with the previous UI and Application are:

 Issues with deployment
 UI Looked Non intuitive
 Device must have python and all the other libraries

installed in the computer to use the application.
 Tkinter is not as progressive as electron.
 Needs a separate package manager and IDE
 Lacks the full flexibility of a website application

For this cross communication between python and
electron we actually need an inter-process
communication (IPC) mechanism.

It is unavoidable unless Python and JavaScript have direct
foreign function interface for each other. HTTP is a very
popular way to establish inter process communication, also
we have various options like we can use sockets of
communication. Then, for which, we want an abstract our
messaging layer that could be implemented with zeroMQ
which is one of the best messaging library. We need to
establish a way to synthesize raw data that can be used by
zerorpc to communicate between backend and frontend. that
is an RPC used for server communication. The best part is
our RPC Zeror supports both node.js and python which suits
our use case.

2. PROPOSED SYSTEM

The best feature about using Electron as a GUI for Python is
that you get to use cutting edge web tech. also you don’t have
to learn old , not well maintained GUI toolkits, and the best
part is that you can use web languages and frameworks to
code your frontend with the added functionalities of native
javascript and itd frameworks. The backend code written in
python needs to be connected to a server running the code
either on flask or any existing RPC software. Zerorpc is Open
source FOSS RPC project used for communicating between
server and the application. We found out zeror to be more
effective than eel and less resource hungry.

Fig 1.1: Architecture of the system

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 699

There are 4 major components in the whole architecture of
this system

2.1 MAIN PROCESS

The purpose of main process in electron is to create and
manage the windows in the browser of the application
running as a block. Every browser window individually run
and have its own UI or process.

The backdrop and functionality both of using the main
process in electron is that there can only be one main
process in the block at any given time in the browser
window.

2.2 RENDERER PROCESS 1 (THAT IS VISIBLE)

The main process creates different browser windows that
divides into different renderer processes in the system, Or in
easy words each browser window is a renderer process in
itself running individually. Its main purpose is to render or
show the webpage in the application window. Its main
functionality is to render the graphics ui in real time.

2.3 RENDERER PROCESS 2 (THAT IS HIDDEN)

This is a tab or browser window that is hidden or abstracted
from the user using the service. Main function of this layer is
to block the incoming threads and it does not render the
User Interface of the application.

To basically achieve the thread blocking in the window we
will simply create a hidden window, complete the given task
under it which is running in the background. Then when the
task gets completed we stop the hidden process and release
the memory without causing any difficulty to the main
process. The idea is to make and release memory of a hidden
window in the application progressively.

2.4 PYTHON SCRIPT

We make a Node package manager package to run the
application using python, which is the python-shell. Using
the python shell allows us to run external scripts written in
python within our node js backend application. As the
node.js features are allowed inside the electron app so we
can effectively communicate using python scripts from the
node package manager.

Fig 2.1: Components of Application

2.5 COMMUNICATION:

This part involves the communication between all these 4
components. This involves socket communications between
the hidden render process, main render process and the
main process layer where the python codebase
communicates using python shell scripts to establish a
connection to the running server and effectively
communicate with the backend server. This communication
involves the use of the existing RPC Software and is very
efficient to use in this technique. This cross communication
between python and node js using javascript is a new
technology and still some communication gaps which needs
to be resolved.

Fig 2.2: Communication Between layers

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 700

3. ANALYSIS & COMPARISONS

Fig 3.1 : Previous GUI Made using Tkinter [Python]

Fig 3.2: Revised Application made on Electron

This process lets us not only make a very nice Graphical
interface but also gives us the robustness of the electron and
flexibility of web applications using javascript frameworks.

 Native menus and notifications

 Packaged installers, automatic updates to your
application

 the large community and ecosystem of
Electron

 debugging and profiling is easier

 Google and thousands of developers keep
working on improving this Electron Toolkit
each and every day to give the best version
possible with minimum amount of bugs.

 This makes us able to use multiple Javascript
plugins and frameworks or JS UI widgets and

controls e.g. JQuery, Charts, Frameworks and
the possibilities of using electron are limitless.

 The full functionality of NodeJs and its large
Package repository is a addon.

 ES6 syntax that is a clean javascript syntax
with classes, no semicolons and modules can
be used.

Electron browser window with python in backend is a piece
of code where we use Electron (nodejs with chromium
(browser)) as a GUI communicating with Python as the
backend via IPC connectors as Eel or zerorpc that is very
capable and let us use many functionalities of the web
frameworks with the robustness of python as the backend
and the zeror lets the seamless transfer of data between all
these layers. Also the system may or may not have chrome it
doesn’t matter as it comes in packaged with the electron
itself.

4. CONCLUSION

This paper presents an effective solution to build deployable
electron-python web apps which run on different operating
systems and web and is robust and more effective than
tkinter. The improvements in working of the web app and
the redesigned UI makes it a sure shot solution above
tkinter. The flexibility of using any web framework to design
beautiful looking Graphical user interfaces and the backend
process using python makes it very versatile.

REFERENCES

[1] https://medium.com/heuristics/electron-react-python-
part-2-architecture-d49634521efd

[2] https://medium.com/@abulka/electron-python-
4e8c807bfa5e

[3] https://efficientcoder.net/connect-python-3-electron-
nodejs-build-desktop-apps/

[4] https://www.skcript.com/svr/how-to-execute-python-
scripts-in-electron-and-nodejs/

[5] https://Zerorpc.io

[6] https://www.fyears.org/2017/02/electron-as-gui-of-
python-apps.html

