
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 303

GraphQL Service Layer to Enable Client-driven, Optimized and Secure
Front-end Architecture

Amit Jambusaria1

1Amit Jambusaria; Syracuse University; 31 Caspar St, Boston, MA - 02132

---***---
Abstract - GraphQL is an open-source data query and
modification language for APIs leveraged by several
prominent tech shops such as Facebook (original creator),
Github, Pinterest, Intuit, Cousera, Paypal, Yelp and Shopify
to name a few. It has gotten a lot of positive attention from
the engineering community and supporters have termed it
as “Better REST”, asserting a range of benefits over
traditional REST. With all the buzz around GraphQL, do
developers need to make an active shift towards it and
deprecate REST endpoints completely? It depends on many
factors, which are discussed in this article. As part of the
study, we will be also be establishing performance
benchmarks of GraphQL vs REST in terms of overall web
page load time (TTI)..

Key Words: GraphQL; Web Applications; Front-end;
API; REST; Services; Client architecture; Data Query

1.INTRODUCTION

GraphQL is a data-query language created by Facebook
that went open source in 2015. It provides a complete
understandable description of the data in the API and
enables clients to function in a declarative style to fetch
exactly what they need - nothing less, nothing more. In this
article, we will summarize how it works, comparative
study of GraphQL vs REST, why you should use it and what
are some of its drawbacks. Graph data structures are
connection maps, and they have one key advantage over
both relational / document stores - you can express both
relational & hierarchical information as graphs.

RESTful APIs follow clear and well-structured resource-
oriented approach, when the data gets more complex, the
routes get longer. It is not always possible to fetch data
with a single request. GraphQL structures data in the form
of a graph with its powerful query syntax to request,
retrieve and update data. GraphQL is a query language for
APIs and not for databases.

2. GRAPHQL COMPONENTS

GraphQL enables you to fetch (or modify) all the data on a
server in one go. Your client can make HTTP requests to
the /graphql endpoint by providing query, variables and
operationName. For example, the request would look
something like –

{

 “operationName”: “operation name”,

“query”: “query string”,
 “variables”: “variables”

}

GraphQL allows for three kinds of operations -

1. Query
2. Mutation
3. Subscription

A GraphQL operation is either a query (read), mutation
(write), or subscription (continuous read). Each of these
operations is only a string that needs to be constructed
according to the GraphQL specification. Once this operation
reaches the backend application, it can be interpreted
against the entire GraphQL schema there and resolved with
data for the frontend application.

2.1 QUERY

Query enables the client to fetch data from the server.
They are comparable to the GET calls in traditional REST.
A GraphQL query is a string that is sent to a server to be
interpreted and fulfilled, which then returns JSON back to
the client. At a very basic level, each query contains fields
and arguments.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 304

The shape of the query is of the same shape as the result.
This is a key feature in GraphQL, because you always get
back what you expect, and the server knows exactly what
fields the client is asking for. Let’s take the example of the
‘Ticket’ resource given below. The query call is made from
a web IDE called Graphiql that helps you to test and
structure your queries against your server. We have
defined a query that pulls ticket fields by passing in the
ticket ID as an identifier argument.

GraphQL queries access not just the properties of one
resource but also smoothly follow references between
them. While typical REST APIs require loading from
multiple URLs, GraphQL APIs get all the data your app
needs in a single request. Apps using GraphQL can be
quick even on slow mobile network connections. Existing
APIs fetch more from the GET calls than what is required,
leading to the emergence of technologies like GraphQL
instead of traditional ones like REST [1].

Fig - 2: Graphiql interface to test GraphQL queries

Queries can also parse through dynamic arguments which
can be passed in JSON format as variables. In the example
above, instead of hardcoding the ticket ID, you could pass
in a variable $id. Given below is the query network call as
seen in the browser dev tools.

2.1 MUTATION

Just reading data from the server is not enough. We also
need the ability to create, update and delete data from the
server. In REST, this is accomplished by POST with a
payload (usually JSON) that is passed to the server. In
GraphQL this is solved through Mutation. Mutations
enable the client to modify data on the server-side. In our
example around “Ticket”, we will replace the query with
the mutation keyword. The corresponding mutation type
also needs to exist on the server-side. This is an example:

Fig - 3: An example of Mutation to create / update data

In our example, the createTicket mutation accepts two
arguments for creating a ticket - title and author_id. On
ticket creation, we return the $id of the newly created
ticket. Just like the Query, Mutation is a root object type.
Mutations for the most part are very flexible and can
return whatever you desire: scalars such as int, string,
bool and core types like the Ticket, or even custom
response objects. Similar to queries, if the mutation field
returns an object type, you can ask for nested fields.

2.3 SUBSCRIPTION

Subscription enables the client to fetch real-time updates
from the server. You can think of subscriptions as
analogous to continuous polling mechanisms. It makes it
possible for the server to stream data to all the clients that
are listening or “subscribed” to it. Just like queries,
subscriptions allow you to read data. Unlike queries,
subscriptions maintain an active connection to your
GraphQL server, most commonly via WebSocket. This
enables your server to push updates to the client over
time. Executing a subscription creates a persistent
function on the server that maps an underlying Source
Stream to a returned Response Stream. You can define
available subscriptions in your GraphQL schema as fields
of the Subscription type.

So, when should you use subscriptions? In most use cases,
you should not require subscriptions. Your client can stay
consistent with the backend by querying intermittently or
re-execute queries on demand based on triggers / actions
from the user. Subscriptions are a great for

1. Small incremental changes to large objects - If

your backend object is continuously being
updated, re-querying constantly from the client
can get expensive and slow. For example, consider
the stock trading apps - Robinhood, WeBull,
Fidelity etc. The ticker price for a given stock is
constantly fluctuating. Rather than persistently
querying the server, subscriptions would provide
a much more elegant solution. You can fetch the
initial state of the object with a query, and your
server can proactively push updates to individual
fields as they occur.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 305

2. Low-latency, real-time updates - A chat
application is a good example where all the chat
participants need to receive messages as soon as
they are posted.

3. PAGE LOAD TIME OPTIMIZATION STUDY

As part of web performance measurement, following key
metrics needs to be considered –

 First contentful paint (FCP): measures the time from

when the page starts loading to when any part of the
page's content is rendered on the screen. (lab, field)

 Largest contentful paint (LCP): measures the time
from when the page starts loading to when the largest
text block or image element is rendered on the screen.
(lab, field)

 First input delay (FID): measures the time from
when a user first interacts with your site (i.e. when
they click a link, tap a button, or use a custom,
JavaScript-powered control) to the time when the
browser is actually able to respond to that interaction.
(field)

 Time to Interactive (TTI): measures the time from
when the page starts loading to when it's visually
rendered, its initial scripts (if any) have loaded, and
it's capable of reliably responding to user input
quickly. (lab)

 Total blocking time (TBT): measures the total
amount of time between FCP and TTI where the main
thread was blocked for long enough to prevent input
responsiveness. (lab)

 Cumulative layout shift (CLS): measures the
cumulative score of all unexpected layout shifts that
occur between when the page starts loading and when
its lifecycle state changes to hidden. (lab, field)

We will be measuring the Time to Interactive (TTI) for
web pages of different sizes using regular REST calls vs
GraphQL service layer. In the research the web page
content is unaltered. Fig - 4 details the GraphQL network
calls and the server response time.

Fig - 4: GraphQL network calls to the server

In Fig – 5, we see performance profiler graphical
representation of the execution time, most of the time is
consumed during scripting and then for rendering.

Fig - 5: Browser Performance Profiler

Measuring the GraphQL performance in terms of Page load
times for web pages of different sizes.

Case 1:
Web page size – 6.6MB
REST page load time – 2.90 sec
GraphQL page load time – 2.17 sec
Delta / Performance optimization – 0.73 sec

Fig – 6: Page load time – REST vs GQL (Case 1)

Case 2:
Web page size – 7MB
REST page load time – 3.24 sec
GraphQL page load time – 2.28 sec
Delta / Performance optimization – 0.96 sec

Fig – 7: Page load time – REST vs GQL (Case 2)

Case 3:
Web page size – 7.5MB
REST page load time – 4.24 sec
GraphQL page load time – 2.53 sec
Delta / Performance optimization – 1.71 sec

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 306

Fig – 8: Page load time – REST vs GQL (Case 3)

Case 4:
Web page size – 8.2MB
REST page load time – 5.17 sec
GraphQL page load time – 2.94 sec
Delta / Performance optimization – 2.23 sec

Fig – 9: Page load time – REST vs GQL (Case 4)

Case 5:
Web page size – 8.6MB
REST page load time – 5.52 sec
GraphQL page load time – 3.27 sec
Delta / Performance optimization – 2.25 sec

Fig – 10: Page load time – REST vs GQL (Case 6)

Case 6:
Web page size – 9.1MB
REST page load time – 6.18 sec
GraphQL page load time – 3.82 sec
Delta / Performance optimization – 2.36 sec

Fig – 11: Page load time – REST vs GQL (Case 6)

Final analysis (Chart 1)–

1. Comparing the page load time for REST vs
GraphQL for web pages of different size, we find

GraphQL is always the winner in terms of overall
performance.

2. The delta / optimization value (in sec) increases
i.e., becomes better with increase in the size of
web page.

Chart - 1: Page load time value REST vs GraphQL

The style defines a set of constraints intended to improve
performance, availability, and scalability and it is based on
a traditional client-server paradigm [2].

4. GRAPHQL BENEFITS

GraphQL may be a good candidate for your API layer if
your application has a data domain with highly
interrelated, nested, or traversable concepts. These are the
types of relationships that are difficult to model with a
RESTful API and usually result in repeated round trips to
the backend. Other reasons to consider GraphQL are: You
want to give clients control over what data (fields) are
returned, you want to reduce the amount of data sent per
request (related to clients asking for what they want),
leveraging information about what the client requests
(query) allows you to more efficiently load and serve the
data.

Following are the benefits of using GraphQL -

 Exact data fetching. GraphQL minimizes the data
that needs to be transferred over the network.
Your client can specify exactly what resource
properties need to be pulled from the server,
reducing the overall payload and complexity of
the call.

 For example, in order to study the gains achieved
by GraphQL due to the lack of over-fetching, Brito
et al. [3] implemented 14 queries used in seven
recent empirical software engineering papers.

 Nearly all externally facing REST APIs we know of
trend or end up in these non-ideal states, as well
as nearly all internal REST APIs. The
consequences of opaqueness and over-fetching
are more severe in internal APIs since their
velocity of change and level of usage is almost
always higher. [4]

 Single request can fetch multiple resources.
Unlike traditional REST, a single GraphQL query
call can fetch data across multiple backend
resources. This reduces the over sprawl of

Web Page Size Normal Page Load time GraphQL Page Load Time

6.6mb 2.90 sec 2.17 sec

7mb 3.24 sec 2.28 sec

7.5mb 4.24 sec 2.53 sec

8.2mb 5.17 sec 2.94 sec

8.6mb 5.52 sec 3.27 sec

9.1mb 6.18 sec 3.82 sec

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 307

endpoints on the server which can be a big issue
with REST.

 More power to the client. One of the key benefits
of GraphQL is that the client has complete control
over data fetching. Rather than the server
responding with static payloads, the client can
dynamically request necessary data points.

 Schema stitching. Great fit for complex systems
with microservices. By integrating multiple
systems behind its API, GraphQL unifies them and
hides their complexity.

 Highly reusable code means that everyone
benefits from everyone else's work. When types
(schema objects) get added, everyone gets to use
them without writing a single line of new code.

 Enables parallel processing. GraphQL allows for
loading fields at the same level in parallel. For
example, for a given user if you want to fetch
medical history and employment history, you can
load those in parallel.

 Discovery of types i.e. figuring out what other
people have already made - is easy when using
tools like Voyager, GraphQL Playground and
Graphiql. This helps in reducing duplicate code
and helps achieve the DRY principle.

 First class server-side rendering support lets you
get stuff done faster. See Server-side rendering
with GraphQL for detailed explanation and
examples.

 Amazing tooling and community. GraphQL
Playground and Graphiql are just some of the
many open-source things available for use. Also
check out IDE integrations like JS graphql.

 Deferred Resolvers give us a real way to attack
the n+1 problem, which can be hard to solve in
traditional REST.

 Deprecate API's on a field level. Client receives a
deprecation whenever a field is marked to be
deprecated. Once all the client dependencies are
updated/removed the field can be safely
deprecated.

 Great ergonomics. Write all your code in the same
file; queries go right next to your markup. Need
more data? Add it to your query and you're done.

 Very rapid prototyping and iteration when
working with types (schema objects) that already
exist in the GraphQL ecosystem.

Support for serverless applications. Running the GraphQL
backend (except Subscriptions) on a serverless cloud
function works really well. Since GraphQL exposes a single
endpoint, you can run your entire GraphQL server off a
single cloud function. Recently, the authors complemented
and finished this formalization by proving that evaluating
the complexity of GraphQL queries is a NL-problem [5].

Vogel et al. [6] present a case study on migrating to
GraphQL part of the API provided by a smart home
management system. They report the runtime
performance of two endpoints after migration to GraphQL.
For the first endpoint, the gain was not relevant; but for
the second, GraphQL required 46% of the time of the
original REST API.

Wittern et al. [7] also perform a study on GraphQL
schemas. The authors study the design of GraphQL
interfaces by analyzing schemas of 8,399 GitHub projects
and 16 commercial projects. The authors report that a
majority of GraphQL APIs have complex queries, posing
real security risks

Vargas et al. [8] perform a study to investigate the
feasibility of using a classic technique to test generation in
GraphQL schemas (deviation testing). They use an
implementation of GraphQL for Pharo and run the
proposed technique in two popular GraphQL APIs.

4. GRAPHQL DRAWBACKS

There are many use cases where it's quite appropriate to
GraphQL, but here are some instances where it's not -

 Authentication is usually handled by headers /
hashing (stateless) or by specific service
endpoints that then set up authenticated sessions
or provide tokens for use with the API.

 File Uploads has been a major pain point in
GraphQL. You could send a base64 string with a
mutation, but large files result in large (and
therefore unwieldy, slow to process) strings. A
dedicated endpoint for uploads is more practical.
Another option can be multipart request
extension GraphQL mutations as explained here.

 Dynamic Connections. This can happen with
generic key/value pairs where the value amounts
to a foreign key. The nature of those connections
will vary from query to query.

 RPC-Style Operations. Mutations are expected to
execute a query and return those results. This can
be unnecessary overhead for some asynchronous
RPC-style operations.

 Caching can get difficult since the requested fields
with each query can change; it uses a single
endpoint which can return different kinds of
payloads vs REST where there are multiple
endpoints, and response payload remains
constant. The problem is partially solved by using
persisted GraphQL queries that assist in
producing a JSON file for mapping queries and
identifiers.

 Potential for a single point of failure. Since the
entire resource (and its fields) are defined on a
single endpoint, any breaking change on the type

https://github.com/APIs-guru/graphql-voyager
https://github.com/graphql/graphql-playground
https://github.com/graphql/graphiql
https://www.apollographql.com/blog/how-server-side-rendering-works-with-react-apollo-20f31b0c7348/
https://www.apollographql.com/blog/how-server-side-rendering-works-with-react-apollo-20f31b0c7348/
https://github.com/graphql/graphql-playground
https://github.com/graphql/graphql-playground
https://github.com/graphql/graphiql
https://graphql.org/code/
https://plugins.jetbrains.com/plugin/8097-js-graphql
https://secure.phabricator.com/book/phabcontrib/article/n_plus_one/
https://github.com/jaydenseric/graphql-multipart-request-spec
https://blog.apollographql.com/persisted-graphql-queries-with-apollo-client-119fd7e6bba5

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 308

/ endpoint will negatively affect multiple client
apps consuming it.

 Since GraphQL is not a versioned API the process
for designing additions to the graph is more
rigorous. GraphQL server implementations do
support @deprecated directive OOB which helps.

 Overkill for small apps. GraphQL is a good fit for
complex systems with multiple microservices, but
for simple apps, it might be better to go with the
tried and tested REST architecture.

One important thing to keep in mind is that by opening up
the ability for clients to query across the domain space and
relationships, you add the possibility of very complex data
loading. GraphQL gives a client complete freedom to
request whatever it needs. This can get contentious since
the client can potentially request many fields across
multiple resources and thus causing sluggish network
calls. This is similar to how queries in SQL can get very
complex and expensive. Add in the recursive relationships
that can exist in the graph and some queries can tax your
system.

5. KEY TAKEAWAYS

While GraphQL is an extremely powerful and flexible API
strategy, it is not a silver-bullet for all your data CRUD
needs. You should evaluate your application needs and
developer skills to make the right call. GraphQL adoption
(switching from REST) usually requires a major rewrite of
the API and Client layer for your application. While there
are material benefits to switch, depending on the size and
complexity of your app, this can be a massive undertaking
in terms of time and resources. There is also a learning
curve with GraphQL and its best practices which should be
taken into account before taking the leap.

At the same time, GraphQL can remarkably
simplify/optimize your data access and modification
needs for both client and server-side engineers, regardless
of languages or environment you’re in. If you’re writing an
app from scratch and/or not afraid to try something new,
GraphQL presents itself as a great option with many
compelling reasons to use it. If you decide to adopt
GraphQL, take enough time to design your graph schema.
Measure twice and cut once. Mapping a good GraphQL
schema is a non-trivial task. So, take your time and try to
get it right the first time around; it will save you from a lot
of inconvenience down the line.

6. CONCLUSIONS

GraphQL shifts your focus, from thinking of data in terms
of resource URLs and traditional REST endpoints, into a
graph of objects and the models used in apps. You can read
more about this in the Facebook blog that was published
back in 2015.

GraphQL provides some significant benefits over RESTful
architecture. It can substantially simplify and optimize
your data retrieval and modification requirements while
allowing engineers to deliver faster. Having said that, it is
not a panacea for your data access needs and the devil is in
the detail. If chosen for the wrong reasons or not
implemented correctly, it can negatively affect your
application and developer experience.

REFERENCES

[1] Anmol Gaba, Dr. G N Srinivasan “Decomposition and

Modularity in Software Systems” in International
Research Journal of Engineering and Technology
Volume: 07 Issue: 06 - June 2020.

[2] R. T. Fielding and R. N. Taylor, "Principled design of
the modern Web architecture", ACM Transactions on
Internet Technology (TOIT), vol. 2, no. 2, pp. 115-150,
2002.

[3] G. Brito, T. Mombach, and M. T. Valente, “Migrating to
GraphQL: A practical assessment,” in 26th
International Conference on Software Analysis,
Evolution and Reengineering (SANER), 2019, pp. 140–
150.

[4] N. Schrock, GraphQL introduction, [online] Available:
https://reactjs.org/blog/2015/05/01/graphql-
introduction.html.

[5] O. Hartig and J. Pérez, "Semantics and complexity of
GraphQL", 27th World Wide Web Conference on World
Wide Web (WWW), pp. 1155-1164, 2018.

[6] M. Vogel, S. Weber, and C. Zirpins, “Experiences on
migrating RESTful Web Services to GraphQL,” in 15th
International Conference on ServiceOriented
Computing (ICSOC), 2017, pp. 283–295.

[7] E. Wittern, A. Cha, J. C. Davis, G. Baudart, and L.
Mandel, “An empirical study of GraphQL schemas,”
arXiv preprint arXiv:1907.13012, 2019.

[8] D. M. Vargas, A. F. Blanco, A. C. Vidaurre, J. P. S.
Alcocer, M. M. Torres, A. Bergel, and S. Ducasse,
“Deviation testing: A test case generation technique
for GraphQL APIs,” in 11th International Workshop on
Smalltalk Technologies (IWST), 2018, pp. 1–9.

BIOGRAPHIES

Amit Jambusaria - MS Computer
Engineering from Syracuse
University, NY, USA. Mr.
Jambusaria is a seasoned
technical leader and independent
researcher with 11+ years of
experience in the field. SME in
areas such as GraphQL, Front-
end web platforms and
frameworks, Container
technology, Cloud computing,
Kubernetes (k8s) Microservices,
APIs, UX/UI and Web
performance.

https://code.fb.com/core-data/graphql-a-data-query-language/

