
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4079

Data Structures and its Applications in C

Sthuti J1, Namith C2, Shanthanu Nagesh3

1,2,3Students, Department of Information Science and Engineering, Global Academy of Technology, Bengaluru.
---***--

Abstract – In this modern world of technology, data must

be used judiciously for which we need the most efficient ways

of storing and organizing data so that we can reduce time

complexities and space complexities. This can be achieved by

choosing the most suitable data structure for our problem.

This paper is mainly focused on the types of data structures,

their organization, operations and applications.

Key words: array, nodes, FIFO, LIFO, front, top, rear,

link

1. Introduction

Data structures are pre-determined ways of arranging

memory locations into which logically related data is

insertedfor easy handling. They are classified into primitive

and non-primitive data structures. Primitive data structures

are basic data structures which cannot be broken down into

simpler datatypes whereas non-primitive datatypes can be

further simplified as they are built using primitive datatypes.

2. Literature Survey

Data structures are one among the most fundamental

concepts for a programmer. The implementation phase of

any project would start off by the decision of data structure

to be used. It gives an effective way for memory management

and helps in analyzing the real-world problems in a much

simpler way.

In [1], the author speaks about the analysis of array

operations on the basis of canonical abstractions and

numeric domains. The author speaks about the scalar

variables and how the array can be partitioned into different

elements with a particular index. In [2], Lester Leong gives a

brief idea about the array and all the basic operations that

can be carried out on arrays.

The author tells us about the best way of choosing the data

structure for a particular problem is based on the number of

steps the operations.

In [7], the author has compared stacks to a set of disks in a

CD pack and queue to a real-world queue in which a new

person can join only at the

rear end.

According to [10], a linked list is considered to be collection

of linearly arranged elements where the data elements are

called as nodes. In [6] and [7], queues and stacks are

compared to each other and their applications are explained.

In [8], the author throws some light on the properties of

queues and their operations. It also lists some real-world

applications of queues.

The basic terminologies used in trees are clearly described in

[11] and [12]. In [11], Reema Thareja explains all the basic

operations on trees. It also shows how trees are represented

in the form of arrays and linked lists. They also tell us about

the important real-world applications of trees.

In [13],Estefania Cassiagena Navone gives a basic idea about

how the graphs are visualized in this real world and the

basic purpose of using this graph. She also explains the

elementary types of graphs and some basic terminologies

related to it. The author states that the graphs are

fundamentally used to set up the connections between the

different elements and also talks about how to find and

analyze these elements.

3. Arrays

Array is a combination of similar data items which are

collected together. Each element is referred to by their index

or subscript. The index always starts with the value 0 and

ends with n-1.

For example, consider an array of 4 employees in an

organization

4567 4568 4672 4831

Fig 3.0: Array representation for 4 employees

Arrays can be classified into: (i) One-Dimensional Array and

(ii) Multi-Dimensional Array

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4080

3.1 Single-Dimensional Array

It is a linear and contiguous list consisting of related and

similar data types.
Consider the image shown below

6072 6073 6074 6075
1 2 3 4

 emp[0] emp[1] emp[2] emp[3]

Fig 3.1 : 1-D array representation with address

The technical way of array definition includes a variable type
and a name with a size which tells how many data items the
array will contain.
 type array_name[size];

3.2 Multi-Dimensional Array

A Multi-dimensional array is a type of array which has two

or more dimension to define itself. A Multi-Dimensional

array can be declared with the number of rows and he

number of columns it contains. The syntax for Multi-

Dimensional array declaration: data_type array_name [no.

of rows][no. of columns]; To find the number of elements

present in the array, we need to multiply the number of row

=s with the number of columns. The general form of

representing a 2D array is:

Representation of 2D array

3.3 Operations on Array

Array operations are the fundamental changes and updation

done on the array. The fundamental operations that can be

done on arrays include the following:

 Insertion

 Deletion

 Display

 Sorting

 Searching

3.3.1 Insertion

When an array consists of N elements, if there is a

requirement for adding a few more elements to the array for

better and efficient handling, a new element can be added to

the array.

When insertion of a new element to an array is necessary,

the size of the array will be increased. The condition for

insertion of an element is that the array should not be full.

Fig 3.3 Inserting an element into the array.

Here, 35 is the new element to be inserted into the array at
position 4. All the elements are shifted one place starting 4
till the size of the array(5 here). The element that is to be
inserted(35 at position 4) is inserted and the size of the
entire array is increased by 1.

3.3.2 Deletion

Deletion is the process of removing a value from an array. It

basically is like insertion in an opposite kind of a way.

Deletion at a specified position deletes a particular element

from the position and then covers the gap by shifting the

elements one position backwards.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4081

Fig 3.4: Representation of deletion in an array.

Here the element to be deleted from the array is 20 at
position 2. Starting from 2, all the elements till size of
array(5 here) are shifted one position to the left to cover the
gap of the deleted element.The effective size of the array is
then reduced by 1.

3.3.3 Display

Display is the process of traversing through the array and

printing all the elements till the end. The display operation

can be performed on an array only when there is at least 1

element in an array. The counter i iterates through all the

elements in the array till it reaches the end of the array and

prints all the elements one by one.

3.3.4 Sorting

Sorting is a process where in an important task is performed

that sorts the elements of an array in a certain order. Sorting

of data in an array can be performed in various ways. For

example, elements in an array can be arranged in low to high

fashion or from high to low fashion or based on any other

particular condition. Sorting involves two main steps

which is comparing two items and swap these two items on

basis of the condition specified. It keeps repeating until all

the elements in an array is sorted and the condition is

satisfied.

 Bubble Sort

In Bubble sort, it compares the first two elements of the

array and if the first is greater than the second, it

interchanges them. It then proceeds for every pair of

adjacent elements till the end of the array. It again starts

with the first two elements in the array, until all the

elements are sorted in the array.

Fig 3.5 : Bubble sort

The number of passes for this type of sorting is n-1.

Insertion sort

It works on the principle by taking elements from the array

one by one and then placing them in their correct position

into the new sorted array.

To summarize, an insertion sort requires (n-1) passes where

n is the number of elements in an array.

3.3.5 Searching

Searching is the process in which an element is searched in

an array. Searching can effectively be performed in 2 ways:

(1) Linear search (2) Binary Search

 Linear Search

Linear search is a simple and quite quick searching

algorithm. It is a linear search which is performed on

array of numbers that are sorted or unsorted. It checks

each and every number of the array to search for a

specified number. If the number is found, then that

number is printed and tells the user that it is found. For

an array with n numbers, the easiest iteration is when

the number to be searched is in the first position, here

only one iteration is needed. If the value is not present in

the list, it takes n comparisons which is going to take

time.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4082

Step 1: initialize variable i to1.
Step 2: check if i greater than n which is the size of
array. If it is then, then go to step 7
Step 3: if array[i] and the value of x are equal then, go to
step 6
Step 4: increment i to i+1
Step 5: Go back to step 2.
Step 6: If the element is found, print it and go to step 8
Step 7: If not found, Print element is not found
Step 8: Exit

 Binary search

Binary search is one of the searching algorithms where

in, the array is divided into 2 sets with a mid-number for

the array. The key to be searched is first compared to

the mid element. If the element is present in the mid

position, print it is found. If the element is not found in

the middle, it is the checked if the element is present in

the lower half of the array or the other half of the array

and the same process is repeated until the element is

found.

Step 1 – Take the input from the user the element to be

searched.

Step 2 – Identify the middle element is in the array.

Step 3 – Compare the search element with the middle

element in the array.

Step 4 – If the element is the middle element print

Found and exit.

Step 5 – If the key is not matching, then check if the key

is in the lower half of the array or in the upper half.

Step 6 – If the search is successful in the lower half of

the array, repeat the steps 2,3,4 and 5 for the lower half

of the array.

Step 7 – If the element to be searched is larger than the

middle element, repeat steps 2,3,4 and 5 for the higher

half of the array.

Step 8 – Repeat the process unitl the element is found.

Step 9 – If the element is not found, print the element is

not there in array.

3.4 Application of Arrays

 Array can be used to store similar data types in a

sequential order.
 Can be used while sorting elements.
 All Matrix operations can be performed on arrays.

4. Stacks

A stack is an arrangement of elements which can be

represented using arrays where both insertion and deletion

takes place at the same end. This is the Last In First Out

(LIFO) principle. The stack follows LIFO principle. According

to [6] In stack all insertions and deletion of data items are

done at one end called Top.

Stack operations are operations that are performed on

stacks. These operations are push and pop.

Inserting an element into stack is called push operation.

Only one element can be inserted at a time and it has to be

inserted only from top of the stack. When the value of

variable top is equal to the size of the array, further insertion

cannot take place. . Further trying to insert an element to a

stack results in an overflow of stack.

Stack contains after inserting 3 elements 7, 8 and 9.

Fig 4.0: Pushing operation in a stack

Deleting an element from stack is called pop operation. Only

one element can be deleted at a time and it has to be deleted

from the top of the stack. Once the stack is empty, it is not

possible to delete any element. Further trying to delete an

element from the stack, results in an underflow.

Performing pop operation when stack already contains 7, 8

and 9 is shown below.

Fig 4.1: Popping operation in a stack

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4083

4.1 Application of stack

When mathematical expression in program is written in the

program, we use infix expression. Using stacks these

expressions will be converted into equivalent machine

instructions by the compiler. We can efficiently convert the

expression from infix to postfix, infix to prefix, postfix to

infix, postfix to prefix, postfix to infix and postfix to prefix

using stacks.

Stack can be used to evaluate expressions. It can mainly be

used to evaluate postfix expression and prefix expressions.
Undo mechanism in text editors, Backtracking and

Language processing are some applications of stacks.

4.2 IMPLEMENTATION OF STACKS

4.2.1 Array-based implementation

In this we maintain the following fields: according to [2] an

array A of a default size (>=1), the variable top that refers to

top element in the stack and capacity that refers to array

size. The value of variable top changes from -1 to (size of

array-1) . We say that stack is empty when top=-1, and the

stack is full when top=capacity-1. Hence, this a static stack

implementation.

4.2.2 Linked list-based implementation

In this implementation a stack contains a top pointer which

is called head of the stack. Push and pop operations takes

place at the head of the list. Advantage of using linked list is

that it is possible to make an efficient use of the memory.

Hence, this is a dynamic stack implementation.

5. Queues

Queue is a linear data structure which follows First In First

Out principle (FIFO) which means that the first element

which will be inserted into the queue will be the first

element to be deleted. According to [8], a queue is an

ordered collection of items where the addition of new items

happens at one end and removal happens from the other

end. To make the operations on queues easier, we keep track

of the first element of the queue as ‘Front’ and the last

element as ‘Rear’.

5.1 Operations on Queues

Enqueue: Adding an element into the queue is known as

enqueue.

Dequeue: Deleting an element from the queue is known as

dequeue. To make enqueuing and dequeuing simple, we use

some additional operations like isFull and isEmpty to check

if the queue is empty or full.

5.2 Types of Queues

5.2.1 Simple queue

In simple queues, the enqueue operation is carried out at the

front end of the queue and dequeue operation is carried out

at the rear end. It strictly follows the first in first out

principle.

Fig 5.0 – Representation of a simple queue

5.2.2 Double ended queue

In double ended queues, enqueue and dequeue operations

can be carried out on both the ends of the queue. It is more

flexible since it can be modified easily.

Fig 5.1: Double ended queue.

5.2.3 Priority queues

In priority queues, each element will be assigned with a

priority number and the element with the highest priority

number will be the first element to be dequeued. If two

elements in the queue have the same priority, then those

elements will be dequeued according to their order in the

queue.

5.2.4 Circular queues

Theoretically, even if the queue has space available, it is not

be possible to enqueue once the end of the memory allocated

for the queue is reached. To avoid this situation, we use

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4084

circular queues which enable us to use the space of the

previously dequeued elements.

Fig 5.2: representation of a circular queue

5.3 Applications

According to [8] and [9], Queues can be used for

implementing Breadth First Search traversal in graphs,

handling interrupts in real-time systems, call-holding in call

center systems till a service representative is free. FIFO

principle of queues can be used in CPU scheduling of

instructions on first come first serve basis. It can be used in

automated appointment administration systems to mimic

the real-world queues. Other applications of queues are

handling interrupts, print spooling, transmitting packets of

information over a computer network.

6. Linked List

A Linked List is sequential collection of data items where the

order is not determined by the arrangement in the physical

memory. Instead, each element points to next node. It is

represented as a collection of nodes where one node points

to its next node.

Each node contains two parts, one represents the data and

the other contains the reference to the next node. This

structure is an efficient way of representing a linked list.

Fig 6.0: Linked list representation.

Linked List is classified as Singly linked list, Doubly linked

list, Circular linked list and Header linked list.

6.1 TYPES OF LINKED LISTS

6.1.0 Singly linked list

A singly linked list is a linked list, where each node has a

designated field called link, which contains address of the

next node. It may have a collection of nodes with various

field. But each node should have only one link.

Fig 6.0: Singly linear linked list representation.

6.1.2 Doubly linked list

A doubly linear linked list contains two pointers and a data

part where one of the pointer points to the preceding node

and the other pointer will point to the subsequent node.

Fig 6.1: Doubly linear linked list representation.

6.1.3 Circular linked list

In a circular linked list, the address part of the last node

contains the address of the first node. Here, the traverse of

the list is possible in any of the directions, forward or

backwards. Circular linked has no beginning and no ending.

Fig6.2: Representation of circular linked list

6.1.4 Circular doubly linked list

A circular double linked list is more complicated form of

linked list, that has a pointer to next and previous node in

the list. The distinction between a double linked list and a

circular double linked list, according to [11], is that the

circular double linked list does not include NULL in the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4085

previous and next fields of the first node, the reference of

first node is found in the last node.

Fig 6.3: Representation of a doubly circular linked

list

6.1.5 Header linked list

It is a special type of linked list which contains a header node

at the beginning of the list. Start of header linked list will

point to the first node of the list but start contains the

address of the header node.

Ground header node it stores NULL in the last node of the

linked list.

Fig 6.4:Representation of linked list with header node.

6.1.6 Circular header linked list

In header linked list, the header node’s address is stored in

the last node of the next link.

Fig 6.5: Representation linked list with circular header

node.

6.2 Application of linked list

Linked list is used in the Implementation of stacks, queues

and graphs. It is also used in performing arithmetic

operation and in the Representing sparse matrices. Sparse

matrices are a matrix that contains most elements as zero

and very few non zero elements.

Most of the time linked lists are used in Music players.

Whenever a song is played on a music player, the song has a

link to the previous song as well as the next song. Linked

lists are also used in Image viewer. Previous and next image

are linked, can be accessed by next and previous button.

7. Trees

According to [11] and [12], a tree can be defined as a

recursive set of one or more nodes in which the top node is

considered to be the root of the tree and the rest of the nodes

are non-empty sets of which is a sub-tree of a root. Each

node is associated with a value and list of references to its

children nodes.

7.1 Basic terminology

Root node: It is the single node which is present at the top

of tree which is NULL when the tree is empty. In fig 7.0, A is

the root node.

Leaf node: It is a node which has no children nodes. In fig

8.0, C, E and D are children nodes.

Sub tree: When the root node is not NULL, the trees

obtained by considering the children of the root node as root

nodes will become the sub-trees. In fig 8.0, {B, C, E}, {D} are

the sub trees.

Ancestor node: It is a node which is accessible by proceeding

repeatedly from child node to parent node. In fig 8.0, A is an

ancestor node of E.

Descendant node: It is a node which is accessible by

proceeding repeatedly from parent to child. In fig 8.0,

E is a descendant node of A.

Path: It is a sequence of consecutive edges. In fig 8.0, AB-BC

is a path from A to C.

Depth: Depth of a node is the minimum number of edges

present between the root node and that particular node. In

fig 8.0, the depth of C is 2.

Height of a tree: It is the number of edges present between
the root node and the deepest node in the tree. In fig 7.0,
height of the tree is 2.

Fig 7.0 : Representation of a tree data structure

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4086

7.2 Important types of trees

General tree: It is a type of tree which can have zero or

more child nodes. There is no limit for the number of child

nodes per node.

Binary tree: It is a type of tree which has at most two

children nodes per node. Each node will have a value and

pointers pointing to its right child and left child.

Binary search tree: It is a type of binary tree in which the

left sub tree contains only the nodes with values lesser than

the current node (node being traversed) and the right sub-

tree contains nodes with values greater than the current

node.

Traversal of binary trees

Fig 7.1: Types of binary trees traversals.

7.3 Representation of Binary Trees

7.3.1 Array representation

Binary trees are stored in a one-dimensional array with the

root node as the first element and the nodes being arranged

in a left to right order into their corresponding array indices.

The tree in fig 8.0 is represented as in fig 8.2.

Fig 7.2: Representation of array using Binary Tree

7.3.2 Linked list representation

Binary trees can also be represented using doubly linked

lists. Each node will contain a value and the

address of its children nodes. The leaf nodes will have NULL

in the address section.

The linked list representation of fig 8.0 is shown in fig 8.3.

Fig 7.3 : Linked list representation of binary trees

7.4 Application of trees

As in [11] and [12], Trees can be used in compiler

construction. Binary searched trees can be used to store data

in a way which is easily reachable for fast insertion, deletion

and searching. Trees can be used to represent hierarchical

data like file system directories.

8. Graphs

Graph is a non-linear fundamental and abstract data
structure which is made up of nodes and edges.
It can technically be defined as G=(V,E) where V<E.
Where V is defined as the Vertex of the graph and E is
defined as the Edge of the graph.

Fig 8.0: Representation of graph data structure

Here the points A,B,C and D are called the vertices and the
lines connecting these vertices are called the edges.

8.1 Basic terminology

Vertex: A vertex is a basically called a node. In a graph, it is
normally represented by a circle and a label.

Example:

Fig 8.1: Representation of vertices

Here 2 nodes are identified as V={N,O}.
Edge: If there are 2 vertices present in a graph, then an arc
or a line joining these 2 vertices is called an edge.

Fig 8.2: Representation of Edges

Here the two vertices are T and U and the line connecting
these 2 lines is called an Edge.

Directed graph: A graph in which every edge has a direction
towards or away from the Vertex is called a directed graph.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4087

Fig 8.3: Representation of directed graphs

Undirected graph: A graph that is defined by G=(V,E) in

which every edge is undirected or just a connection

between 2 vertices is called an undirected graph.
Weighted graph: Let a graph be defined in such a way that

G=(V,E), in which a number is assigned to each edge. These

numbers are called costs or weights in a graph.

Degree of a node: The number of children that a node has is

formally defined as Degree of a node.

Degree can be defined in two ways:

Indegree: It can be defined as the total number of edges that

are incoming from another node to one particular node is

called Indegree

Outdegree: The total number of edges that are going from a

particular node to another node is called the Outdegree.

8.2 Graph Representation

The two most common ways of representing a graph is
using:
(a) Adjacency Matrix
(b) Adjacency Lists

8.2.1 Adjacency Matrix representation

The Matrix can be used to pictorially represent the
interconnection of nodes and vertices in a graph. By the
definition of a graph, two nodes are said to be connected in a
graph if there is an edge between the two nodes. If a node A
is adjacent to B, we can get from one node to another by
traversing the edge between them. The matrix input will
have the value 1 if two nodes are adjacent to each other. If
the nodes are not adjacent, the matrix input will have the
value 0.

Fig 8.4: Adjacency matrix representation

8.2.2 Adjacency List representation

A linked list can be used to represent the connections in a
graph. Here, every node is linked to its adjacent node. Linked
list can easily be used to pictorially represent the adjacent
nodes in a graph which makes it more efficient.

Fig 8.5: Representation of Adjacency list.

8.3 Graph traversals algorithms

Graph traversing is the process of visiting each vertex of a
graph

8.3.1 Breadth-first search (BFS)

Breadth-first search (BFS) is one of the search algorithm in
graph that begins at a given node called the root node which
is specified by the user and finds all of its all neighboring
nodes. For all the nodes, the unvisited node is found out.
Here, we begin with the node A and then all the neighbors of
this node are checked. After this, we search for the neighbors
of neighbors of A and so on. This is can be done with the help
of a queue.

Fig 8.6 : Representation of BFS algorithm

8.3.2 Depth-first search (DFS)

The search starts by a node that has been specified by the
user which the finds all the possible nodes along each
branch of the graph before backtracking. The search starts
by checking all the marked nodes and find continues until
it finds no adjacent node for that particular node. The final
step is to then backtrack and check for unmarked nodes It
then notes the number of nodes in that traversal and
prints those nodes.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4088

Fig 8.7: Representation of DFS algorithm

9.4 Applications of Graph

 The graphs are effectively used to calculate the

shortest path from the departure point to the arrival
point which makes it time effective. This is the
fundamental use of GPS.

 The way different systems are connected and how
network is connected between different deices is
pictorially represented using Graphs.

 To find the best result for the user, Google uses Graph
to find it.

9. Conclusion

[1] Denis Gopan, Thomas Reps and MoolySagiv: “Numeric
Analysis of Array Operations“
https://research.cs.wisc.edu/wpis/papers/tr1516.pdf

[2] Lester Leong: “A Guide to Arrays andOperations (Data
Structures)”
https://towardsdatascience.com/a-guide-to-arrays-and-
operations-data-structures-f0671028ed71

[3] Monika Yadav: “ARRAYS: REVIEW”
http://ijirt.org/master/publishedpaper/IJIRT142671_PAPE
R.pdf

[4] Ahmad Shoaib Zia: “A Survey on Different Searching
Algorithms“
https://www.irjet.net/archives/V7/i1/IRJET-V7I1275.pdf

[5] Rahul Mehra. “Research Paper on Sorting Algorithms
JariyaPhongsai“.
https://www.cse.iitk.ac.in/users/cs300/2014/home/~rahu
me/cs300A/techpaper-review/5A.pdf

https://www.freecodecamp.org/news/data-structures-101-
graphs-a-visual-introduction-for-beginners-6d88f36ec768/

[6] Nitesh, Manbir Singh, Rahul Yadav. “Research paper on

stack and queue”.

http://www.ijirt.org/master/publishedpaper/IJIRT101357_

PAPER.pdf

[7] Regi Maliyekkal S, Anila M. “Comparison of Stack and

queue data structures”

https://www.irjet.net/archives/V6/i6/IRJET-V6I6737.pdf

[8] Anoop, Sunil Rai. ”A Comparative study of stack and

queues in data structure”

http://ijirt.org/master/publishedpaper/IJIRT101022_PAPE

R.pdf

[9] A. Jain, U. Kumar. “research paper on queues”

http://ijirt.org/master/publishedpaper/IJIRT100828_PAPE

R.pdf

[10] Dr.Mahesh K Kaluti, Govindraju Y, Shashank A R,

Harshith K S. “Dynamic Implementation of stacks using

single linked list”

https://www.irjet.net/archives/V5/i3/IRJET-V5I3434.pdf

[11] “Data structures using C second edition -Reema

Thareja”.

[12] Rubi Dhankar, Sapna Kamra, Vishal Jangra. “Tree

concept in data structure”

http://ijirt.org/master/publishedpaper/IJIRT101212_PAPE

R.pdf

[13]Estefania CassiagenaNavone: ”DataStructures 101:

Graphs — A Visual Introduction for Beginners”

In this paper, we have explained the different types of data

structures and their operations. It also clearly depicts the

implementation of each data structure with the help of

diagrams. It also explains how each data structure is applied

in the real world. Data structures are the best arrows to have

in our quiver of computer science. They have their own

advantages and disadvantages. Fortunately, the number of

advantages exceed the number of disadvantages. It is

important to choose the correct type of data structure for

our problem statement.

10. References

https://research.cs.wisc.edu/wpis/papers/tr1516.pdf
https://towardsdatascience.com/a-guide-to-arrays-and-operations-data-structures-f0671028ed71
https://towardsdatascience.com/a-guide-to-arrays-and-operations-data-structures-f0671028ed71
http://ijirt.org/master/publishedpaper/IJIRT142671_PAPER.pdf
http://ijirt.org/master/publishedpaper/IJIRT142671_PAPER.pdf
https://www.irjet.net/archives/V7/i1/IRJET-V7I1275.pdf
https://www.cse.iitk.ac.in/users/cs300/2014/home/~rahume/cs300A/techpaper-review/5A.pdf
https://www.cse.iitk.ac.in/users/cs300/2014/home/~rahume/cs300A/techpaper-review/5A.pdf
http://www.ijirt.org/master/publishedpaper/IJIRT101357_PAPER.pdf
http://www.ijirt.org/master/publishedpaper/IJIRT101357_PAPER.pdf
https://www.irjet.net/archives/V6/i6/IRJET-V6I6737.pdf
http://ijirt.org/master/publishedpaper/IJIRT101022_PAPER.pdf
http://ijirt.org/master/publishedpaper/IJIRT101022_PAPER.pdf
http://ijirt.org/master/publishedpaper/IJIRT100828_PAPER.pdf
http://ijirt.org/master/publishedpaper/IJIRT100828_PAPER.pdf
https://www.irjet.net/archives/V5/i3/IRJET-V5I3434.pdf
http://ijirt.org/master/publishedpaper/IJIRT101212_PAPER.pdf
http://ijirt.org/master/publishedpaper/IJIRT101212_PAPER.pdf
https://www.freecodecamp.org/news/data-structures-101-graphs-a-visual-introduction-for-beginners-6d88f36ec768/
https://www.freecodecamp.org/news/data-structures-101-graphs-a-visual-introduction-for-beginners-6d88f36ec768/

