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Abstract - Information overload is a phenomenon of our 
days due to the unprecedented penetration of information and 
communication technologies (ICT) in our daily lives. As a 
result, people often end up with more options than they can 
process to choose from and therefore may opt for choices 
which do not fit best to their preferences. To address these 
issues, recommender systems (RSs) were proposed and have 
gained a lot of interest from the research community and 
industry. However, privacy is a big concern in these systems. 
While decentralized recommenders can protect privacy, they 
lack the needed efficiency to be widely adopted. In this article, 
we use blockchain as the backbone of a decentralized RS, 
managing to equip it with a broad set of features while 
simultaneously, preserving user’s privacy. We introduce a new 
architecture, based on decentralized locality sensitive hashing 
classification as well as a set of recommendation methods, 
according to how data are managed by users. Extensive 
experimental results illustrate the performance and efficacy of 
our approach compared with state-of-the-art methods. In 
addition, a discussion about its benefits and opportunities 
provides ground for further research 
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1. INTRODUCTION  
 
OUR society lives in an age where the eagerness for 
information has resulted in problems such as infobesity, 
especially after the arrival of Web 2.0. In this context, 
automatic systems such as recommenders are increasing 
their relevance, since they enhance data management and 
help to distinguish useful information from noise. In 
principle, recommender systems (RS) are data-driven 
algorithms that assist users in selecting item(s) from a larger 
set. RS play an active role on the Internet through the 
advances in data mining and artificial intelligence. Their role 
is considered critical in online business as they connect 
users with potential purchases, content, and other services. 
Collaborative filtering (CF)is a type of RS that comprises a 
large family of recommendation methods. CF aims to 
suggest/recommend items; e.g., books, films, routes, based 

on the preferences of users that have already acquired 
and/or rated some of those items. 

Nowadays, data management is facing a paradigm change 
due to big data challenges, increased regulations and client 
demands as well as to its inherent scalability and security 
problems when real-time services are required. In this 
context, blockchain-based solutions seem to be the most 
promising opportunity to solve many of such issues and 
requirements due to their properties, such as security, 
verifiability, robustness, and availability. Blockchain is a 
distributed peer-to-peer linked structure, that was initially 
introduced by Satoshi Nakamoto back in 2008 [6] to 
maintain the order of transactions and avoid the double-
spending problem in Bitcoin. This way, the blockchain 
structure manages to contain a robust and auditable registry 
of all transactions. 

 we may categorize blockchains in three generations. More 
concretely, Blockchain 1.0 includes applications that enable 
digital cryptocurrency transactions. Blockchain 2.0 includes 
smart contracts and a set of applications that are more 
extensive than simple cryptocurrency transactions. Finally, 
Blockchain 3.0 includes applications in areas beyond the 
previous two versions, such as big data management, 
governance, health, science, or Internet of Things (IoT). 

1.1 Motivation 
 
Traditional RS methods have inherent problems in their 
implementations, and therefore, current architectures do not 
allow them to reach their full potential. Privacy 
considerations are the most profound ones. Undoubtedly, 
there has been a lot of work in this direction. Nevertheless, 
the proposed solutions do not manage to solve many issues. 
For instance, many privacy solutions for RS depend on 
centralized schemes, in which data are stored, raising privacy 
concerns. In the case of decentralized schemes, availability is 
critical in decentralized schemes (as well as in centralized 
approaches, since the majority of computations are 
performed on the server-side), since intermediate data (e.g., 
similarities) are not stored, and the quality of 
recommendations highly depends on the number of 
participants. The latter means that in decentralized 
architectures, there is a tradeoff between communication 
costs and quality of recommendations, hindering scalability. 
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However, the recent introduction of blockchain technologies 
has paved the way to create a highly efficient distributed 
infrastructure capable of providing many features, which 
serve the backbone for various and heterogeneous 
applications ranging from supply chain management to 
identity management, finance and cryptocurrencies or IoT . In 
this regard, several authors have proposed architectures that 
use blockchain to enable secure and verifiable data sharing in 
contexts like health and the Internet of Things. 
 
Following this train of thought, we extend the use of RS by 
utilizing blockchain technology. The distributed nature of 
blockchains and their efficiency may serve as the needed 
skeleton for a distributed architecture with well-known 
efficiency and efficacy. Nevertheless, as it will be discussed in 
the following sections, by adopting the blockchain technology 
one may significantly improve RS as it enables various 
features including timeliness, availability and improved 
privacy, among others. These theoretical features are then 
validated through our experiments that highlight that the 
proposed architecture is both practical and efficient. In 
addition to these advantages, blockchain paves the way for 
fully distributed, verifiable and auditable RSs, features that 
cannot be guaranteed in centralized nor decentralized 
architectures 
 

1.2 Main Contributions 
 

We aim to present an architecture that advances 
traditional decentralized systems in terms of communication 
and computational costs. Despite the contradictions that one 
may consider when discussing efficiency and blockchain, the 
overhead that blockchains imply is in the transactions and 
their verification. However, the actual overhead of RS is in 
the computations and the needed communications between 
peers to collect the data in the decentralized setting. To 
bridge both worlds, we exploit the combination of an 
efficient locality sensitive hashing (LSH)- based 
bucketization/clustering with blockchain, described in 
Section IV-B. Moreover, the addition of permanent 
decentralized storage systems such as InterPlanetary File 
System (IPFS), minimizes the information that needs to be 
stored and shared in the blockchain. Thus, blockchain 
enhances decentralized RSs as follows: 

 
1) The hash function used to perform an LSH-based 

clustering of profiles can be shared on the blockchain. Thus, 
clustering is made off-line by each user and has a negligible 
cost. 

2) We cluster profiles without communication costs, 
some- thing infeasible in the case of classical decentralized 
RS. 

3) The information of users is stored off-chain, so that 
the transaction information is minimal, requiring only 
hashes to be shared. 

4) Further computations are only performed between 
users of the same cluster, therefore avoiding all-to-all 

computations , such as in the case of well-known 
decentralized RSs. More on the efficiency of our proposal is 
described in Section VI-B. 

5) We describe three methods with different 
characteristics to showcase the possible configurations and 
variants of our architecture, in terms of what information is 
shared in the blockchain. 

 

2. RELATED WORK 
 

The widespread use of RS on the Internet provides great 
opportunities and benefits for both companies and users, but 
there is a major drawback: the lack of users’ privacy. Careless 
management of personal information, besides being against 
the legislation in most countries, could lead to serious 
consequences for both users, whose information is stored, as 
well as companies. Current legislation requires service 
providers to handle data properly and ensure users’ privacy. 

However, there are many examples of errors that have led 
to the disclosure of private information and, hence, it is 
apparent that legislation alone cannot solve the problem [30]. 
Consequently, the task of finding and repairing the security 
and privacy weaknesses of RSs is an urgent need. This 
requires a multidisciplinary approach, which combines 
expertise in various fields, including privacy engineering, RSs, 
data mining, etc. 

In the CF field, we need to tackle specific issues related to 
privacy. For instance, customers, who believe that their 
preferences/profiles may be exposed, would not rate an item 
or, rate it incorrectly or distorted. This user behavior, derived 
from the feeling of lack of privacy, results in a reduction of 
both the number of ratings as well as their quality. Another 
drawback is that companies can acquire data about the 
preferences of many users in a specific domain/market and 
obtain a significant advantage over new competitors if they 
decide to expand to other markets. Moreover, the existence of 
large monopolies on the Internet (e.g., Google and Amazon) is 
another clear disadvantage, so users’ data could be 
transferred amongst different parties, which are managed by 
the same large companies, without the users’ awareness. In 
the long term, this lack of security and privacy may strongly 
damage businesses as well as society as a whole. To address 
the privacy issues raised by the systematic collection of 
private information, which is required for the proper use of 
CF, current research focuses on privacy-preserving 
collaborative filtering (PPCF) methods . Such methods may be 
classified in centralized and decentralized as seen in. In terms 
of decentralized PPCF approaches, many examples can be 
found in the literature . Nowadays, the adoption of blockchain 
creates a new paradigm in RSs and CF literature, since they 
enable solutions that were infeasible in the past due to its 
inherent characteristics. Nevertheless, the symbiotic 
relationship between blockchains and RSs has yet to be 
explored. Only a few examples can be found in the literature, 
with the one of Frey et al being the most well-known. In such 
work, authors propose a blockchain-based approach to 
address privacy concerns in RSs utilizing the blockchain 
infrastructure. Authors claim that they provide cryptographic 
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guarantees to customer’s privacy in RSs, since raw data are 
only accessible by the owner. Nevertheless, they use 
blockchain as a black box and do not perform experiments 
regarding the efficiency and accuracy of such architecture. In 
another work, Frey et al. propose an e-commerce solution 
based on a shopping system in which data and transactions 
use the framework schemed . Therefore, existing blockchain-
based RSs mainly exploit the secure and verifiable storage of 
blockchain while maintaining communication and 
computation costs. On the contrary, our system goes one step 
beyond current state of the art and intro duces an 
architecture that enables efficient and fully distributed 
blockchain-based recommendation computation, 
outperforming traditional decentralized RSs. Moreover, we 
perform experiments in terms of efficiency and accuracy, as 
well as an extensive study of the different parameters of our 
methodology. 

  Finally, our system is enhanced by the inherent char- 
acteristics of blockchain, such as anonymity, security, 
availability,1 and verifiability. 

We also want to stress that the efficiency of our proposal 
is unrelated to the underlying consensus mechanisms of the 
blockchain. The efficiency stems from the fact that with the 
use of the blockchain, we store and cluster the data so that 
they can then be used appropriately. Moreover, we have a 
stable and robust structure that nodes can trust and avoid 
costly communication data exchanges. 

We assume that the blockchain enables the embodiment of 
enough information(about bytes inside each block or 
transaction) in a reasonable time. Note that RS databases are 
updated at fixed intervals of time (e.g., weekly, fortnightly) or 
when there is a high number of new user inputs in an attempt 
to find a reasonable tradeoff between accuracy and 
computational cost. Nevertheless, the transaction limitation 
size is overcome in this article through the use of 
decentralized permanent storage. In terms of scalability, 
recomputing all user-to-user similarities or applying 
dimensionality reduction methods like singular value 
decomposition (SVD) or principal component analysis (PCA) 
in real-time does not scale, especially for high-volume 
databases. On the contrary, our experiments and integration 
in a real blockchain show the feasibility of our approach and 
scale more efficiently than traditional RS systems. 

2.1 Organization of this Work 
 
The rest of this article is organized as follows. In the next 
section, we present the related work, mainly focusing on 
decentralized privacy-preserving approaches in CF. Then, we 
present our architecture and detail the different approaches 
that can be fostered and what features are gained in each 
case. Afterward, we present some experimental results and 
compare them with other relevant literature and discuss 
several aspects separately. Finally, the article concludes 
summarizing our contributions and discussing ideas for 
future work. 
 
 

3. BACKGROUND 
3.1 InterPlanetary File System 
 
The InterPlanetary File System  is a decentralized P2P system 
for retrieving and sharing IPFS objects. Instead of identifying 
objects by their location (e.g., HTTPS), IPFS uses a content-
oriented addressing structure [i.e., a cryptographically 
authenticated Merkle directed acyclic graph (DAG)] in which 

Table -1: Main properties and characteristics of IPFS 
 
Property Description 
Equality Nodes have equal 

permissions and possibilities 
Decentralization A distributed network 

without central entities 
Immutabilities Content based addressing 

guarantees that each file 
resolves to a specific hash 

Fault tolerance Decentralization and peer 
participation guarantees the 
robustness of the network 

Availability Multiple nodes guarantees 
the availability of the 
network and not one single 
entity. 

Resilient to attacks Persistence is guaranteed by 
distributed manner 

Unlimited resources A high number of 
simultaneous usere sharing 
their assets 

Scalability Request are made to the 
closet peer instead to a 
central location 

Market place monitisation Storage incentivisation 
through systems like 
filecoine 

 
 

objects are represented by their Base58 SHA-256 encoded 
hash.2 IPFS implements an improved and adaptable version 
of P2P data transfer protocol (i.e., compared with similar 
systems like BitTorrent), namely BitSwap, which enables 
built-in storage marketplaces like Filecoin.3 The use of a 
Merkle DAG structure allows the creation of a version control 
system (VCS). More concretely, IPFS stores the object history 
so that all versions are accessible throughout time. This 
permits configurable synchronisation of files since all users 
can edit them locally and later push the new files to IPFS. VCS 
is enhanced by the InterPlanetary Naming System (IPNS), 
which enables content linking, so that files can be accessed 
using the node ID address, allowing users to retrieve updated 
contents without knowing the new hashes of the files they 
request. In addition to these features, IPFS enables a series of 
properties described briefly in Table I. Nowadays, IPFS is 
being exploited in multiple contexts . Moreover, the symbiotic 
relationship between IPFS and blockchain is further 
enhancing the possibilities of such systems by enabling off-
chain storage and anonymous file sharing. 
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3.2 Locality Sensitive Hashing 
 
The primary goal of locality sensitive hashing  is to represent 
data items with an arbitrary number of 
features/characteristics using constansized sets, namely 
signatures. Thus, each feature set is represented by a 
constant size signature that preserves the similarity between 
the data entries according to some estimator. 

Among typical LSH estimators (e.g., bit-sampling for 
Hamming and l1-norm, min- hash for Jaccard coefficient or 
other norms) there exist binary LSH schemes, which involve 
efficient and scalable bit- wise computations. Such binary 
solutions are suitable for large- scale applications such as 
pattern recognition, big data analytics or Rss. Our solution is 
based on the superbit LSH, which is a binary LSH method that 
guarantees an unbiased estimate of angular similarity. 
Moreover, unlike other LSH methods, hashes computed with 
the superbit LSH not only 

 

Fig -1: Comparison between main characteristics of 
blockchain-based and traditional decentralized 

architectures. 

 Permit a fast and accurate approximation of cosine similarity 
but also enable data clustering by design, since hashes can be 
easily mapped into a predefined number of buckets (i.e., 
bucketization). Therefore, similar entries are 
classified/clustered into the same bucket. 

4. OUR APPROACH 
 
As already discussed, the use of a private permissioned 
blockchain as the backbone of the RS implies that the derived 
RS will be distributed by design and highly efficient. Based on 
that, our approach comprises a two-step procedure. First, we 
use a bucketization step, which significantly enhances the 
efficiency of our methods when combined with blockchain. 
Second, the recommendation computation which has three 
variants, respectively. The main benefits and differences 
between traditional decentralized RSs and blockchain are 
summarized in Fig. 1. Moreover, private blockchains 
minimise the risk of fake profiles (and thus, sybil attacks) as 
well as shilling attacks, according to some participation rules. 

4.1 Concept and Framework Definition 
 
The core concept of our approach is summarized as follows. 
First, all the needed information that users must have is 
pushed in the genesis block of the blockchain. Therefore, the 
genesis block contains the definition of the LSH function that 

is going to be used to group users, and the parameters of the 
bucketization step, which are the hash function and the total 
number of buckets (i.e., the number of groups to which the 
hash function can map the inputs). The LSH function and the 
parameters used are described with details in Section IV-B. 
There are further parameters that can be considered, such as 
the number of stages, which is used to split the input data and 
process it independently. Such a technique increases the 
efficiency of similarity detection search processes. However, 
in our method, we are interested in correctly grouping users. 
Moreover, the use of more than one stage may have 
consequences in terms of privacy protection that are 
discussed in Section V. 
 
Once the users have this information, they may apply it to 
their own ratings vector and find the bucket number or the 
 
 
 
 
 
 
 
 
 
 

 
 

Fig -2:    General overview of our framework. 
 
cluster they belong to and update the blockchain accordingly. 
Instead of sending their complete profiles to the blockchain, 
users submit the hash of their profiles (pointing to an IPFS or 
IPNS location), the selected method (between the options 
later described in Section IV) and the corresponding bucket. 
This way, our platform manages to overcome the transaction 
size limitation. Thereafter, a data wrapper collects data 
pinned by users (i.e., uploaded and distributed over IPFS) so 
that we have an ordered and clean representation of the 
users. Note that all the information can be checked in the 
blockchain and therefore, data tampering can be easily and 
efficiently detected. Additional information can be uploaded 
on IPFS, specifying user-to-user communication details, 
according to each recommendation method. Finally, users can 
apply one of our three methods and compute 
recommendations using the information on the blockchain. A 
general overview of our framework is depicted in Fig. 2. 
     Once a user collects her data and performs the 
bucketization procedure, her results are stored in blockchain 
and IPFS. Later, the data wrapper collects all the so that users 
can compute recommendations according to each scenario. 
Our goal is to create a new architecture that preserves the 
benefits of blockchain and enhances the recommendations. 
Therefore, we aim toward an efficient and decentralized 
privacy- preserving RS.  
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      Our work differentiates from the current state of the art in 
several ways. First, our scheme does not follow a centralized 
architecture; nevertheless, it provides higher efficiency and 
similar accuracy of such a system. Second, contrary to 
common distributed RSs, it is scalable and provides the 
inherent benefits of blockchain. To the best of our knowledge, 
this is the first blockchain-based approach that implements 
an efficient, scalable and accurate RS using blockchain 
infrastructure. 
 

4.2 Superbit Bucketization Procedure 
 
To predict whether an item would please a given user, CF 
methods rely on large databases with information regarding 
the relationships between sets of users and items. These data 
take the form of R→ p×q  rating matrices, which are 
composed of p users and q items, and each matrix cell ru,i 
stores the rating of user u on item i. User’s ratings belong to 
some finite set S such as {1, 2, 3, 4, 5}. Given a ratings matrix 
with empty cells, the first step is to fill them to accurately 
compute the LSH hashes and avoid biased bucketization. 
After considering well-known imputation techniques, in this 
article, we used the default voting, 
 
 

 
 

Fig -3: Bucketization procedure. A set of n input vectors 
are clustered in m buckets, according to their hash. 

 
which is a classical imputation method that replaces missing 
values using a static value (e.g., the central value of the 
possible ratings). Due to the multiple possibilities and their 
complexity, a study of how different imputation techniques 
may affect our methods is left to future work. 
 
Thereafter, we generate an LSH structure with the superbit 
methodology and hash each user ratings profile pi (i.e., each 
row of the R→ p×q  matrix to their corresponding bucket) so 
that similar users are classified/clustered into the same 
bucket. 
 
An overview of the bucketization procedure is depicted in 
Fig. 3. The bucket number depends on data and provided 
configuration. The number of buckets must be selected 
carefully depending on the hash function and data 
distribution. The number of stages, which defines how many 

times we split pi to compute hashes, is selected to be one to 
avoid potential attacks (see Section V). The bucketization 
procedure is described in Algorithm 1. 
 
We use a private permissioned blockchain to write all 
operations. As stated in Section IV, the genesis block (i.e., the 
first block of the blockchain) contains the initialisation 
information and the hash function as the number of stages, 
buckets, and dimensionality of data. Note that such 
information can be easily updated in the future by adding a 
new block with the required information in the blockchain. 
Moreover, users recompute their bucket if there are new 
ratings in their profile. 
 
       In this work, we developed three recommendation 
strategies: 

1) public memory-based, in which users locally 
compute recommendations using the distorted 
information shared in the blockchain,  

2) private average computation, in which users of the 
same bucket securely compute its average vector to 
obtain recommendations, and 

3)  private memory-based, in which users compute 
secure and private κ nearest neighbors (κNN) with 
the users of the same bucket.  

 
The main characteristics of each recommendation strategy, 
as well as details of the information stored in the blockchain, 
are summarized in Table 2. In all cases, we assume that users 
always store their own ratings vector. This way, we prevent 
disclosure to third parties and dishonest behaviors of 
centralized schemes, which may entail security and 
economic issues. 

 

4.3 Public Memory-Based Method 
 
First, we consider the case where the users upload a 

modified version of their preferences to the blockchain. 
 

Table -2: Main characteristics of the recommendation 
strategies. 

 
 
property 

Public 
Memory-based 

Private 
Average 
computation  

Private 
Memory-based 

Informati
on in 
blockchai
n  

 Bucket 
 Hash 

 Bucket 
 Hash 

 Bucket 
 Hash 

Method Fully 
customisable 

Secure average 
computation 

Secure similarity 
computation 

Computat
ion cost 

O((n/b)^2) O(()n/b)^2 O((n/b)^2) 

Privacy Noise addition K-
anonymity(k>=3) 

Fully private 
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Variable b denotes the number of valid buckets. Although 
theoretical, computational costs are similar. The secure 
multiparty computation protocols applied in the methods 
described in Sections 3.4 and 3.5 increase their security to 
the detriment of their communication costs. 
 
Algorithm 1: Superbit LSH Bucketisation. 
 
 1:   function HASHINPUTDATASET (DataSet D, Integer  
n_stages,   Integer   n_buckets,    Integer data_dimensionality) 
 2:   S = GenerateSuperbitStructure(n_stages, 
n_buckets,   data_dimensionality);  
 3:   while (DatasetHasRecords) do 
 4:   pi = SelectTheNextRecord (D); 
 5:   hi = ComputeHashesRecord (pi, S); D Compute Hash of 
each input 
 6:   end while 
 7:  H = MapSignatures (h1 ... hp, S);D Map hashes into 
buckets 
 8:   return H D MappedSet H 
 9:   end Function 
 
this approach, namely Gaussian noise addition (GNA) 
approach is to perturb the numerical values of users’ ratings 
vectors using a Gaussian distribution with zero mean and 
standard deviation σ (i.e., (0, σ)). Note that the higher the σ 
value, the greater the range of the generated values, (i.e., it is 
more likely to generate values close to the boundaries of the 
value range). Nevertheless, we propose a decentralized 
approach using blockchain, which increases the privacy and 
efficiency of computations compared with similar PPCF 
methods implemented using centralized or decentralized 
P2P architectures, as further discussed in Section VI-B2. 
We may also use a discrete uniform distribution to substitute 
rare values or values with too few observations by other real 
values present in the dataset. 
 
Laplacian noise is also widely used in the literature because 
of its interesting properties. A simple way to hide a number a 
is to add a random number r to it. Although we cannot do 
anything to a since it is distorted, we can perform certain 
computations if we are interested in the aggregated data, 
rather than in each individual data. 
 
By adding random noise to the data, the data are 
perturbed/obfuscated so that certain computations can be 
performed while preserving users’ privacy. Clearly, privacy 
is preserved as an adversary cannot tell whether a specific 
value is valid or noise. While information from each 
individual user is distorted, if the number of users is 
significantly large, the aggregated information of these users 
can be estimated with decent accuracy. Such property is 
useful for computations that are based on aggregate 
information. For instance, the scalar product and random 
sum are among such computations and are widely used in 
the literature. Despite that, our aim is to protect the real 
values of users while generating meaningful 

recommendations. Therefore, users store in the blockchain 
their pseudonym, an obfuscated version of their ratings 
vector and their bucket number. Note that the obfuscation 
value may be selected according to a parameter to modify 
the tradeoff between privacy and recommendation’s quality. 
Despite the fact that users may generate a new pseudonym 
each time they publish their information to reduce the risk of 
profile linking attacks, this feature could enable other 
disadvantages such as Sybil attacks, discussed later in 
Section V. Therefore, we do not contemplate this option in 
our design. Notwithstanding, user’s bucket changes will be 
used to keep track of their profile evolution. 
 
Since all needed information is publicly available, users can 
use a plethora of methods to compute recommendations 
locally. For the sake of clarity, we selected a κ-NN approach 
using inner-bucket similarities. 
 

4.4 Private Average Computation Method 
 
this case, the information shared by users is their pseudonym 
and bucket number. A secure multiparty computation is 
performed between the members of the same bucket to 
compute the average vector, which will be used as a 
recommendation. Nevertheless, the use of blockchain 
increases the efficiency of computations, compared with 
other centralized and decentralized PPCF clustering 
approaches. For privacy reasons, users belonging to buckets 
with cardinality k < 3 (we consider k more than two since 
data will be disclosed if k 1 users collude) will be remapped 
into other buckets. In this sense, one of our future research 
lines is to explore higher cardinality values (i.e. k > 3) and 
study the bucket distributions as well as accuracy in such 
cases. Nevertheless, in this article, we establish k =3 as the 
lower bound. 
 
      To securely compute the average vectors, we use additive 
homomorphic encryption. For instance, a scheme with 
semantic security was given by Paillier. However, creating the 
common key and hiding the values of individuals without a 
semitrusted third party becomes an issue. Therefore, more 
specific and efficient private aggregation approaches can be 
used . Users may use the protocol described in so that they 
connect with a server by using a secure channel and compute 
the aggregate value of their evaluations. In fact, the existence 
of the blockchain facilitates such protocols in publishing their 
intermediate results. Therefore, users can also use 
blockchain-enabled secure multiparty computation systems 
like Enigma, which provides users with end-to-end 
decentralized apps using private contracts with which share 
their data with specific purposes (i.e., storing their rating 
profiles in a secure way but enabling secure multiparty 
computations) without disclosing them. 
 
      Once computations are finished, the average vector of 
each bucket is shared in the blockchain with a timestamp. 
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Therefore, each user stores her own ratings vector and only 
averages are revealed.  
 

4.5 Private Memory-Based Method 
 
In this case, users store their pseudonyms and bucket 
numbers in the blockchain, as in the     methodology 
described in Section. This time, however, we perform 
decentralized memory-based recommendations. Users of the 
same bucket use a secure multi- party protocol to compute 
similarities. Note that the number of computations is 
significantly lower when compared with the whole dataset, 
thanks to the LSH bucketization step described in Section IV-
B. Therefore, by using LSH and blockchain, we can compute 
much more efficiently the recommendations than other 
state-of-the-art decentralized systems. 
 
After computations are performed, users will have a list of 
their neighbors so that they can ask for recommendations on 
a given item. For instance, ua may ask her closest user ub for 
a recommendation on item ic. If ub does not have a real 
rating/recommendation for that item, ua will ask her next 
closest user till she finds a recommendation for that item. 
Note that the number of recommendations/queries to users 
will be limited to avoid users disclosing too much 
information. Furthermore, users may obfuscate their ratings 
locally to avoid privacy disclosure. 
 

5. ATTACK VECTORS AND COUNTERMEASURES 
 
In this section, we discuss possible attack vectors and the 
countermeasures implemented in our architecture. 
Therefore, we demonstrate the overall robustness and 
privacy protection of our architecture in addition to the 
concrete privacy level achieved by each of our implemented 
methods, described in Table II. In this regard, our methods 
obfuscate evaluation profiles in such a way that it is not 
possible to reidentify users corresponding to any particular 
record in the anonymized published dataset (i.e., identity 
disclosure) nor discover the value of a confidential attribute 
for a specific respondent (i.e., attribute disclosure). In this 
article, we consider all user’s evaluations as confidential 
attributes.  
 
       Although this identity disclosure can be a configurable 
measure in the case of our first method (i.e., public memory-
based) depending on the amount of Gaussian noise added to 
data (and, therefore, users can be reidentified if data are not 
properly obfuscated), the other two methods compute 
averages and recommendations in a private way. Therefore, 
the private average computation achieves k-anonymity, and 
thus protects attribute and identity disclosure. In the case of 
the private memory-based method, no data are exposed, so 
that we achieve even higher privacy protection than in the 
other cases. 
       
 

       To quantify the privacy offered by our methods, we use 
the disclosure risk (DR) as a privacy measure. The DR 
measures the probability of correctly relating a record of the 
anonymized dataset with a record of the original dataset. It 
is also known as the probability of reidentification, or the 
reidentification risk.  
      
        For an attacker, the reidentification procedure consists 
of computing the similarities (e.g., using the Euclidean 
distance) between a given anonymized record ra, and the 
target records rt, that could be obtained from third-party 
sources. In this case, we consider the worst-case scenario 
and assume that the attacker has access to the raw dataset. 
Therefore, the attacker will try to link each record from the 
anonymized dataset with the raw dataset. 
 

Table -3: dr percentage for the analyzed datasets, 
parameters and methods 

 
Method Dataset σ=0.25 σ=0.5 σ=1 σ=1.5 σ=2 
B_kNN_GNA Movielens 

100K 
100 95.31 53.18 33.29 24.39 

B_kNN_GNA Movielens 
1M 

100 90.13 38.97 25.97 21.25 

B_AVG 
b=300 

Movielens 
100K 

  11.78   

B_AVG 
b=2000 

Movielens 
1M 

  13.08   

 
 
Hence, to compute the DR, we try to reidentify all records 
and then compute the percentage of correct 
reidentifications. In the first case, we compute the DR using 
different levels of noise addition, denoted by σ, ranging from 
0.5 to 3. In the case of the average computation, we use the 
worst-case scenario implemented in our system (i.e., the one 
which presents more accuracy, since privacy will be lower in 
such case due to higher similarity between profiles), which 
corresponds to b = 300 in the case of Movielens 100 k and b 
= 2000 in the case of Movielens 1 M (see Section VI). The 
results of these computations are depicted in Table III. 
       
 In the case of B_KNN_GNA method, we observe that the 
values of DR decrease as the value of σ is increased. 
Nevertheless, the more obfuscation, the less accurate the 
recommendations would be. In regard to the B_AVG method, 
k-anonymity guarantees that the DR is upper bounded, that 
is DR 100/k. Moreover, the bucket cardinality distribution is 
also related to the level of privacy, as later described in 
Section VI. 
      
            The ease with which large third parties and companies 
collect, analyze and correlate data is undermining the user’s 
privacy in multiple digital scenarios. These practices are 
usually paired with issues such as security breaches, data 
leakages and others, which might compromise users’ 
privacy. Nevertheless, according to state of the art, there are 
several privacy-preserving proposals for public blockchain 
such as well as identity platforms such as uPort  or Sovrin, 
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which propose enhanced decentralized ledgers that provide 
users with mechanisms to preserve their privacy in their 
digital transactions. In the case of private blockchains, there 
exist diverse ways to protect the privacy of the users. For 
instance, Hyperledger uses channels and private 
transactions to protect the confidentiality of the information 
available in the ledger. Moreover, it implements a zero-
knowledge asset transfer, an advanced mixing mechanism, 
which is built on top of Identity Mixer, an anonymous 
authentication protocol. In the case of Ethereum, uPort 
enables the creation of segregated device keys to store the 
operations made by a certain user while protecting her 
privacy. In addition, a more generic framework for 
anonymous identity management in permissioned 
blockchains can be found in. In parallel, other privacy-
preserving cryptographic systems are integrating self-
sovereign identity in the blockchain through anonymous 
credential systems, as well as other solutions, which 
implement secure multiparty computation, and zero- 
knowledge proofs. Therefore, while there are mechanisms to 
protect the user’s identity in blockchain, we focus our work 
on providing an efficient framework to enable 
recommendation computation between users, leaving this 
part of the system as a 
  
Therefore, given a user ua in bucket bat   an attacker may try 
to find the most similar user profile ub in bat so that he can 
infer that ua = ub. In this regard, several mechanisms 
prevent the attacker from obtaining such information: 
 

1. The bucket information of a user will not be 
updated if there are no changes, avoiding that a user 
bucket profile information has the same value 
repeated in adjacent time intervals. 

2. We can ensure that a user is always posting the 
same distorted vector if she did not make changes, 
to reduce DR. 

3. GNA is applied at each iteration so that vectors are 
distorted in a different way and considering that 
users are clustered, the possibility of disclosure is 
vastly reduced. 
 

Another similar attack can be performed with the profile 
evolution information of a user. This time, if we analyze ua 
bucket history, we may see that she was in bucket bat   and 
then, after updating her profile, her bucket changed to bbt . 
An attacker may try to compute similarities between the 
user profiles in both buckets, to link the random 
pseudonyms generated at each iteration with the general 
pseudonym of a user and obtain information about her raw 
data. However, since LSH sends similar profiles to similar 
buckets, the possibility of disclosure is similar to the one of 
the previous attacks. In the case of the method described in 
Section 3.5, users could suffer from multiple query attacks. 
There are several countermeasures for that, such as limiting 
the maximum number of queries per user (or in a general 
setup) to avoid disclosure, as seen in other well-known 

approaches. Another option is obfuscating values after n 
responses, using well-known mechanisms. Such approaches 
can be implemented locally by the interested users, or we 
can use a variable (e.g., number of queries) paired with an ID 
in a mapping structure to perform a simple check. Stronger 
policies such as increasing the GAS cost (the internal pricing 
for running a transaction or contract in Ethereum) for users 
that perform repeated queries is also an option that can be 
adopted easily in blockchain, which can be used as a trust 
feature. Note that reputation systems are more difficult to 
implement in other decentralized designs since they require 
further computations to privately exchange information 
from users to keep track of a model representing the trust 
values between users. Therefore, the aforementioned 
measures can help to overcome shilling  (biased profiles that 
may increase the popularity of an item) and Sybil (multiple 
user profiles to tamper with reputation and bias rating 
values). Note that our system partially deals with shilling by 
design, since the 
 

Table -4: Main characteristics and features of the 
literature methods used in our comparison. 

 
Metho
d 

Description Parameters 

kNN Compute k 
most 
similar 
users and 
use their 
data to 
compute 
predictions 

Number of neighbours k 

SGD Interactive 
method for 
minimizing 
an objective 
similarity 
function 

reg=0.02 
learning_rate=0.005,n_epochs=2
0 

ALS Alternative 
optimizatio
n for the 1.2 
norms 

i=10, u=15, n_epochs=10 

NMF Non 
negative 
low-rank 
matrix 
factorizatio
n 

N_factors=15,n_epochs=50,  

u=0.6, i=0.6    

 
LSH clustering will probably classify shilling/biased profiles 
into outlier clusters. Finally, we select only one stage for the 
Superbit structure to avoid brute force attacks. More 
precisely, since LSH functions are not cryptographically 
secure, having many stages would allow an adversary to 
brute force possible errors (known from the genesis block) 
to small vectors allowing her to recover the original values of 
the user. Having only one stage and a rating vector 
guarantees that this attack will not be possible. Moreover, 
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the more stages, the more distinguishable users are, since 
each user belongs to a particular and probably unique list of 
buckets, which increases the disclosure of the 
aforementioned brute force attack. 
 

6. EXPERIMENTAL SETUP 
 
To assess the quality of our methods, we use two well-
known CF benchmarks. Movielens was developed by 
Grouplens, and is one of the reference sets in CF. The two 
most prevalent variants of such dataset are Movielens 100 k 
and Movielens 1 M. Movielens 100 k contains 100 000 
ratings of 943 users on 1682 films. In the case of Movielens 1 
M, such dataset contains 1 million ratings performed by 
6040 users on 3900 films. In both cases, range values are 
comprised between 1 and 5. Both datasets are highly sparse 
since more than 90% of the fields are empty. First, we 
implement and test the methods B_KNN_GNA, B_AVG, and 
B_KNN proposed in Sections IV-C, IV-D, and IV-E, 
respectively. Next, we compare our approaches with a set of 
well-known state-of-the-art methods: 1) the κ-NN approach 
with κ = 1, 5 and 10, 2 two baseline regularization methods, 
namely stochastic gradient descent (SGD) and alternating 
least squares (ALS), the nonnegative matrix factorization 
approach (NMF). A summary of the state-of-the-art methods 
and their main characteristics is pro- vided in Table 4. The 
methods SGD, ALS, and NMF have been implemented using a 
Python library. In the case of our approaches, we follow a 
preprocessing step in which bench- mark datasets are filled 
with the center of their corresponding value range, to 
alleviate sparseness and to compute the superbit similarities 
accurately. Finally, the B_KNN_GNA approach uses (0, σ) to 
obfuscate data with σ = 0.25. We split our experiments into 
three sections. First, we assess the feasibility of our method 
and the implementation details for a real blockchain 
architecture in Section VI-A. Second, we perform an 
efficiency analysis of our LSH methodology for each 
benchmark dataset. Finally, we compute the accuracy of 
recommendations for our proposals and compare them with 
the aforementioned method. 
 
 
 
 
 
 
 
 

 

Table -5: Bucket’s values been computed according to the 
number of users present in each corresponding dataset. 

 
6.1 Integration 
 
 In principle, storing data directly to the blockchain is not 
efficient. The reason is that blockchains have been designed 
to store transactions and not arbitrary data. Therefore, in 
typical scenarios, one would use something like IPFS4, 
Storj5, or TiesDB6 and push the hash identifier to the 
blockchain. This option allows one to store arbitrary data in 
the database efficiently. 
 
In each transaction, users append some metadata which is 
the hash of their ratings, see Table II. Once a user wants to 
compute some recommendations, he collects the 
corresponding transactions and extracts the metadata. This 
allows the user to collect all the ratings stored off-chain and, 
based on the collected data. The user may apply one of the 
three proposed approaches detailed in Section IV. It has to 
be highlighted that the coin mining procedure can be set to a 
really low threshold. This allows users to commit their 
ratings with negligible cost. 
 
In terms of performance, in our experimental setup running 
on an Intel i7-4710MQ with 8 GB RAM server on Ubuntu 
16.04 LTS an Ethereum blockchain7 each user transaction 
took on average 5.158 ms. Moreover, data retrieval from 
IPFS was also performed in the order of milliseconds 
between different peers located in different countries. 
Bucket’s values been computed according to the number of 
users present in each corresponding dataset. 
 

6.2 Efficiency Analysis 
 
We adapted the LSH superbit implementation of  to our CF 
methods as an efficient similarity computation module. The 
number of stages was always 1 (as discussed in Section V) 
and the bucket configurations tested for each dataset are 
summarized in Table V. In Section VI-B1 we analyze the 
bucketization outcomes to observe how data are mapped 
into different buckets, we study the efficiency of 
neighborhood computations performed by our blockchain-
based κNN methods, compared with the state of the art. 

 
6.2.1 Bucketization Performance 

 
Table VIa and b describe the LSH bucketization mapping 
outcomes for Movielens 100 k and 

 
4[Online]. Available: https://ipfs.io/ 

5[Online]. Available: https://storj.io/ 

6[Online]. Available: https://tiesdb.com/ 

7[Online]. Available: https://geth.ethereum.org/ 

DATASET BUCKET 

Movielens 100k 

Movielens 1m 

50/100/150/200/250/300/350 

250/500/750/1000/1500/2000
/2500 
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Table -6: Results of the bucketization step of  our clustering  method 

a) Movielens 100K                                                                                     b) Movielens 1M 

Buckets ABC   σ               Mapped valid 

   50 48.78 54.73 58% 38% 

100 25.91 40.33 80% 34% 

150 14.49 37.95 82% 39.3% 

200 6.16 5.02 96% 69.5% 

250 8.75 10.39 60.4% 39.6% 

300 4.91 2.07 91% 51.3% 

350 5.63 4.13 82% 36% 

  ABC stands for average bucket cardinality.                                                                                                                 

 
 
Movielens 1 M, respectively. Tables contain the average of 
users per bucket and the corresponding standard deviation 
σ, the % of mapped buckets, which are buckets that have at 
least one user and the % of valid buckets, which are buckets 
that contain k => 3 users and thus form a cluster.  

In general, as expected, the average bucket cardinality 
decreases when the number of buckets is increased. 
However, we may observe cases in which the % of valid 
buckets decreases, and thus, the cardinality of buckets is 
increased even when the number of buckets is increased (cf. 
Table VIa, b = 250).  

For example, users that were mapped into different buckets 
when b = 200, may be mapped into the same bucket when b 
= 250, and users that belong to the same bucket when b = 
200 may be mapped into different ones when b = 250, 
creating small clusters with different cardinalities.  

Therefore, since the input vectors and the LSH parameters 
directly affect group creation, a previous methodology to 
identify proper bucketization parameters (e.g., optimal 
number of buckets and number of stages) depending on the 
dataset characteristics would be desirable and is left to 
future work. 

 

Buckets ABC     σ              Mapped Valid 

 250 36.41 64.17 76.4% 66% 

500 21.45 22.94 71% 55% 

750 8.34 3.36 99.6% 95% 

1000 6.59 2.81 99.4% 88.7% 

1500 4.94 1.69 97.7% 73.66% 

2000 4.31 1.41 93.65% 56.2% 

2500 4.26 1.46 85% 41.32% 

Buckets Avg 
neighbou
rs 

    σ            % Re-
Mappe
d users 

% 
Relative 
compariso
ns 

50 107.35 85.04 0.53 11.40 

100 82.16 55.05 3.18 8.73 

150 102.43 114.72 4.24 10.88 

200 8.49 9.26 2.22 0.89 

250 18.54 24.60 2.96 1.97 

300 3.99 2.68 5.51 0.43 

350 5.91 6.33 9.33 0.63 

Bucket
s 

Avg.N
eighb
ours 

      σ    %Re
-
Map
ped 
user
s 

%R
elati
ve 
com
pari
sons 

250 147.7
5 

159.5
3 

0.34 2.45 

500 44.29 44.33 0.99 0.73 

750 8.63 3.49 0.11 0.12 

1000 6.60 3.26 0.44 0.11 

1500 4.16 2.08 2.41 0.07 

2000 3.17 1.88 5.09 0.06 

200 2.93 2.02 9.10 0.05 

Table -7: Average results of the bucketisation step of our     Table -8: Average results of the bucketisation step of our private 
    private and public kNN blockcahin-based methods for          and public kNN blockchain-based methods for movielens 1M 
                                        movielens 100 K                                                                 
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6.2.2 Neighborhood Computation Performance                     

Tables VII and VIII show the results of the tested 
configurations and contain: 1) the average of neighbors of 
each user and its corresponding standard deviation, 2) the 
percentage of users that were mapped alone into a bucket, 
and 3) the relative percentage of similarity computations 
needed to create the neighborhoods compared with the ones 
needed between all users of the dataset. For instance, if the 
value of the relative comparison is 1%, this means that we 
create the neighborhoods avoiding/saving a 99% of 
computations and thus, the lower, the better. Note that users 
that are alone in a bucket are remapped to the closest 
nonempty bucket to enable the recommendation 
computation. Therefore,our method may also be useful for 
outlier detection. However, parameters such as the number 
of buckets must be tuned for each dataset and, thus, it is left 
for future work. 

     As observed in Section VI-B1, the data distribution and the 
number of buckets affect the neighborhood creation. Note 
that the average neighbors’ value is weighted by buckets with 
high cardinality. Although the average neighbors decrease 
when the number of buckets is increased in the case of 
Movielens 1 M (cf. Table VIII), we may observe a different 
behavior in the case of Movielens 100 k (cf. Table VII). For 
example, we obtain higher cardinality with b = 150 than with 

b = 100, which means that a high number of users that belong 
to different buckets when b = 100 were mapped into the 
same bucket when b = 150. Moreover, the σ value when b = 
150 is higher than the one obtained with a lower number of 
buckets and, thus, the cardinality of neighborhoods is less 
stable. Finally, we may also observe that the % of relative 
comparisons value is related to the average neighbors value, 
because the more users per bucket, the more similarity 
computations need to be performed. In all cases, such % of 
(especially when the number of buckets is high) to compute 
the user’s neighborhoods compared with traditional 
methods. 

6.3 Recommendation Computation 
 
We compute the error between the original dataset values 
and the predicted values using the mean absolute error 
(MAE) metric, defined as follows: 

             

                                        

                                         Table -9: MAE outcomes of our approaches for the movielens dataset. 

 

                         a) Movielens 100K                                                                    b) Movielens  1M 

 

                        

      Best configurations are highlighted in blue. 
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Chart -1: MAE outcomes comparison for Movielens datasets. The lower, the better. (a) Movielens 100 k dataset. (b) 
Movielens 1 M dataset. 

where n is the number of predicted elements, pi is the 
predicted value over the element i, and ri is the real value of 
i. The lower the MAE value, the better the accuracy of the 
predictions. Note that recommendations are computed only 
for the original voted values of each user. For each method, 
we conducted a fivefold and tenfold test, repeated them 100 
times and computed the average of the outcomes. First, we 
depict the outcomes of our methods for the bucket 
configurations showed in Table 5. Therefore, Table 9a and b 
show, for each benchmark dataset, the MAE outcomes for 
B_KNN, B_KNN_GNA, and B_AVG methods. Next, we select the 
best configuration and compare our methods with well-
known state-of-the-art methods. The results of such 
comparison are depicted in chart 1(a) and (b). 

 
7. DISCUSSION 
 

The outcomes of the bucketization step, as discussed in 
Section VI-B1, vary depending on data distribution and the 
LSH function. For instance, we observe that the percentage 
of buckets that have at least one user is not related to the 
number of buckets. In the case of Movielens 100 k (cf. Table 
6a), the more mapped buckets, the more valid buckets, being 
b = 200 the configuration that achieves a higher percentage 
in both cases. In the case of Movielens 1 M (cf. Table 6b), we 
achieve a higher percentage of mapped and valid buckets 
than with Movielens 100 k. The best value is achieved when 
b = 750. However, a high percentage of valid buckets does 
not mean high-quality recommendations, being the 
cardinality of such buckets, a measure that has much more 
impact, as observed in Section VI-C. One of the aims of our 
proposal is to achieve high efficiency and scalability while 
maintaining the privacy of users in a fully decentralized 
context (i.e., in the blockchain). In that sense, the results 
discussed in Section VI-B2 shows that we only need a few 
computations to obtain the neighborhoods of users. 

Moreover, similarities computed using superbit hashes are 
far less costly than a standard cosine similarity computation. 
In the case of the B_AVG method, note that we only need to 
compute the average vector between the users of a bucket to 
obtain recommendations and thus, the computational cost 
can be considered almost negligible. 

 
The blockchain-based recommendation methods proposed 
have different characteristics in terms of data obfuscation as 
well as computational complexity. Nevertheless, such 
method selection benefits user personalization. Moreover, 
users can apply further configuration policies, for example, 
in the case of the B_KNN_GNA method our blockchain-based 
recommendation methods are depicted in Table IXa and b. 
In general, the results of B_KNN and B_KNN_GNA methods 
are better when the number of buckets is low, because the 
average cardinality of neighborhoods is higher, increasing 
the number of referrals. In the case of the B_AVG method, 
the lower the cardinality, the lower the error, which is 
normal behavior. 
 

Finally, we compared our methods with other well-
known approaches and depicted the outcomes in chart 
1(a) and (b). In all cases, the highest error is obtained by 
κNN with κ = 1, which acts as an upper bound. In the case 
of Movielens 100 k, the outcomes of our B_KNN approach 
are close to the ones obtained by κNN with κ = 10, which 
highlights the quality of our approach [cf.chart 1(a)]. 
Moreover, we achieve such results with only an 8.73% of 
relative comparisons, in a decentralized privacy-
preserving way. The MAE obtained by our clustering 
procedure B_AVG is slightly higher than the one obtained 
by the literature methods but better than all memory-
based approaches. Moreover, note that the computational 
cost of the B_AVG is much lower than the cost of B_KNN. 

The outcomes obtained for Movielens 1 M are depicted 
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in chart 1(b). The error obtained of our B_KNN approach is 
slightly higher than the one obtained with κNN with κ = 5. 
Despite that, it is much lower than the one obtained by 
κNN with κ = 1. In the case of the B_AVG method, the MAE 
value is slightly higher than the other literature methods, 
as with Movielens 100 k. 

 
The MAE obtained by B_KNN_GNA is slightly worse than 

the one obtained by B_KNN in all cases. However, such 
error is slightly higher than the one obtained by the κNN 
method with κ =5 and far better than the one with κ =1 in 
both datasets. Moreover, the B_KNN_GNA method enables 
a totally customizable recommendation computation. For 
the sake of clarity, we used the κNN method, but any other 
state-of-the-art approach could be used to improve the 
outcomes. Therefore, more experiments using 
recommendation methods with obfuscated user vectors 
are left as future work. 

 

As previously stated, the outcomes achieved by our 
blockchain-based approaches, especially the B_AVG 
method where they can obfuscate their data according to 
their privacy requirements. The outcomes of, are 
computed much more efficiently than its peers, even if they 
are implemented in a centralized setting. Therefore, our 
methods are more efficient (cf. Tables 7 and 8), preserve 
the privacy of users (cf. Table 2) as well as integrate the 
inherent benefits of blockchain architecture in a 
decentralized permanent storage, features which are not 
offered by the rest of state-of-the-art methods. In addition, 
blockchain’s direction toward the use of sovereign 
identities and advanced identity management standards 
enables the use of smart contracts to provide anonymous-
but-personalized services, which in the case of RSs may go 
from directed marketing to reward mechanisms, as well as 
further services delivered by third parties. 

 
 8. CONCLUSIONS 
 

In this article, we introduced a new blockchain-based RS 
architecture. We use an accurate and efficient LSH 
implementation to map users into buckets and share such 
information in the blockchain. Next, we present three new 
privacy-preserving blockchain-based methods and compare 
them with other state- of-the-art methods. The results 
showed that we achieve almost the same accuracy than 
centralized approaches, but with much higher efficiency and 
using the fully decentralized architecture of a blockchain. 
Moreover, our approaches preserve the privacy of users, a 
feature not offered by the rest of the compared methods. 
Finally, we observed that the LSH function and the data 
distribution have a strong impact on our blockchain-based 
methods. Future work will focus on studying other LSH 
implementations, as well as finding a methodology to 
properly select parameters such as the number of buckets 

depending on the recommendation method and the 
imputation technique used to overcome sparseness. 
Moreover, we will study the addition of randomized 

response techniques and the enhancement of our 
obfuscation step using Laplacian noise, to achieve 
differential privacy. Finally, we will investigate more 
sophisticated and configurable architectures using smart 

contracts to enhance the possibilities of the framework.  
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