

Case Study on Design and Analysis of Worm Gear Box for Elevator

Divij Pharkute¹, Varad Pimple², Piyush Khandekar³, Akshata Pokharkar⁴, Parimal Phanse⁵

1-5Student of Vishwakarma Institute of Technology, Pune, Maharashtra, India

Abstract - Elevator is the device which is used to transfer people on different floors in a building, for doing so they use electric motors and worm gear box. A worm gear box consists of a worm gear & worm wheel. The input of the motor is given to the worm gear which in turn drives the worm wheel, to which pulley is attached. Worm gears are most suitable for transmitting power between two shafts that are perpendicular but not intersecting. They are mainly used for this application because of high speed reduction ratio. In this paper, worm gear box is designed for 6 passengers & FEA analysis is doneby applying different forces on worm gear and wheel. Structural was performed in ANSYS software while the Modelling was done on Solidworks.

Key Words: Elevator, worm gear box, high speed reduction, ANSYS, solidworks.

1. INTRODUCTION

A worm gear (or worm drive) is a specific gear composition in which a screw (worm) meshes with a gear/wheel similar to a spur gear. The set-up allows the user to determine rotational speed and also allows for higher torque to be transmitted. An electric motor or engine applies rotational power via to the worm. The worm rotates against the wheel, and the screw face pushes on the teeth of the wheel. The wheel is pushed against the load. Applications - Lifting Devices, Cranes, Elevators, Belt conveyors etc.

2. THEORY

Application of elevator-

An elevator's function is to convert the initial electrical power, which runs the motor, into mechanical power, which can be used by the system. The elevator is composed of a motor and, most commonly, a worm gear reducer system. A worm gear system is made up of a worm gear, typicallycalled the worm, and a larger round gear, typically called the worm gear. These two gears which have rotational axes perpendicular to each other, not only decrease the rotational speed of the traction pulley, but also change the plane of rotation. By decreasing the rotation speed, with the use of a gear reducer, we are also increasing the output torque, therefore, having the ability to lift larger objects for a given pulley diameter. A worm gear is chosen over other types of gearing possibilities because of its compactness andits ability to withstand higher shock loads. It is also easily attached to the motor shaft, sometimes through use of a coupling. The Figure 1: Worm and Worm Wheel3 gear reduction ratios typically vary between 12:1 and 30:1. The motor component of the elevator machine can be either a DC motor or an AC motor. An AC motor is more regularly used because of its ruggedness and simplicity. A motor is chosen depending on design intent for the elevator. Power required to start the car in motion is equal to the power to overcome static, or stationary friction, and to accelerate the mass from rest tofull speed.

3. METHODOLOGY

Worm & worm gear Terminology A pair of Worm & worm gear is specified & designated as –

Fig -2: Terminology of Worm and Worm Whee Where,

 $z_1 = no. of start on worm$

Fig -1: Worm and Worm Wheel

International Research Journal of Engineering and Technology (IRJET)

Volume: 08 Issue: 05 | May 2021

 $z_2 = no.$ of teeth on worm wheel

q = diametral quotient = d1/m m

= module

Axial Pitch - (\mathbf{p}_x) defined as distance between two consecutive teeth measured along the axis of worm.

Lead (I) – It is defined as distance that a point on helical profile will move in axial direction when worm is rotated through one revolution.

$$\mathbf{l} = \mathbf{p}_{\mathbf{x}} * \mathbf{z}_{1}$$

Circular Pitch - (\mathbf{p}_c) defined as distance measured along pitch circle from one point on one tooth to the corresponding point on adjacent tooth.

Lead angle of worm (γ) - When one thread of worm is developed it becomes hypotenuse of the triangle. Thebase of triangle is equal to circumference of worm & altitude is equal to lead of worm.

$$\tan \gamma = \frac{z_1}{q}$$

ha1- Addendum of worm (mm)

- hf1- Dedendum of worm (mm)
- c- Clearance of worm (mm)

ha2- Addendum at the throat of worm wheel (mm)

hf2- Dedendum in the median plane of worm wheel (mm)

lr- Length of root of worm wheel teeth (mm)

- **v**_s- Rubbing velocity (m/s)
- d1 diameter of worm
- d_2 diameter of worm wheel

4. CALCULATIONS

The elevator was designed for the capacity of 6 people so as to transfer people on different floors. It takes the input power from the motor which is given to worm gear box so as to reduce the speed to the required level and torque.

Input parameters-

No. of Passengers	= 6
Average Weight	= 70 kg
Lift speed (v)	=1 m/s
Motor (N) (rpm)	= 960 [3]
Pulley diameter (d) =	=0.53 m
Duty (weight on lift)	=420 kg
Weight of the car	=1000 kg
Total weight (W1)	=1000 + 420

=1420 kg (13930.2 N)

Dead weight $(W_2) = Duty/2 + (weight of car) [4]$

=420/2 + 1000

$$= 1210 \text{ kg} (11870.1 \text{ N})$$

Materials-

Worm = Case hardened steel

Worm wheel = Phosphor bronze

Output parameters-

Torque (**T**) = $(W_1 - W_2)*r$

=<u>545.9265 N-m</u>

$$v = \frac{\pi^* d * n}{60}$$
$$n = \frac{60^* 1}{\pi^* 0.53}$$
$$= 36 \text{ rpm}$$

Therefore,

 $(z_1) = 1$

 $(z_2) = 25$

Power output,

$$P_{out} = \frac{2^*\pi * n * T}{60}$$

$$=\frac{2^{\ast}\pi^{\ast}36^{\ast}545.9265}{60}$$

= <u>2060.1 w</u>

Gear box,

Speed reduction (i) =
$$\frac{N}{n} = \frac{960}{36} = 26.67$$

Therefore, the nearest standard gear ratio is

= 25

Now taking new gear ratio,

 $25 = \frac{960}{n}$ $n = \frac{960}{25}$ n = 38.4

New lift speed,

 $v = \frac{\pi^* d^* n}{60}$

 $=\frac{\pi * 0.53 * 38.4}{60}$

= 1.07 m/s

According to the value of speed reduction (i) the values of $z_1 \& z_2$ are as follows-

No. of start on worm $(z_1) = 1$

No. of teeth on worm wheel $(z_2) = 25$

Assuming value of diametral quotient (q) as 10

(q) = 10 Lead angle (γ), $\tan(\gamma) = \frac{z_1}{q}$ $\tan(\gamma) = \frac{1}{10}$ (γ) = 5.71 <u>= 0.099669</u> radians Diameter of worm gear (d₁), $d_1 = q^*m$

= <u>10*m</u>

Diameter of worm wheel (d₂),

$$d_2\!=\!z_2{}^*\!m$$

Velocity of worm (v_g) or (v1)

$$v_{g} = \frac{\pi * d_{1} * N}{60}$$
$$v_{g} = \frac{\pi * q * m * 960}{60}$$

 $v_g = 502.4 * m \text{ mm/s}$

Velocity of worm wheel (v_w) or (v2)

$$v_{w} = \frac{\pi * d_{2} * n}{60}$$
$$\pi * 25 * m * 38.4$$
$$v_{w} = \Box_{60}$$

 $v_w = 50.24 * m \text{ mm/s}$

Sliding velocity (v_s),

$$V_s = \frac{V_1}{\cos \gamma}$$

 $v_s = 0.505 * m$ m/s

Effective Face width of worm wheel (F),

 $F = 2 * m * \sqrt{q+1}$ $F = 2 * m * \sqrt{11}$ <u>F = 6.633 * m</u>

Outside diameter of worm (da1),

$$da_1 = m^*(q + 2)$$

= $m^*(10 + 2)$
= $12 * m$

Clearance(c),

$$= 0.2 * m *Cos\gamma$$

= 0.2 * m *Cos(5.71)
= 0.2 * m

Length of root of worm wheel (lr),

$$l_r = (d_{a1} + 2c) * Sin^{-1} \begin{pmatrix} \underline{\Box F} \\ d_{a1} + 2c \end{pmatrix}$$

= 7 * m

Worm gearing design as per IS-7443-1974

Based on beam strength.

$$M_{t1} = 17.65 * X_{b1} * S_{b1} * m * l_r * d_2 * Cos\gamma \qquad N.mm$$

$$M_{t2} = 17.65 * X_{b2} * S_{b2} * m * l_r * d_2 * Cos\gamma \qquad N.mm$$

$$M_{t1} \text{ or } M_{t2} = Permissible \ torque \ on$$

$$worm \ wheel \ N.mm$$

$$X_{b1} \text{ or } X_{b2} = Speed \ factor \ for \ strength$$

$$of \ worm \ \& \ worm \ wheel$$

$$S_{b1} \text{ or } S_{b2} = Bending \ stress \ factor$$

$$for \ worm \ \& \ worm \ wheel$$

$$l_r = Length \ of \ the \ root \ of$$

$$worm \ wheel \ tooth(mm)$$

Fig -3: Based on Beam Strength Terminology

Values of Xb_1 , Xb_2 , Sb_1 & Sb_2 are taken from standard graphs and tables.

Xb₁=0.255
Xb₂=0.4875
Sb₁=28.2
Sb₂=7
Now,

$$Mt_1 = 17.65 * Xb_1 * Sb_1 * m * lr * d_2 * \cos(\gamma)$$

545.9265 = 17.65*0.255*0.28*m*7*m*cos(5.71)
m = 2.90
 $Mt_2 = 17.65 * Xb_2 * Sb_2 * m * lr * d_2 * \cos(\gamma)$

$$545.9265 = 17.65*0.4875*7*m*7*m*\cos(5.71)$$

www.irjet.net

Based on wear strength.

$$M_{t3} = 18.64 * X_{c1} * S_{c1} * Y_{z} * (d_{2})^{1.8} * m$$

$$M_{t4} = 18.64 * X_{c2} * S_{c2} * Y_{z} * (d_{2})^{1.8} * m$$

Volume: 08 Issue: 05 | May 2021

 M_{t3} or M_{t4} = Permissible torque on worm wheel N.mm X_{c1} or X_{c2} = Speed factor for wear of worm & worm wheel S_{c1} or S_{c2} = Surface stress factor for worm & worm wheel Y_{z} = Zone factor

Fig 4 -: Based on Wear Strength Terminology

Values of $Xc_1, Xc_2, Sc_1 \& Sc_2 \& Yz$ are taken from standard graphs and tables.

Xc1=0.18

Xc₂=0.4125

Sc1=4.93 Sc2=1.55

Yz=1.143

Thus,

$$M_{t3} = 18.64 * X_{c1} * S_{c1} * Y_{z} * (d_2)^{1.8} * m$$

 $545.9265 = 18.64 \times 0.18 \times 4.93 \times 1.143 \times (25 \times m)^{1.8} \times m$

m = **4.94**

 $M_{t4} = 18.64 * X_{c2} * S_{c2} * Y_z * (d_2)^{1.8} * m$

545.9265 =18.64*0.4125*1.55*1.143*(25*m)^{1.8}*m

Therefore, the highest value of m among the above four equations is,

m = 5.56

Therefore,

The new sliding velocity is-

$$v_s = 0.505 * m$$

= 2.20 m/s

The new values of Xc1, Xc2, according to the sliding velocity are as follows-

Xc1=0.135

Xc2=0.2995

 $Mt_{3(1)} = 18.64 * Xc_1 * Sc_1 * Yz * (d_2)^{1.8} * m$

=18.64*0.135*4.93*1.143*(25*m)^{1.8*}m

m = **5.48**

$$Mt_{4(1)} = 18.64 * Xc_2 * Sc_2 * Yz * (d_2)^{1.8} * m$$

=18.64*0.2995*1.55*1.143*(25*m)^{1.8}*m
m = 6.23

Thus, the highest value of m is 6.23 & the standard worm gear available for the same is-

z₁/ z₂/q/m 1/25/6.5/8

5. SOLVER/CODE

This code is made in excel with same input parameters as above & the output of the solver is the value for the worm gear box.

		-		-
No. of Passengers	6			
Average Weight	70	Kg		
Duty	420	Kg		
Weight of Car	1000	Kg		
Total Weight	1420	Kg	13930.2	Ν
Counter Weight	1210	Kg	11870.1	Ν
Rated Speed	1	m/s		
Drum Diameter	530	mm	0.53	m
Motor to be used(RPM)	960	rpm		
Material For Worm	Case Hard	ened Steel		
Material For Worm Wheel	Phosphou			
Basic Output Parameters				
Torque at Pulley	545.9265	N-m		
Output RPM at pulley and worm wheel (linear velocity to angular)	36.05336	rpm		
Output Power	2060.1	w		

Fig 5 -: Excel Solver 1/6

Gear Box Design			
Speed Reduction(i)=		26.6272	
Nearest Standard Gear Ration		25	
Assume No. of Starts on Worm(Z1)		1	
So, No. of teeth on Worm Wheel (Z2)		25	
i(modified)		25	
Output Speed(modified)		38.4	rpm
Changed Velocity of Elevator		1.065088	m/s
Assumption for Furthur Design			
Assume q=		10	
Lead Angle		0.099669	radians
Velocity of worm wheel	m*	50.24	mm/s
Velocity of worm	m*	502.4	mm/s
Sliding Velocity	m*	504.9058	mm/s
	m*	0.504906	m/s

Fig 6 -: Excel Solver 2/6

0.255		
28.2		
0.4875		
7		
1.143		
6.633	*m	mm
12	*m	mm
0.2	*m	mm
7	*m	mm
0.18		
0.4125		
4.93		
1.55		
1.143		
	0.255 28.2 0.4875 7 1.143 6.633 12 0.2 7 7 0.2 7 7 0.18 0.4125 4.93 1.55 1.143	0.255 28.2 0.4875 7 1.143 6.633 *m 1.2 *m 0.2 *m 7 *m 0.2 *m 7 *m 0.18 0.4125 4.93 1.55 1.143

Fig 7 -: Excel Solver 3/6

Calculating m by the formulas of Mt1 and Mt2	
By Mt1	
m	2.907507
By Mt2	
m	3.727574
Calculating m by the formulas of Mt1 and Mt2	
By Mt3	
m	4.947298
by Mt4	
m	5.56176

Fig 8 -: Excel Solver 4/6

So, highest value of m is	5.56176	
Calculating modified sliding velocity	2 808165	m/s
Coefficient of Friction(u)	0.02875	1117.5
	0.028893	
φν	0.028885	radians
	1.655848	degree
Again Calculating m by wear strength	h formulas	
Inputs		
Xc1	0.135	
Xc2	0.2995	
By Mt3		
m	5.482631	
by Mt4		
m	6.235407	

Fig 9 -: Excel Solver 5/6

So, the sta	andard worm gear box availabl	le is		
Z1			1	
Z2			25	
q			6.5	
m			8	

Fig 10 -: Excel Solver 6/6

lay 2021 ww

www.irjet.net

The following is the code in python for obtaining the different parameters of worm wheel & gear for the gear box.

py >	📌 msd lab 1.py >
	import math
	<pre>z1= int(input("No. of Starts on worm(z1)="))</pre>
	<pre>z2= int(input("No. of teeth on worm wheel(z2)="))</pre>
	<pre>q= float(input("Diametral Quotient(q)="))</pre>
	<pre>m=int(input("Module(m) in mm="))</pre>
	d1- q*m
	d2- m*z2
	px= (math.pi*d2)/z2
	lead- px*z1
	<pre>gamma= (math.atan(z1/q))</pre>
	da1= m*(q+2)
	df1= m*(q+2-(4.4*math.cos(gamma)))
	<pre>da2= m*(z2+(4*math.cos(gamma))-2)</pre>
	df2= m*(z2-2-(0.4*math.cos(gamma)))
	f= (2*m * ((q+1)**(1/2)))
	c= (0.2*m)*math.cos(gamma)
	delta= math.asin(f/(da1+(2*c)))
	lr=(da1+2*c)*delta
	a=(d1+d2)*0.5
	1=(z2/z1)
23	helixangle= (math.pi/2)-gamma
	print("\n")
	print("lead(l)-",lead, "mm")
	print("Lead Angle(gamma)=",gamma, "radians")
	print("\n")
	print("Worm Dimensions")
	print("\n")
	<pre>print("Pitch Circle Diameter of Worm(d1)=",d1,"mm")</pre>
	print("Axial Pitch of Worm(px)=",px,"mm")
	<pre>print("Outside Diameter of Worm(dal)=", dal, "mm")</pre>
	<pre>print("Root Diameter of Worm(df1)=", df1,"mm")</pre>
	print("\n")
36	A CONTRACT OF A DESCRIPTION OF A
	print("Worm Wheel Dimensions")
	<pre>print(Worm Wheel Dimensions") print("\n")</pre>
	<pre>print(Worm Wheel Dimensions") print("\n") print("Pitch Circle Diameter of Worm Wheel(d2)",d2,"mm")</pre>
	<pre>print(Worm Wheel Dimensions") print("\n") print("lpitch Circle Diameter of Worm Wheel(d2)",d2,"mm") print("Throat Diameter of Worm Wheel(da2)=",da2,"mm")</pre>
	<pre>print(Worm Wheel Dimensions") print("Nn") print("Pitch Circle Diameter of Worm Wheel(d2)",d2,"mm") print("Throat Diameter of Worm Wheel(dd2)=",dd2,"mm") print("Root Diameter of Worm Wheel(df2)=",df2,"mm")</pre>
	<pre>print(Worm Wheel Dimensions") print("\n") print("Pitch Circle Diameter of Worm Wheel(d2)",d2,"mm") print("Throat Diameter of Worm Wheel(dd2)=",da2,"mm") print("Root Diameter of Worm Wheel(df2)=",df2,"mm") print("Effective Face Width(f)=",f,"mm")</pre>
	<pre>print(Worm Wheel Dimensions") print("\n") print("Pitch Circle Diameter of Worm Wheel(d2)",d2,"mm") print("Throat Diameter of Worm Wheel(dd2)=",da2,"mm") print("Root Diameter of Worm Wheel(dd2)=",dd2,"mm") print("Effective Face Width(f)=",f,"mm") print("Length of root of Worm Wheel teetth(lr)=",lr,"mm")</pre>
	<pre>print(Worm Wheel Dimensions") print("\n") print("Pitch Circle Diameter of Worm Wheel(d2)",d2,"mm") print("Throat Diameter of Worm Wheel(da2)=",da2,"mm") print("Root Diameter of Worm Wheel(df2)=",df2,"mm") print("Effective Face Width(f)=",f,"mm") print("Length of root of Worm Wheel teetth(lr)=",lr,"mm") print("\n")</pre>
	<pre>print(Worm Wheel Dimensions") print("\n") print("Pitch Circle Diameter of Worm Wheel(d2)",d2,"mm") print("Throat Diameter of Worm Wheel(dd2)=",dd2,"mm") print("Root Diameter of Worm Wheel(df2)=",df2,"mm") print("Effective Face Width(f)=",f,"mm") print("Length of root of Worm Wheel teetth(lr)=",lr,"mm") print("Center Distance(a)=",a, "mm")</pre>
	<pre>print(Worm Wheel Dimensions") print("Nn") print("Pitch Circle Diameter of Worm Wheel(d2)",d2,"mm") print("Throat Diameter of Worm Wheel(dd2)=",dd2,"mm") print("Root Diameter of Worm Wheel(df2)=",df2,"mm") print("Effective Face Width(f)=",f,"mm") print("Length of root of Worm Wheel teetth(lr)=",lr,"mm") print("Center Distance(a)=",a, "mm") print("Speed Reduction(i)=",i)</pre>

Fig 11 -: Python Code

Fig 12 -: Python Code Output

6. CAD MODEL

With the dimension mentioned in the table 1, following model is made in Solidworks.

Fig 14 -: Worm Wheel

Table -1: Calculated Dimensions for CAD-Model

No of start on worm	Z 1	1	
No of teeth on worm wheel	Z ₂	25	
Diametral quotient	q	6.5	
Module	m	8	
Lead Angle	γ	8.73	
Worm dimensions			
Pitch Circle Diameter of Worm	d ₁	52 mr	n
Axial Pitch of Worm	px	25.13	mm
Outside Diameter of Worm	<u> </u>	da ₁	68 mm
Root Diameter of Worm		df ₁	38.2 mm
Worm wheel dimensions		I	1
Pitch Circle Diameter of Worm W	d ₂	200 mm	
Throat Diameter of Worm Wheel	da ₂	215.62 mm	
Root Diameter of Worm Wheel		df ₂	180.83 mm
			1
Effective Face Width		f	43.81 mm
Length of root of Worm Wheel te	eth	lr	47.2 mm
Center distance		a	125 mm
Speed Reduction		i	25
		1	1

Fig 15 -: Worm

Fig 16 -: Assembly 1/3

Fig 17 -: Assembly 2/3

Fig 18 -: Assembly 3/3

IRJET Volume: 08 Issue: 05 | May 2021

www.irjet.net

7. STRUCTURAL ANALYSIS

Finite Element Analysis was done to ensure that the designed worm gear and worm wheel are in the specified limits.

1) Following excel sheet shows forces acting on a worm and worm gear.

Force, Power and Efficiency Calculations:											
Velocity of Worm Wheel:	402.1238597	mm/s									
	0.40212	m/s									
Velocity of worm:	2613.805088	mm/s									
	2.6138	m/s									
Sliding Velocity:	2.644551178	m/s									
Coefficient of Friction(µ)	0.03										
μv	0.030352723	radians									
φν (Friction angle)	0.030343407	radians	1.73855	degrees							
Tangential force on worm (F1t):		20997.2	N		F1a						
Tangential force on worm wheel(F2t):		112503	N	-	F2a						
Radial Force acting on worm (F1r)		41633.5	N	- :	F2r	Normal P	ressure and	de (α) is assumed as	20 degree	0.34907	radian
				Efficiency	0.82403						
					82.403	percent					
				Power Re	quired-	2195.3	watts				
						2.195	KW				

Fig 19 -: Forces Acting on Worm Wheel

2) Maximum deformation obtained is 0.14269 mm on worm gear.

Fig 20 -: Analysis of Worm Gear

3) Maximum deformation obtained is 0.36428 mm on worm.

Fig 21 -: Analysis of Worm

8. CONCLUSION

In this paper, the application took for designing the worm gear box is Elevator, where the worm gear box is used. According to the input parameters, the design is done by IS-7443-1974. Then a cad model is made in Solidworks. According to the forces calculated, structural analysis is done on worm gear and worm and deflection of the same found are, 0.14269 mm and 0.36428 mm respectively.

REFERENCES

[1] V. B. Bhandari. "Design of Machine Elements", Third Edition.

[2] V. B. Bhandari, "Machine design data book".

[3] Design, Fabrication, Supply, Installation & Commissioning of Passenger Lift for ITMT Building, Indian Institute of Astrophysics, Bangalore, 2017

[4] TECHNICAL SPECIFICATIONS FOR ELEVATORS (6 PASSENGERS), Kerala Government.