
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3711

Movie Recommendation System

Prof. Sanober Shaikh1, Adhithyaram S2, Aryak Deshpande3

1Professor, Dept. of Information Technology, Thadomal Shahani Engineering College, Maharashtra, India
2Student, Dept. of Information Technology, Thadomal Shahani Engineering College, Maharashtra, India
3Student, Dept. of Information Technology, Thadomal Shahani Engineering College, Maharashtra, India

---***---
Abstract – Recommendation systems have been around
for a while now with the advent of websites for movies,
books, products, music, etc. There are various techniques
used in the core of a recommender engine but the end-user
does not have any say in it. In this movie recommender
system, we have implemented two such techniques which
are collaborative filtering and content-based filtering. The
users can choose between the two and customize the
parameters affecting the recommendations according to
their preferences.

Key Words: Recommender System, Machine Learning,
Collaborative Filtering, Content based Filtering

1. INTRODUCTION

Recommender systems are have become a staple in this
era of the internet economy. They help in reducing the
overload of information by providing customized
information access. Modeling, programming, and
deploying these recommender systems have allowed
businesses to enhance revenues and retain customers.
These systems include customized search engines,
personalized shopping agents, and handcrafted content
indices. The scope of personalization and use of these
systems extends to many different areas, not just web
pages. The algorithm and concepts used in recommender
systems can range from keyword matching in user
profiles, content-based filtering, collaborative filtering, to
more sophisticated techniques of data mining such as
clustering server logs. Recommendation systems filter
data using various concepts and approaches and
recommend the most relevant items to users based on
customizable criteria. It first captures the past behaviour
of a customer and recommends products based on that.
This proves to be beneficial to the user and clients as users
only see relevant content and are not bombarded with
unnecessary products and clients get better engagement.
Hence it has become imperative for businesses nowadays
to build smart recommendation systems and make use of
the past behavior of their users.

2. DOMAIN OVERVIEW

2.1 Content-based filtering

The content-based filtering approach tries to study the
liking of a user given the movies' features, which the user

reacts positively to. Content refers to the features or
attributes of the movies the user likes. The gist of this
technique of recommendation is to compare movies using
specific attributes, understand what the user has already
liked, predicting what he may like, and recommend a few
movies from the database with the most similar attributes.
These attributes can be fixed or specified by the user
himself. This method of recommendation uses movie
features to recommend other similar movies to what the
user has already liked.

This technique involves the calculation of the cosine
similarity matrix which is done using the movie’s feature
vectors and the user’s preferred feature vectors from the
user’s previous records. Then, the top few movies which
are most similar are recommended to the user.

User’s feedback and its significance in recommendation:

Implicit Feedback: The user’s likes are recorded based on
actions like clicks, searches, etc.

Explicit Feedback: The users specify their liking by actions
like reacting to an item, marking it as their favorite, or
rating it. In our system, the user marks certain movies as
‘favorites’ and also gives ratings to movies. The ratings
given are used for collaborative filtering.

Cosine Similarity:
It is a concept used to measure how similar one movie is to
every other movie in the dataset. It measures the cosine of
the angle between two vectors projected in a multi-
dimensional space.[6] Even if the two similar movies are
far apart by means of the Euclidean distance, they may still
be oriented closer together. [5]

Fig. 2.1: Cosine similarity for content-based filtering

Using Python, we can easily calculate the count matrix
using count vectorizer and its method. From the count
matrix, the cosine matrix can be evaluated.[8]

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3712

2.2 Collaborative Filtering

Collaborative filtering is commonly used for data that
cannot easily be described by attributes from the dataset
such as books and movies. First, the prediction technique
builds a user-item matrix of preferences for items by users.
It then matches users by computing the similarities
between their data and makes recommendations.

Fig. 2.2: Collaborative Filtering[7]

The following example helps us understand this concept
better. If person X likes the 3 movies - Interstellar, Shutter
Island, Extinction, and person Y likes Shutter Island,
Extinction, and Shawshank Redemption, then the two have
similar interests. We can logically deduce that X would like
Shawshank Redemption and Y would like Interstellar.
Collaborative filtering uses user interests and behavior for
its recommendations.

For this project, User-User collaborative filtering has been
used. The algorithm first finds how similar each user is
compared to other users and computes a similarity score. It
picks out the most similar users and recommends movies
that they have liked previously based on this similarity
score.

Taking our movie dataset example, the similarity between
users is found by the User-User collaborative filtering
algorithm based on ratings they gave to various movies.
The prediction of an item for a user is calculated by the
weighted sum of the user ratings given by other users to an
item.

Fig 2.3: Prediction formula

To predict the ratings for other users based on the ratings
for users we have, we can do the following steps:

1. Similarity between the user u and v is needed for
making predictions. For this, we use Pearson
correlation.

2. The next step is to find the correlation value of the two
users. We can do this by finding the items rated by both
users u and v and find correlation based on that.

3. Next, we calculate the predictions using the similarity
scores. This algorithm calculates the similarities
between users and then based on each similarity finds
out the predictions.

4. Recommendations are made based on these prediction
values.

This process consumes a lot of time as it calculates the
similarity for each user in a database of many users and
then calculates prediction for each similarity score.
Selecting only the neighbors to the current user to make
predictions is a smart way to handle this problem. Out of
the many ways to select neighbors, in this project we have
chosen the top-N users with the highest similarity value
using the K-nearest neighbors algorithm.

Before implementing these concepts, we need to handle
cold starts. A cold start is when a new user or a new item is
being added to the database. Cold starts are of two types:

1. Visitor Cold Start – when a new user signs up to the
platform and is added to the database. Since there is no
past data of that user, the system does not know the
interests of that particular user. It becomes hard for the
system to recommend movies to them. We solve this
problem by recommending the most popular overall
movies to the new user until we get more information.

2. Movie Cold Start - when a new movie is launched or
introduced to the system. Determining key parameters
like ratings, user action is very important, but for new
movies, we do not have any user action data. We
employ content-based filtering to solve this problem by
using the genre of the new movie for recommendations.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3713

3. SYSTEM DESIGN AND OVERVIEW

 A. Design Overview:
This project is created using Spring boot, Flask, Hibernate,
and JPA with MySQL. JSTL and JPQL were used at some
places. 3 Flask APIs (2 for content-based and 1 for
collaborative) were written and called onto the JSPs using
JavaScript. Data was exchanged in form of JSON during API
calls. For handling entities and their attributes, Hibernate
was used and corresponding Java Classes were written.
Spring core security dependency was used to implement
sessions, Authorization, Authentication along with
Password Encryption using BCryptPasswordEncoder, the
latest password encoding technique.

B. Implementation:
A new project was created using Spring Initializr. Maven
was used as a PMT. Dependencies like Spring web, Spring
Data JPA, Lombok, Dev Tools, etc. were added graphically
during project creation. Additional dependencies like JSTL,
MySQL driver, spring-boot-starter-mail, Gson, tomcat-
embed-jasper, spring-boot-starter-security, etc. were
added directly in the POM file. Separate packages were
created in the project structure to contain service classes,
controllers, runner class, model classes, security files, and
repositories thus attaining modularity. Appropriate
annotations and imports were made inside classes and the
necessary credentials were mentioned in
the application.properties file.

Loading the dataset:
An empty database was created, and tables (with their
associated relationships) were generated on the fly by
Hibernate. The dataset in the .csv format used read into
the spring controller and a request mapping was written
to fire the dataset into the DB. On triggering the .csv
mapping, the dataset was then loaded into the tables:
“movie” and “rating”. Inputs from users were appended
into the rating table.

For the recommendation part, 3 Flask APIs were created
separately: 2 for content-based and one for collaborative
filtering. The first content-based filtering API (triggered
when the user clicks on the “recommended for me”
button) works and recommends movies based on a fixed
set of attributes, which cannot be altered by the user. The
second API (triggered when a user hits the customize
button) expects the user to specify a list of attributes that
the user decides as a basis of recommendation. This is a
customized recommendation and works the same as the
first API if the user does not specify any features for
recommendations. Both content-based APIs are POST APIs
and expect the user’s favorite movie list as input for
creating the cosine matrix. After the cosine matrix is
created, the most relevant movies are sorted and sent back
as a response. The data coming from the API is then
displayed on the web page using JSTL.

Multiple request mappings were written in the Spring
controller and corresponding JSPs were generated. Login,
logout, session management, error pages, and forbidden
pages were handled by Spring Security dependency.
Authentication, authorization, and URL security were
established by writing rules in Security classes.

4. RESULT

Here is the output of the first content-based API. In this
case, the user has marked ‘Superman Returns’ and 'Alice in
Wonderland' as his favorite movies. 10 movies similar to
these movies have been given as output based on cosine
similarity values.

Fig 4.1: Content-based filtering output

Below is the output of the collaborative filtering API. The
first table is the top 5 movies the user has rated highly.
The bottom table shows the 5 highest rated
recommendations from the K nearest neighbors to the
current user.

Fig 4.2: Collaborative filtering output

5. CONCLUSION

In this paper, we introduced a web-based system for
movie recommendations created using Spring Boot. It
expects a user to mark a few favorite movies and then

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3714

recommends a list of 10 movies based on cosine similarity
for content-based filtering. By the nature of our system, it
is not possible to judge the performance measure since
there is no correct or incorrect recommendation; it is just
based on a person’s opinions. We tried testing the system
for a small audience and received positive feedback from
them. While our system also works on the collaborative
approach for recommendations, it enables a user to
explore what most users find interesting. The ratings
dataset plays a crucial role and is the heart of the
collaborative approach. The project is a web application
created using Spring Boot and Flask APIs which permits a
user to give ratings to different movies and also
recommends appropriate movies based on other users’
ratings and their liking.

REFERENCES

[1] Xie HT, Meng XW. A personalized information service

model adapting to user requirement evolution. Acta
Electronica Sinica, 2011,39(3):643-648 (in Chinese
with English abstract)

[2] Munoz-Organero, Mario, Gustavo A. Ramíez-González,
Pedro J. Munoz-Merino, and Carlos Delgado Kloos. "A
Collaborative Recommender System Based on Space-
Time Similarities", IEEE Pervasive Computing, 2010

[3] https://medium.com/data-science-101/movie-
recommendation-system-content-filtering-
7ba425ca0920

[4] https://medium.com/code-heroku/building-a-movie-
recommendation-engine-in-python-using-scikit-learn-
c7489d7cb145

[5] Joseph A. Konstan, John Riedl. Recommender systems:
from algorithms to user experience. User Model User-
Adapt Interact, March 2012

[6] Chenguang Pan, Wenxin Li. Research Paper
Recommendation with Topic Analysis. In Computer
Design and Applications IEEE, 2010

[7] Pu P, Chen L, Hu R. A User-Centric Evaluation
Framework for Recommender Systems. In:
Proceedings of the fifth ACM conference on
Recommender Systems, ACM, 2011

[8] Bhavik Pathak , Robert Garfinkel , Ram D. Gopal ,
Rajkumar Venkatesan & Fang Yin .Empirical Analysis
of the Impact of Recommender Systems on Sales,
Journal of Management Information Systems,
December 2014

[9] Al Mamunur Rashid, Istvan Albert, Dan Cosley, Shyong
K. Lam, Sean M. McNee, Joseph A. Konstan, John Riedl .
Getting to Know You: Learning New User Preferences
in Recommender Systems. In: Proceedings of the
international conference on intelligent user interfaces,
2002

[10] J. Ben Schafer, Joseph Konstan, John Riedl.
Recommender Systems in E-Commerce. In:
Proceedings of the 1st ACM conference on electronic
commerce, 1999.

[11] A. Merve Acilar, Ahmet Arslan. A collaborative filtering
method based on artificial immune network. Expert
Systems with Application, 2009

[12] Chen LS, Hsu FH, Chen MC, Hsu YC. Developing
recommender systems with the consideration of
product profitability for sellers. Int J Inform Sci 2008.

[13] Jalali M, Mustapha N, Sulaiman M, Mamay A. WebPUM:
A Web-based recommendation system to predict user
future movements.Exp Syst Applicat, March 2010

[14] Adomavicius G, Tuzhilin A . Toward the Next
Generation of Recommender Systems: A Survey of the
State-of-the-Art and Possible Extensions, IEEE, 2005.

https://medium.com/data-science-101/movie-recommendation-system-content-filtering-7ba425ca0920
https://medium.com/data-science-101/movie-recommendation-system-content-filtering-7ba425ca0920
https://medium.com/data-science-101/movie-recommendation-system-content-filtering-7ba425ca0920
https://medium.com/code-heroku/building-a-movie-recommendation-engine-in-python-using-scikit-learn-c7489d7cb145
https://medium.com/code-heroku/building-a-movie-recommendation-engine-in-python-using-scikit-learn-c7489d7cb145
https://medium.com/code-heroku/building-a-movie-recommendation-engine-in-python-using-scikit-learn-c7489d7cb145

