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Abstract – Recommendation systems have been around 
for a while now with the advent of websites for movies, 
books, products, music, etc. There are various techniques 
used in the core of a recommender engine but the end-user 
does not have any say in it. In this movie recommender 
system, we have implemented two such techniques which 
are collaborative filtering and content-based filtering. The 
users can choose between the two and customize the 
parameters affecting the recommendations according to 
their preferences.  
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1. INTRODUCTION 
 
Recommender systems are have become a staple in this 
era of the internet economy. They help in reducing the 
overload of information by providing customized 
information access. Modeling, programming, and 
deploying these recommender systems have allowed 
businesses to enhance revenues and retain customers. 
These systems include customized search engines, 
personalized shopping agents, and handcrafted content 
indices. The scope of personalization and use of these 
systems extends to many different areas, not just web 
pages. The algorithm and concepts used in recommender 
systems can range from keyword matching in user 
profiles, content-based filtering, collaborative filtering, to 
more sophisticated techniques of data mining such as 
clustering server logs. Recommendation systems filter 
data using various concepts and approaches and 
recommend the most relevant items to users based on 
customizable criteria. It first captures the past behaviour 
of a customer and recommends products based on that. 
This proves to be beneficial to the user and clients as users 
only see relevant content and are not bombarded with 
unnecessary products and clients get better engagement. 
Hence it has become imperative for businesses nowadays 
to build smart recommendation systems and make use of 
the past behavior of their users. 
 

2. DOMAIN OVERVIEW 
 
2.1 Content-based filtering 
 
The content-based filtering approach tries to study the 
liking of a user given the movies' features, which the user 

reacts positively to. Content refers to the features or 
attributes of the movies the user likes. The gist of this 
technique of recommendation is to compare movies using 
specific attributes, understand what the user has already 
liked, predicting what he may like, and recommend a few 
movies from the database with the most similar attributes. 
These attributes can be fixed or specified by the user 
himself. This method of recommendation uses movie 
features to recommend other similar movies to what the 
user has already liked. 
 
This technique involves the calculation of the cosine 
similarity matrix which is done using the movie’s feature 
vectors and the user’s preferred feature vectors from the 
user’s previous records. Then, the top few movies which 
are most similar are recommended to the user. 
 
User’s feedback and its significance in recommendation: 
 
Implicit Feedback: The user’s likes are recorded based on 
actions like clicks, searches, etc.  
 
Explicit Feedback: The users specify their liking by actions 
like reacting to an item, marking it as their favorite, or 
rating it. In our system, the user marks certain movies as 
‘favorites’ and also gives ratings to movies. The ratings 
given are used for collaborative filtering. 
 
Cosine Similarity: 
It is a concept used to measure how similar one movie is to 
every other movie in the dataset. It measures the cosine of 
the angle between two vectors projected in a multi-
dimensional space.[6] Even if the two similar movies are 
far apart by means of the Euclidean distance, they may still 
be oriented closer together. [5] 
 

 

Fig. 2.1: Cosine similarity for content-based filtering 

Using Python, we can easily calculate the count matrix 
using count vectorizer and its method. From the count 
matrix, the cosine matrix can be evaluated.[8] 
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2.2 Collaborative Filtering 

Collaborative filtering is commonly used for data that 
cannot easily be described by attributes from the dataset 
such as books and movies. First, the prediction technique 
builds a user-item matrix of preferences for items by users. 
It then matches users by computing the similarities 
between their data and makes recommendations. 

 

Fig. 2.2: Collaborative Filtering[7] 

The following example helps us understand this concept 
better. If person X likes the 3 movies - Interstellar, Shutter 
Island, Extinction, and person Y likes Shutter Island, 
Extinction, and Shawshank Redemption, then the two have 
similar interests. We can logically deduce that X would like 
Shawshank Redemption and Y would like Interstellar. 
Collaborative filtering uses user interests and behavior for 
its recommendations. 

For this project, User-User collaborative filtering has been 
used. The algorithm first finds how similar each user is 
compared to other users and computes a similarity score. It 
picks out the most similar users and recommends movies 
that they have liked previously based on this similarity 
score. 

Taking our movie dataset example, the similarity between 
users is found by the User-User collaborative filtering 
algorithm based on ratings they gave to various movies. 
The prediction of an item for a user is calculated by the 
weighted sum of the user ratings given by other users to an 
item.  

  

 
Fig 2.3: Prediction formula 

 
To predict the ratings for other users based on the ratings 
for users we have, we can do the following steps: 

1. Similarity between the user u and v is needed for 
making predictions. For this, we use Pearson 
correlation. 

2. The next step is to find the correlation value of the two 
users. We can do this by finding the items rated by both 
users u and v and find correlation based on that. 

3. Next, we calculate the predictions using the similarity 
scores. This algorithm calculates the similarities 
between users and then based on each similarity finds 
out the predictions. 

4. Recommendations are made based on these prediction 
values. 

This process consumes a lot of time as it calculates the 
similarity for each user in a database of many users and 
then calculates prediction for each similarity score. 
Selecting only the neighbors to the current user to make 
predictions is a smart way to handle this problem. Out of 
the many ways to select neighbors, in this project we have 
chosen the top-N users with the highest similarity value 
using the K-nearest neighbors algorithm. 

Before implementing these concepts, we need to handle 
cold starts. A cold start is when a new user or a new item is 
being added to the database. Cold starts are of two types: 

1. Visitor Cold Start – when a new user signs up to the 
platform and is added to the database. Since there is no 
past data of that user, the system does not know the 
interests of that particular user. It becomes hard for the 
system to recommend movies to them. We solve this 
problem by recommending the most popular overall 
movies to the new user until we get more information. 

2. Movie Cold Start - when a new movie is launched or 
introduced to the system. Determining key parameters 
like ratings, user action is very important, but for new 
movies, we do not have any user action data. We 
employ content-based filtering to solve this problem by 
using the genre of the new movie for recommendations. 
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3. SYSTEM DESIGN AND OVERVIEW 
 
 A. Design Overview:  
This project is created using Spring boot, Flask, Hibernate, 
and JPA with MySQL. JSTL and JPQL were used at some 
places. 3 Flask APIs (2 for content-based and 1 for 
collaborative) were written and called onto the JSPs using 
JavaScript. Data was exchanged in form of JSON during API 
calls. For handling entities and their attributes, Hibernate 
was used and corresponding Java Classes were written. 
Spring core security dependency was used to implement 
sessions, Authorization, Authentication along with 
Password Encryption using BCryptPasswordEncoder, the 
latest password encoding technique. 
 
B. Implementation: 
A new project was created using Spring Initializr. Maven 
was used as a PMT. Dependencies like Spring web, Spring 
Data JPA, Lombok, Dev Tools, etc. were added graphically 
during project creation. Additional dependencies like JSTL, 
MySQL driver, spring-boot-starter-mail, Gson, tomcat-
embed-jasper, spring-boot-starter-security, etc. were 
added directly in the POM file. Separate packages were 
created in the project structure to contain service classes, 
controllers, runner class, model classes, security files, and 
repositories thus attaining modularity. Appropriate 
annotations and imports were made inside classes and the 
necessary credentials were mentioned in 
the application.properties file. 
  
Loading the dataset: 
An empty database was created, and tables (with their 
associated relationships) were generated on the fly by 
Hibernate. The dataset in the .csv format used read into 
the spring controller and a request mapping was written 
to fire the dataset into the DB. On triggering the .csv 
mapping, the dataset was then loaded into the tables: 
“movie” and “rating”. Inputs from users were appended 
into the rating table. 
 
For the recommendation part, 3 Flask APIs were created 
separately: 2 for content-based and one for collaborative 
filtering. The first content-based filtering API (triggered 
when the user clicks on the “recommended for me” 
button) works and recommends movies based on a fixed 
set of attributes, which cannot be altered by the user. The 
second API (triggered when a user hits the customize 
button) expects the user to specify a list of attributes that 
the user decides as a basis of recommendation. This is a 
customized recommendation and works the same as the 
first API if the user does not specify any features for 
recommendations. Both content-based APIs are POST APIs 
and expect the user’s favorite movie list as input for 
creating the cosine matrix. After the cosine matrix is 
created, the most relevant movies are sorted and sent back 
as a response. The data coming from the API is then 
displayed on the web page using JSTL. 
 

Multiple request mappings were written in the Spring 
controller and corresponding JSPs were generated. Login, 
logout, session management, error pages, and forbidden 
pages were handled by Spring Security dependency. 
Authentication, authorization, and URL security were 
established by writing rules in Security classes. 
 

4. RESULT 
 
Here is the output of the first content-based API. In this 
case, the user has marked ‘Superman Returns’ and 'Alice in 
Wonderland' as his favorite movies. 10 movies similar to 
these movies have been given as output based on cosine 
similarity values. 
 

 
Fig 4.1: Content-based filtering output 

 
Below is the output of the collaborative filtering API. The 
first table is the top 5 movies the user has rated highly. 
The bottom table shows the 5 highest rated 
recommendations from the K nearest neighbors to the 
current user. 
 

 
Fig 4.2: Collaborative filtering output 

 
5. CONCLUSION 
 
In this paper, we introduced a web-based system for 
movie recommendations created using Spring Boot. It 
expects a user to mark a few favorite movies and then 
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recommends a list of 10 movies based on cosine similarity 
for content-based filtering. By the nature of our system, it 
is not possible to judge the performance measure since 
there is no correct or incorrect recommendation; it is just 
based on a person’s opinions. We tried testing the system 
for a small audience and received positive feedback from 
them. While our system also works on the collaborative 
approach for recommendations, it enables a user to 
explore what most users find interesting. The ratings 
dataset plays a crucial role and is the heart of the 
collaborative approach.  The project is a web application 
created using Spring Boot and Flask APIs which permits a 
user to give ratings to different movies and also 
recommends appropriate movies based on other users’ 
ratings and their liking. 
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