

THE AVERAGE LOWER DOMINATION NUMBER OF JUMPGRAPH

N. Pratap Bau Rao

Department of Mathematics S.G. College, Koopal(Karnataka) INDIA

_____***_____

ABSTRACT: The average lower domination number $\gamma_{av}(J(G))$ is defined as $\frac{1}{|V(J(G))|} \sum_{v \in V(J(G))} \gamma_v(J(G))$ where $\gamma_v(J(G))$ is

the minimum cardinality of a maximal dominating set that contains v. In this paper, the average lower domination number of complete k-ary tree and B_n tree are calculated .Moreover we obtain the $\gamma_{av}J(G^*)$ for thorn jump graph $J(G^*)$. Finally we compute the $\gamma_{av}(J(G_1) + J(G_2))$ of $J(G_1)$ and $J(G_2)$

2010 Mathematics subject Classificastion 05C35,05C40,05C69, 68M10,68R10.

Key words: Connectivity Network Degineand communication, Aerage lower Domination Number.

Introduction : A network is modeled with gaph in a situation which the centers are equal to the vertex of graphs and connection lines are equal to the edgesd of a graph. A graph J(G) is denoed by J(G)=(V(J(G)), E(J(G))) where V(J(G)) and E(J(G)) are vertex and edge set of G, respectively. Let v be a vertex in V(J(G)).

In a jump graph $J(G) = (V(J(G)), E(J(G)), a \text{ subset } S \subseteq V(J(G)) \text{ of vertices } is a dominating setn if every vertex in <math>V(J(G)) - S$ is adjacent to at least one vertex of S. The domination number of $\gamma(J(G))$ is he minimum cardiality of a dominating set. A dominating set of cardinality $\gamma(J(G))$ is called a $\gamma(J(G))$ -set.

Henning [12] introduce the concept of average domination . The lower domination number , denoted by $\gamma_v(J(G))$ is the minimum cardinality of a dominating set of (J(G)) that contains v.

The average lower domination number γ_{av} (J(G)) is defined as $\frac{1}{|V(J(G))} \sum_{v \in V(J(G))} \gamma_v(J(G))$ where γ (J(G)) is the minimum cardinality of a maximal dominating set that contains v.

Clear for the vertex v in a graph J(G), $\gamma(J(G)) \leq \gamma_{av}(J(G))$ with equality if and only if v belongs to a $\gamma(J(G))$ -set. Consequently $\gamma_{av}J(K_n)$ = 1. While for a cycle C_n on $n \geq 3$ vertices

 $\gamma_{av}(j(C_n)) = \gamma(J(C_n)) = \lceil \frac{n}{3} \rceil$.

Poposition 1.1: [12] For any jump graph J(G) of order n with domination number γ ,

 $\gamma_{av}(J(G)) \leq \gamma + 1 - \frac{\gamma}{n}$, with equality if and o9nly if J(G) has unique γ (J(G))-set.

Theorem 1.1 : ([12]).: If T is a tree of order $n \ge 4$, then $\gamma_{av}(T) \le \frac{n}{2}$ with equality if and only if T is the corona of tree.

In this paper, the average lower domination number of complete k-ary tree and B_n tree is calculated . Moreover we obtain the $\gamma_{av} J(G^*)$. For the thron graph $J(G^*)$. Finally we compute the $\gamma_{av}(J(G_1) + J(G_2))$ of $J(G_1)$ and $J(G_2)$

2. Average Lower Domination Number Of Some graphs.

Firstly we give the definition of a complete k-ary tree with depth n. The average lower domination number of complete k-ary tree are calculated. Moreover we obtain $\gamma_{av}(J(B_n))$ for binomial tree graph $J(G^*)$

Definition:2.1 ([3]) A complete k-ary tree with depth n is all leaves have the same depth and all internal vertices have degree k. A complete k-ary tree has $\frac{k^{n+1}-1}{k-1}$ vertices band $\frac{k^{n+1}-1}{k-1} - 1$ edges

Theorem 2.1 : Let J(G) be a complete k-ary tree with depth n. Then

$$\gamma_{av}(J(G)) = \begin{cases} \gamma(J(G)) + 1 - \frac{\gamma(J(G)) + k}{|V(J(G))|} , & n \equiv 0 \pmod{3} \\ \\ \gamma(J(G)) + 1 - \frac{\gamma(J(G))}{|V(J(G))|} , & \text{otherwise} \end{cases}$$

Proof: Let G is a k-ary tree with depth n then $|V(J(G))| = \frac{k^{n+1}-1}{k-1}$ we have two cases for n to find the average lower average number of J(G).

Case (i): if $n \equiv 1 \pmod{3}$ or $n \equiv 2 \pmod{3}$ then J(G) has unique $\gamma(H(G))$ -set. The minimal domination set of set J(G) contains the vertices on he level (n - 1 - 3i) for $0 \le I \le \lfloor \frac{n}{3} \rfloor$. Let vertices of J(G) be V(J(G) = V(J(G_1)) U V(J(G2)) where V(J(G_1)) The set contains the vertices on the levels (n - 1 - 3i) for $0 \le I \le \lfloor \frac{n}{3} \rfloor$ V(J(G₂)) : The set contains the vertices of V(J(G)) –V(J(G₁)).

(i) If $v \in V(J(G_1))$, then $\gamma_v(J(G)) = \gamma(J(G))$ since the vertex v is in the dominating set Sinc e this equality is satisfied for every vertex in $V(J)(G_1)$) we have

$$\sum_{v \in V(J(G_1)} \gamma_v(J(G)) = \gamma(J(G)) \cdot \gamma(J(G))$$

(ii) If $v \in V(J(G_2))$, then $\gamma_v(J(G)) = \gamma(J(G)) + 1$ since he vertex not in the dominating set. Since the equality is satisfied for every vertex of $V(G_2)$). We have

 $\sum_{v \in V(J(G2)} \gamma_v(J(G)) = (|V(J(G)) - \gamma(J(G))) (\gamma(J(G)) + 1)$ Consequently,

$$\begin{split} \gamma_{av}(J(G)) &= \frac{1}{|v_{9J(G)})|} \sum_{v \in V(J(G1)} \gamma_{v}(J(G)) \\ &= \frac{1}{|v_{9J(G)})|} \left(\sum_{v \in V(J(G1)} \gamma_{v}(J(G)) + \sum_{v \in V(J(G2)} \gamma_{v}(J(G))) \right) \\ &= \frac{1}{|v_{9J(G)})|} \left[(\gamma(J(G)) \cdot \gamma(J(G))) + (|V(J(G)) - \gamma(J(G))) (\gamma(J(G)) + 1) \right] \end{split}$$

$$= \gamma(J(G)) + 1 - \frac{\gamma(J(G))}{|V(J(G))|} \qquad (1)$$

Case (ii): If J(G) is a k-ary tree with depth n and $n \equiv 0 \pmod{3}$, then J(G) has k+1 domination sets which give the domination number of J(G) The minimal domination set of J(G). The minimal domination set of J(G) contains the vertices on the .levels (n - 1 - 3i) for $0 \le I \le \frac{\lfloor n \\ 3 \rfloor}{3}$. But in this case the vertex on the 0th level cannot be reached. Therefore the vertex on the 0th level or one of the vertices on the 1st level should be taken to the dominating set. Hence there are k + 1 dominating sets according to the choice of vertices.

(i) If $v \in \gamma(J(G))$ -set,then $\gamma_v(J(G)) = \gamma(UJ(G))$ since the vertex is the dominating set. We have to respect this process for $k + \gamma(J(G))$ vertices. Therefore

 $\sum_{\nu \in V(J(G)} \gamma_{\nu}(J(G)) = (\gamma(j(g)) + K) \gamma(j(g))$ (II) If $v \notin \gamma(J(G))$ -set then $\gamma_{\nu}(J(G)) = \gamma(J(G))$ since the vertex v is the dominating set. We have to respect this process for $|V(J(G))| - k - \gamma(J(G))$ vertices. Hence

$$\begin{split} &\sum_{\nu \in V(J(G)} \gamma_{\nu}(J(G) = (|V(J(G)| - (\gamma(J(G)) + k) (\gamma(J(G)) + 1)] \\ \text{As a result} \\ &\gamma_{a\nu}(J(G)) = \frac{1}{|V(J(G))|} [(\gamma(J(G)) + k) \gamma(J(G)) + (|V(J(G)| - (\gamma(J(G)) + k) (\gamma(J(G)) + 1)] \\ &= \gamma(J(G) + 1 - \frac{\gamma(J(G)) + k}{|V(J(G))|}, \qquad \dots \dots \dots (*(2)) \end{split}$$

By (1) and (2) the proof is completed

Definition 2.2 : ([3]) The binomial tree of order $n \ge 0$ with root R is the tree B_n defined as follows.

- **1)** If n=0, $B_n=B_0 = R$ i.e., the binomial tree of order zero consists of n single node R.
- **2)** If N>0, B_n= R, B₀, B₁.....B_{n-1} i.e., the binomial tree of order n>0 compress the root R, and n binomial sub trees, B₀, B₁.....B_{n-1}

Theorem 2.2: Let B_n be the binomial tree B_n consists of 2^n vertices, 2^{n-1} vertices with degree 1. While the domination set is found, all the vertices with degree 1 or the vertices adjacent to these vertices should be taken into the set. Therefore the domination number of B_n is $\gamma(J(B_n)) = 2^{n-1}$. Obviously the domination set satisfying the domination number can be obtained for every elemen of B_n . Since $\gamma_v(J(B_n)) = 2^{n-1}$ for every element v of B_n . Hence

 $\sum_{\boldsymbol{\nu} \in \boldsymbol{V}(\boldsymbol{J}(\boldsymbol{Bn}))} \boldsymbol{\gamma}_{\boldsymbol{\nu}}(\boldsymbol{J}(\boldsymbol{Bn})) = 2^{n-1} 2^{n}$

From the definition of average lower domination number we have

$$\gamma_{av}(J(B_n)) = 1$$

----- $2^{n-1} 2^n = 2^{n-1}$
 2^n

Theorem 2.3 : Let G be a non complete connected graph with order n and G^{*} be a thorn graph of J(G) with every $P_k = 1$ Then $\gamma_{av}(J(G^*)) = n$

Proof: The number of vertices of J(G^*) is 2n. While the dimention set is found every vertex of degree 1 or the vertex adjacent to it must be taken into the dominating set. Therefore the domination number of J(G^*) is $\gamma(J(G^*))=n$. Thus the domination set satisfying the domination number can be obtained for every element of J(G^*). Sin ce $\gamma_v(J(G^*) = n$ for every element of J(G^*), therefore

 $\sum_{v \in J(G^*)} \gamma_v(J(G^{*+}) = 2n . n$

From the definition of average lower domination number we have

$$\gamma_{av}(J(G^*) = \frac{1}{2N} 2N . N = N$$

Theorem 2.4. Lert $J(G^*)$ be a thorn graph of J(G) with every $p_k > 1$. Obviously $\gamma(J(G^*) = |V(J(G))|$, hence all of the vertices of J(G) should be taken into the dominating set. Let vertices set of $J(G^*)$ ve $V(J(G^*) = V(J(G_1) \cup V(J(G_2) \cup V(J(G_2)$

 $V(J(G_1))$: The set contains the vertices of graph J(G).

 $V(J(G_2))$: The set contains the vertices of $V(J(G)) - VJ(G_1)$

Then we have

$$\sum_{v \in V(J(G^*)} \gamma(J(G^*)) = \sum_{v \in V(J(G1))} \gamma_v(J(G^*)) + \sum_{v \in V(J(G2))} \gamma_v(J(G^*))$$

i) If $v \in V(J(G_1))$, then $\gamma_v(J(G^*)) = |V(J(G))|$. We have to respect this process for every vertices of $V(J(G_1))$ Hence

$$\sum_{v \in V(J(G_1))} \gamma_v(J(G^*)) = |V(J(G))| |V(J(G))|$$

ii) If $v \in V(J(G_2))$, then $\gamma_v((JG^*)) = |V(J(G))| + 1$. We have tp repeat this process for every vertices of $V(J(G_2))$. So,

 $\sum_{v \in V(G2)} \gamma_v(J(G^8)) = (|VJ(G^*)) - |V(J(G)|) (|V(J(G)| + 1))$

From the definition of average lower domination number we have

 $\gamma_{\rm av}\left(\mathsf{J}(\mathsf{G}^*)\right) \,=\, \frac{1}{|V\left(\mathsf{J}(\mathsf{G}^*)\right)|} \left(|\,V(\mathsf{J}(\mathsf{G}))\,\,|\,|V(\mathsf{J}(\mathsf{G}))|\,+\,(|V(\mathsf{J}(\mathsf{G}^*)|\,-\,|V(\mathsf{J}(\mathsf{G}))|\,(|V(\mathsf{J}(\mathsf{G}))|\,+\,1\,)\right)$

<u>|V(I(G))|</u>

 $= |V(J(G))| + 1 _ V(J(G^*))|$

REFERENCES

[1] R.B.Allan and R.C.Laskar, On the domination and independent domination number of a graph . Disrete Math.23(1978),73-76

[2] M. Bilidia, M.Chellali, F.Maffaray, On average lower independence and domination numbers in graphs Discrete Mathematics 295(13)(2005), 111.

[3] Cermen, C.E. Leiserson and R.L. Rivest, iintroduction to algarims, The MIT Press (Fourth edition), 1990.

[4] P.Dankalmen and O.R.Oellermann,Bounds on the average connectivity of a graph, Discreter Applied Mathematics, vol129(2003) 305-318

[5] D.Dogan, Average Lower Domination Number for some Middle Graphs ,International Journal of Mathematical Combinotorics, Vol 4 Devenner 2012 58-63.

[6] O. Favaron. Stabality domination and irredundance in a graph .J. Graph Theory 10 (4) (1986) 429-438.

[7] J.F.Fink,n M.S.Jacobson, L.F.Kinch, J.Roberts,On graphs having domination number half their order ,Period Math. Hungar , 16(4)(1985)287-293.

[8] F.Harary and M.Livington.Characterisation of trees with equal domination and independent domination numbers. Cong.Numer 55(1986)121-150.

[9] T.W. Haynes, S.T. Hedetiniemi and P.J>Slater, Domination in graphs:Advanced Topics, Marcel Dekker, Newyork 1998.

[10] T.W. Haynes, S.T. Hedetiniemi and P.J>Slater, Fundamentals of Domination in Graphs Taylo and Francis, Newyork 1998.

[11] M.A. Henning, and O.R. Oellermann, The average connectivity of regular multipartite tournament, The AusraLIAN Journal of Combinotorics, vol 23(2001) 101-113.

[12] M.A.Henning,trees wioth equal average domination and independent domination numbers, Ars Combinotoria,7192004) 305-318.

[13] H.A. Jung, On a class of posets and corresponding graphs J. Combin. Theory Ser. B. 24(1978)125-133.

[14] F. Li,X.Li. The neighbor scatring number can completed in polynomial time for interval graphs. Comput.Math.Appl. 54(5)(2007) 679-686.

[15] C. Payan. N.H> Xnong, Domiation balanced graphs. J. Graph Theory 6(1)(1982) 23-32.