

ANALYSIS AND DESIGN OF RESIDENTIAL BUILDING WITH X BRACING AND VISCOUS DAMPER BY USING ETABS 2015

S.Md.HUSSAIN¹,Dr.K.THULASIRAJAN², K SAI ABHINAV³ A.KALPANA⁴

¹P.G Student, Annamacharya Institute of Technology and Sciences(AUTONOMOUS), Tirupati, India ^{2,3,4}Annamacharya Institute of Technology and Sciences(AUTONOMOUS), Tirupati, A,P, India ***

Abstract - From the ancient we know earthquake is a disaster causing occasion. Up to date days construction are fitting increasingly narrow and extra inclined to sway and consequently detrimental within the earthquake. Researchers and engineers had worked out within past to make the construction as earthquake resistant. After many functional reports it have been proven that use of lateral load resisting methods in the constructing configuration has drastically increased the performance of the structure. In the present analysis, a residential building is analyzed and designed with X bracing and Viscous Damper for a G+12 building. The building is analyzed in both static and dynamic analysis response spectrum method is carried out for the building. The building is analyzed in condition i.e., in Zone-4 in Soil B.A commercial package of ETABS 2015 has been utilized for the analyzing residential building. The result has been compared using tables and graphs to find out the most optimized solution. Concluding remark has been made on the basis of that analyzing and comparison tables.

Key Words : ETABS 2015, Residential Building, X Bracing and Viscous Damper.

1. INTRODUCTION

During earthquake motions, deformations take place across the elements of the load-bearing system as a result of the response of building to the ground motion. Because of these deformations, internal forces develop across the elements of the load-bearing system and displacement behavior appears across the building. The resultant displacement demand varies depending on the stiffness and mass of the building. In general, building with higher stiffness and lower mass have smaller horizontal demands. On the other hand each building has a specific displacement capacity. In other words, the amount of horizontal displacement that a building can afford without collapsing is limited. The purpose of strengthening methods is to ensure that the displacement demand of a building is to be kept below its displacement capacity. This can mainly be achieved by reducing expected displacement demand of structure during strong motion or improving the displacement capacity of the structure.

From a structural engineer's factor of view the tall constructing or high upward thrust constructing may be outlined in concert that, with the inside the structural type. Tall constructions have involved grouping from the

beginning of civilization. Such structures were made for safeguard and to indicate pleasure. The system of urbanization that began with the age of industrialization remains to be ongoing in setting up nations like India. Industrialization motives migration of contributors to urban centers wherever jobs opportunities are critical. The land accessible for structures to accommodate this migration is changing into scarce, main too fast expand inside the cost of land.

Earthquake explanations two types of losses often called primary loss and secondary loss. A main loss irrecoverable loss, which results in the human lifestyles in earthquake. All of the different termed as secondary losses. Thus minimum common in a code to resist earthquake is prescribed such that whole crumple of structure is prevented which ensures that no human lifestyles is lost. This requires a forecast of the strongest depth of probably ground movement at a distinct site throughout the service lifetime of constitution. Seismic zoning map of a nation segregates nation in quite a lot of of areas of an identical probable highest intensity of ground motion.

1.1 ETABS

The innovative and revolutionary new ETABS is that the final integrated software package for the structural analysis and style of buildings. Incorporating forty years of continuous analysis and development, this latest ETABS offers unmatched 3D object primarily based modeling and visualization tools, blazingly quick linear and non-linear analytical power, comprehensive style capabilities for a wide-range of materials and perceptive graphic displays, reports and schematic drawing that enable users to quickly and simply decipher and perceive analysis and style results.

T Volume: 08 Issue: 06 | June 2021

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

2. MATERIALS AND GEOMETRICAL PROPERITES

Table -1: Materials and Geometrical Properites

S.No	DESCRIPTION OF PARAMETER				
01	Grade of	M35			
	Concrete				
02	Crada of staal	Fe 550			
02	Grade of Steel	Fe 415			
		1600mm x 1800mm For Story 01			
		1400mm x 1500mm For Story 02			
03	Column Sizes	to 07			
		900mm x 1000mm For Story 08			
		to 12			
		800mm x 900mm For Story 01 to			
04	Ream Sizes	06			
04	Dealli Sizes	700mm x 800mm For Story 07 to			
		12			
05	Slab	150mm			
	Thickness				
06	Type of	ISMB 175			
	Bracing				
	Type of	Viscous Damper 250			
07	Damper	Weight 42kgs			
		Force 250kN			
08	Seismic Zone	Zone - IV			
09	Zone Factor	0.24			
10	Importance	1.0			
	Factor				
	Response				
11	Reduction	5.0			
	Factor				
12	Percentage of	5%			
	Damping				
13	Type of Soil	B – Medium Soil			

3.	RI	ES	UI	LT	S

3.1 STATIC ANALYSIS

 Table -2: Static Analysis Without X Bracing and Viscous

 Damper

Story No	Displac ement	Shear Force	Bending Moment	Axial Force	Story Drift
Story 12	15.638	375.66	364.11	43.14	0.634
Story 11	13.736	414.55	308.07	59.37	0.616
Story 10	11.886	406.7	293.46	88.9	0.602
Story 09	10.079	402.32	287.46	108.08	0.581
Story 08	8.335	393.29	273.99	122.34	0.541

Story 07	6.712	387.07	333.86	160.91	0.503
Story 06	5.203	483.99	318.03	198.35	0.442
Story 05	3.876	467.4	312.42	203.72	0.385
Story 04	2.721	447.59	307.44	212.38	0.308
Story 03	1.795	423.36	311.07	228.63	0.197
Story 02	1.203	392.98	298.48	242.48	0.063
Story 01	1.012	350.18	422.39	253.85	0.037
Base Story	0	350.18	422.39	253.85	0

Table -3: Static Analysis With X bracing Viscous Damper.

Story No	Displac ement	Shear Force	Bending Moment	Axial Force	Story Drift
Story 12	0.503	216.38	245.02	3.63	0.031
Story 11	0.409	227.94	200.32	35.65	0.023
Story 10	0.340	226.98	192.92	52.56	0.021
Story 09	0.276	227.74	186.85	61.05	0.011
Story 08	0.243	226.95	199.60	63.21	0.008
Story 07	0.150	230.26	228.60	63.38	0.007
Story 06	0.140	241.12	204.30	105.71	0.006
Story 05	0.120	240.68	180.60	115.68	0.005
Story 04	0.105	240.1	159.00	118.36	0.002
Story 03	0.097	239.38	158.35	124.36	0.003
Story 02	0.097	238.47	157.59	134	0.003
Story 01	0.088	224.25	155.15	115.68	0.002
Base Story	0	224.25	155.15	115.68	0

International Research Journal of Engineering and Technology (IRJET)

Volume: 08 Issue: 06 | June 2021 ww

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

3.2 DYNAMIC ANALYSIS

IRJET

Table -4: Dynamic Analysis Without X Bracing and
Viscous Damper.

Story	Displac	Shear	Bending	Axial	Story Drift
Story 12	12.867	345.98	418.19	98.35	0.179
Story 11	12.329	363.38	465.15	104.64	0.329
Story 10	11.342	431.25	553.12	113.60	0.389
Story 09	10.175	498.14	642.27	128.34	0.412
Story 08	8.789	530.02	650.5	130.92	0.428
Story 07	7.293	659.38	1063.0	158.42	0.436
Story 06	5.984	759.36	1034.8	175.67	0.420
Story 05	4.724	769.44	1063.7	180.91	0.402
Story 04	3.516	770.79	1117.2	192.00	0.377
Story 03	2.383	734.14	1216.3	215.45	0.333
Story 02	1.348	619.08	1385.1	261.38	0.276
Story 01	0.519	562.67	2280.1	266.57	0.173
Base Story	0	562.67	2280.1	266.57	0

Table -5: Dynamic Analysis With X Bracing and Viscous Damper

Story	Displac	Shear	Bending	Axial	Story
No	ement	Force	Moment	Force	Drift
Story 12	9.223	332.99	410.68	33	0.297
Story 11	8.331	310.47	413.61	34.09	0.309
Story 10	7.403	300.34	435.39	45.14	0.327
Story 09	6.421	309.47	464.64	51.26	0.342
Story 08	5.395	285.07	382.12	62.09	0.342
Story 07	4.368	478.56	770.28	71.19	0.330
Story 06	3.377	452.89	754.39	119.23	0.307
Story 05	2.456	411.04	729.08	130.14	0.279

Story 04	1.619	361.55	689.46	142.58	0.237
Story 03	0.906	318.21	647.72	161.89	0.176
Story 02	0.378	255.62	651.73	173.65	0.094
Story 01	0.094	191.92	458.03	183.39	0.031
Base Story	0	191.92	458.03	183.39	0

3.3 STATIC ANALYSIS COMPARISON

Chart -1: STORY No Vs DISPLACEMENT mm

Chart -2: STORY No Vs SHEAR FORCE Kn

STORY No Vs BENDING MOMENT kN-m

Chart -3: STORY No Vs BENDING MOMENT kN-m

© 2021, IRJET

STORYNO Chart -7: STORY No Vs SHEAR FORCE Kn

TTORY STORY BASE 11 10 09 08 07 06 05 04 03 02 01

200 100 0

STORY 12

International Research Journal of Engineering and Technology (IRJET) IRIET

3.5 REINFORMENT DETAILS

Volume: 08 Issue: 06 | June 2021

Width ->)epth Beam Section-B Beam Section-C **Beam Section-A**

Fig -1: Beam Detailing

4. CONCLUSIONS

1) In Static Analysis the displacement is reduced by assignment X bracing and Viscous damper to the building.

2) The shear force which is nearly 100 kN to 150 kN reduced in each story in building with X bracing and Viscous damper.

3) The bending moment of 100 kN-m is decreased in each story by providing X bracing and Viscous damper.

4) The axial force nearly 60% is reduced in building with X bracing and Viscous damper.

5) The story drift is 90% decreased in building with X bracing and Viscous damper.

6) In Dynamic Analysis the displacement 80% is reduced in X bracing and Viscous damper of the building.

7) The shear force at top storey is more compare to without X bracing and Viscous damper but it is gradually decreased in building with X bracing and Viscous damper.

8) In normal building bending moment at base is very higher than building with X bracing and Viscous damper.

9) The axial force nearly 80% is reduced in building with X bracing and Viscous damper.

10) The story drift is decreased in each story in X bracing and Viscous damper of the building.

By assignment of X bracing and Viscous damper to the normal building the displacement, shear force, bending moment, axial force and story drift can be reduced.

REFERENCES

1) IS 456:2000 plain and reinforced concrete code of practice.

2) B.C. Punmia, A.K. Jain 2006, R.C.C Designs, Laxmi Publications New Delhi.

3) IS 875 (Part 1): 1987 Code of Practice for Design Loads (Other than Earthquake) For Buildings and Structures Dead Loads ---- Unit Weights of Building Materials and Stored Materials.

4) B. Naresh, J. Omprakash (2018) evaluation of seismic analysis with dampers for multi storey building, International Journal of Advanced Structural Engineering.

5) IS 875 (Part 2): 1987 Code of Practice for Design Loads (Other than Earthquake) for Building Standards Imposed Loads Second Revision by Bureau of Indian Standards.

6) Prof. Bhosle Ashwini Tanaji and Prof. Shaikh A. N (2015) the affect of special forms of bracings are introduced in RC frame building to evaluate the seismic performance of building.

7) IS 875 (Part 3): 1987 Code of Practice for Design Loads (Other than Earthquake) For building structures Wind Loads Second Revision by Bureau of Indian Standards.

8) Hussain Imran K.M. and Sowjanya G.V (2014) wind resistance design of structures using different types of bracings.

9) IS 1893 (Part 1): 2002 "Criteria for Earthquake Resistant Design of Structures Part 1 General Provisions and Buildings" Bureau of Indian Standards.

10) P. A. Vikhe, U. R. Kawade (2016) study investigates the influence of mechanical controlon structural systems through strategically applying reliable dampers that can modulate the response of building.

11) Daniel C, Arunraj E, Vincent Sam Jebadurai S, Joel Shelton J, Hemalatha G 2019 study of seismic analysis for G+5 building, International Journal of Advanced Structural Engineering.

12) Krishnaraj R Et 2014 the study of X type of bracing significantly contributes to the structural stiffness and reduces the maximum inter storey drift of R.C.C building than other bracing system.

13) Khalil Yahya Mohammed Almajhali, Bin Xu, Qingxuan Meng energy of dissioiation system iin structural engineering (2018).

14) Dr. Okay . R.C. Reddy, Sandip A. Tupat Et. AI. (2014) study of wind and earthquake analysis of residential building, International Journal of Advanced Structural Engineering.

15) Okay Shaiksha Vali Et AI (2014) different bracings with time history analysis and designed.