

DESIGN OF RIGID BOLTED CONNECTION IN STEEL STRUCTURE

Sushruta .S. Shende¹, Mr. Bhupesh .P. Nandurkar², Dr. Ramesh Meghrajani³

¹*M.Tech Scholar, Dept. of Civil Engineering YCCE, Nagpur, India.* ²Assistant Professor, Dept. of Civil Engineering YCCE, Nagpur, India. ³Director of NEO Infrastructure Consultant, Nagpur, India. _____***______***______

Abstract - Connections are more complex than members to analyse and contrariety between analysis and actual behaviour is large. Further, in case of overloading, failure confined to an individual member is prefer rather than in a connection, which could affect many members. Steel as an artifact, has been used extensively in various sorts of structures, like high rise building, industrial building etc. The new code IS 800:2007 is used for steel members design. The code include variety of elements like compression member, tension member, combined connection, flexural member, combined axial and bending design of members. Bolted connections are the foremost commonly used ones in modern steel constructions. If sorted by beam-column profiles, bolt types, connection types and therefore the forces to be transferred, there might be many bolted beam-column connections while just some of them are commonly used. A properly designed bolted connection is in a position to transfer shear force and/or moment and tension. Different connections require seprate items to be checked. But in some common calculations is required for almost all bolted connections, such as bolt shear, tension, bolt tension, connection member bearing, and shear block etc.

In this paper bolted beam-column connections with stiffener plate and end plate at various steel section properties design procedure of these connections is carried out and a ready reference table is made for various size of bolts having certain end plate thickness at certain web depth. An example will be explained in more detailed and a spreadsheet will be developed for the design of this connection.

Key Words: Bolted connection, moment connection, shear connection, IS 800:2007, bolts, end plate.

1. INTRODUCTION

Connection is necessity of any steel structure and designed critically than a member. This need occurs due to the complications of design connections than member and difference between the results and practical way of action is large. In many situations, we encounter steel member subjected to combined effect of shear and bending, axial force and bending, axial force shear and bending. Hence it is necessary to study how the structural member react when it is subjected to combined effect of the above forces and moments.

Generally two types of forces are transferred by bolted beam-column connections: i.e shear and moment. A connection could also be designed to transfer shear force if the beam is meant to be hinge connected to the column only. If the beam is rigidly connected to the column, then the requirement of a moment connection arises. Shear force is typically involved in moment connections also. Bolts are arranged to be in shear condition so as to resist shear force in the beam web and tensile and compressive force in the flanges invoked by moment. Another situation is that the connection is meant to transfer tension from the beam to the column or bracing. The bolts then may be in shear or tensile condition or combined shear and tensile and If prying is intend to happen, it should be taken into consideration. In all these conditions, usually four members need to be checked for strength or buckling: the column, the beam, and the connection member and the bolts. If shop weld is involved, that's another item to be calculated. Different connections could be used to fulfil a certain beam-column joint.

Beam-to-column connections are widely used for steel structures as they provide moment resistant connections between beams and columns at the corners of frames or a moment resistant connection to elongate beams. The analysis of the beam-to-beam connection is complex: thanks to the geometrical arrangement, different failure modes are possible, and a few of them can't be presented by simple equations.

2. OBJECTIVE OF PROJECT

The main objective of the project is to design the connections as per an Indian standard code, using various diameter of bolts and section properties with excel spread sheet.

3. METHODOLOGY

List of varied steps to be followed in manual calculation:

- 1. Determine factored load and factored moment
- 2. Choose arbitrary section and give section property.
- 3. Choose connection type.
- 4. Choose bolt grade, size and connection part grade and size.
- 5. Check for tension in top or bottom flange
- 6. Evaluation of weld at flanges and web
 - a) Determine weld size around flange
 - b) Determine weld size around web
- 7. To determine the size & number of bolts required a) Tension capacity of bolt T_b
- b) Shear capacity of bolt 'V_{dsb}'

IRIET

c) Bearing capacity of bolt 'V_{dpb}'

- 8. Check bolts subject to combined shear & tension
- 9. Check end plate for moment
- 10. Gross shear capacity of plate
- 11. Design of stiffener plate
 - a) Check Tension Capacity of the Stiffener
 - b) Check weld between stiffener & End Plate

c) Check weld between stiffener & beam flange

Since these steps are tedious and time consuming hence design aids are necessary for reducing time consumption. List of steps followed in preparing design aids:

[1] Preparing excel program spreadsheet.

4. MANUAL DESIGN EXAMPLE **OF BOLTED CONNECTIONS** OF **STEEL STRUCTURE** METHODOLOGY

steel frame structure having dimensions А of 20m*110mm*7.5mm with different load combinations and maximum forces such as moment, shear, and axial acing on it is considered. Where members are connected by 8 bolts of 8.8 grade and fe410 steel grade. A table is made for range of moment connections, varying in web depth and having various diameter of bolts, keeping the plate thickness same throughout all sections is analysed by designing vertical connection using a stiffener plate.

Table -1: maximum and minimum forces acting on the

members.										
MEMBE R		101	102	201	202	301	302	401	402	
ENT	M A X	85.75	173.2	78.56	196.4	197.7	93.84	75.77	176.89	
MOM	M I N	78.56	196.4	88.29	176.1	173.9	75.77	93.84	197.74	
SHEAR	M A X	32.86	26.18	26.18	31.81	61.57	34.81	34.81	61.571	
	M I N	26.18	31.81	33.39	26.18	49.30	27.77	28.09	49.616	
AL	M A X	66.45	65.52	66.45	65.52	35.51	37.04	36.48	35.254	
AXI	M I N	65.52	63.70	65.52	63.70	35.25	35.51	37.04	35.511	

Vertical Connection with stiffener

A Beam ISHB450 @87.2 transmits an end shear of 62 KN, axial of 36 KN and moment of 198 KN to the flange of the column ISHB450 @87.2.Design the connection. Using 24 mm diameter bolt of grade 8.8 and steel grade FE410. (Joint 2)

Design for	ce (MAXIM	FACTORED FORCE								
AXIAL	$A_{t} = 54$	kN								
SHEAR	$F_{y} = 93$	kN								
	$F_z = 0$	kN	`							
MOMENT	M _z = 297	kNm								
CONNECTION TYPE = MC with Stiffeners										
Column See	ction Prope	rties	ISHB450							

dorum bootion i oper neb				
D = Total Depth	=	450	mm	
$B_f = Flange Width$	=	250	mm	
t_f = Thickness of flange	=	13.7	mm	
t _w = Thickness of web	=	9.8	mm	
d _w = Clear depth of web (I)-2	2t _f) :	= 422.6 n	ım
Beam Section Properties		ÍSE	IB450	
$D_b = Total Depth$	=	450	mm	
B_{fb} = Flange Width	=	250	mm	
t _{fb} = Thickness of flange	=	13.7	mm	
t _{wb} = Thickness of web	=	9.8	mm	
d_{wb} = Clear depth of web (I	D-2	2tf)	= 422.6 r	nm
Grade of steel FE4	10)		
A_{xb} = Area of section = 112	1.1	cm ²		
F_y = Yield stress = 250	0 1	√mr	n²	
f _u = Ultimate Tensile stress	5 =	= 410	0 N/mm ²	
E.D = 60 mm, Gauge g =12	0 1	mm, İ	Pitch =15	0 mm
Bolt Properties Using 24	m	m Di	a Bolts w	ith 8.8 Grade
Hole Dia $D_0 = 26 \text{ mm}$				
$f_{yb} = 640 \text{ N/mm}^2$,	Fu	= 80	0 N/mm ²	
Net Area of Bolt			= 3	52.862 mm ²
Weld thickness for Beam v	ve	b to	Column	= 8 mm
Weld thickness for Stiffene	er	to Be	eam	= 8 mm
Weld thickness for Stiffene	er	to Co	olumn	= 12 mm
End Plate Thickness				= 32 mm
CHECK FOR TENSION IN T	0	P OR	BOTTOM	1 FLANGE
	D = Total Depth B _f = Flange Width t _f = Thickness of flange t _w = Thickness of web d _w = Clear depth of web (I <i>Beam Section Properties</i> D _b = Total Depth B _{fb} = Flange Width t _{fb} = Thickness of flange t _{wb} = Thickness of flange t _{wb} = Clear depth of web (I <i>Grade of steel</i> FE4 A _{xb} = Area of section = 111 F _y = Yield stress = 250 f _u = Ultimate Tensile stress E.D = 60 mm, Gauge g = 12 <i>Bolt Properties</i> Using 24 Hole Dia D _o = 26 mm f _{yb} = 640 N/mm ² , Net Area of Bolt Weld thickness for Beam w Weld thickness for Stiffend Weld thickness for Stiffend Weld thickness CHECK FOR TENSION IN T	$\begin{array}{llllllllllllllllllllllllllllllllllll$	D = Total Depth = 450 B_f = Flange Width = 250 t_f = Thickness of flange = 13.7 t_w = Thickness of web = 9.8 d_w = Clear depth of web (D-2t_f) = <i>Beam Section Properties</i> ISF D_b = Total Depth = 450 B_{fb} = Flange Width = 250 t_{fb} = Thickness of flange = 13.7 t_{wb} = Thickness of flange = 13.7 t_{wb} = Thickness of web = 9.8 d_{wb} = Clear depth of web (D-2tf) <i>Grade of steel</i> FE410 A_{xb} = Area of section = 111.1 cm ² F_y = Yield stress = 250 N/mr f_u = Ultimate Tensile stress = 410 E.D = 60 mm, Gauge g = 120 mm, T <i>Bolt Properties</i> Using 24 mm Di Hole Dia D_o = 26 mm f_{yb} = 640 N/mm ² , F_u = 800 Net Area of Bolt Weld thickness for Beam web to 0 Weld thickness for Stiffener to Beam Weld thickness for Stiffener to Beam Weld thickness for Stiffener to Co	D = Total Depth = 450 mm B _f = Flange Width = 250 mm t _f = Thickness of flange = 13.7 mm t _w = Thickness of web = 9.8 mm d _w = Clear depth of web (D-2t _f) = 422.6 m Beam Section Properties ISHB450 D _b = Total Depth = 450 mm B _{fb} = Flange Width = 250 mm t _{fb} = Thickness of flange = 13.7 mm t _{wb} = Thickness of flange = 13.7 mm t _{wb} = Clear depth of web (D-2tf) = 422.6 m Grade of steel FE410 A _{xb} = Area of section = 111.1 cm ² F _y = Yield stress = 250 N/mm ² f _u = Ultimate Tensile stress = 410 N/mm ² E.D = 60 mm, Gauge g = 120 mm, Pitch = 15 Bolt Properties Using 24 mm Dia Bolts w Hole Dia D _o = 26 mm f _{yb} = 640 N/mm ² , F _u = 800 N/mm ² Net Area of Bolt = 3 Weld thickness for Beam web to Column Weld thickness for Stiffener to Beam Weld thickness for Stiffener to Column End Plate Thickness CHECK FOR TENSION IN TOP OR BOTTOM

$$T = \frac{297X \, 103 + 17}{(450 - 13.7)} = 697 \, \text{kN}$$

Tension Taken by Flange = 15.1 KN Tension Taken by the Web = 20.70 KN Tension Capacity of the Flange = $A_g F_y$ = 778.40 KN 1.1 SAFE Shear Capacity of Flange for $F_z = A_v X F_v$ = 449KN √3 x 1.1

$$\frac{T}{T_d} + \frac{V}{V_d} = 0.89$$

FLANGE IS SAFE

2) EVALUATION OF WELD AT FLANGES AND WEB

a) Determine weld size around flange

Length of weld available in flange = $2 \times 250-9.8 = 500 \text{ mm}$ Design strength of Shop fillet weld $f_{wd} = f_{wn} / ((3^{0.5}) \times \gamma_{mw})$ $= 189.4 \text{ N/mm}^2$ Design strength of Field fillet weld ' f_{wd} ' = 157.8 N/mm²

Force per mm length = 697/500 = 1.39 KN /mm

International Research Journal of Engineering and Technology (IRJET) e-

IRJET Volume: 08 Issue: 06 | June 2021

e-ISSN: 2395-0056 p-ISSN: 2395-0072

Weld Strength for Size 12 WELD = 1.607 KN /mm WELD SIZE IS OK Provide 12 fillet weld for the Beam Flange

b) Determine weld size around web

Resultant shear = 93 KN

Length of weld available =2x (450-2x13.7-2x13.7) =790.4mm Checking the size of weld = 8 mm fillet weld Weld capacity = 0.7x8x189x790.4 = 847KN > 93 KN Therefore, 8 mm fillet weld to the Web

3) TO DETERMINE THE SIZE & NUMBER OF BOLTS REQUIRED

a) Tension capacity of bolt Tb Tension on each bolt= 697/4 = 174 KNTension capacity of 24 dia 8.8 grade bolts = $(0.9 \text{ x } f_{ub} \text{ x } A_n / \gamma_{mw}) > (f_{yb} \text{ x } A_{sb} \text{ x } (\gamma_{mb} / \gamma_{mo}))$ = 203.24 > 174 SAFE b) Shear capacity of bolt 'V_{dsb}' Shear force in each bolt= (93/8) = 12 KNShear capacity of bolt 'V_{dsb}' = 130 KN SAFE Bearing capacity of bolt 'V_{dpb}' = 2.5x0.77x24x13.7x410/1.25= 207.39 kN SAFE

4) CHECK BOLTS SUBJECT TO COMBINED SHEAR & TENSION

$\left(\frac{T}{T}\right)^2$	$+\left(\frac{V}{V}\right)^2$	≤	1	
(T _{db} J	V_{nsb}			
0.74	< 1			SAFE

5) CHECK END PLATE FOR MOMENT

Taking moment at stiffener plate Distance between bolt centre to fillet weld of stiffeners plate= (120 - 12 - 2x12)/2= 42 mm

Tension in each bolt = 4.39 KN.mThk. Of plate, t = $\sqrt{\frac{4x4.39x10^6}{250/1.1 x 125}}$ =24.9 mm

Therefore, Provide 32 thick End plate.

6) GROSS SHEAR CAPACITY OF PLATE

Gross shear area= (530x32) =16960 mm² Design shear strength of end plate = 1958 KN > 93 KN SAFE

7) DESIGN OF STIFFENER PLATE

Tensile force transferred to flanges=2 x174= 348.68 KN B. M. = 348.68 x 10^3 x60 = 20.9 x 10^6 N.mm B. M. =20.9x10⁶x0.6=12.55 x 10⁶ N.mm thk. Of plate =12 mm & depth =300 mm Section modulus of plate= (12 x90000) / 4 =270x 103mm³ Shear in the Stiffener = 209.21 KN Shear Stress = 58.11 N/mm² M/Z = ($12.55x 10^6$) / ($270x 10^3$) = 46.5 N/mm² SAFE

- a) Check Tension Capacity of the Stiffener Tension in the Stiffener = 209.21KN Tension Capacity = 322 KN SAFE
- b) Check weld between stiffener & End Plate Tension Force in the Stiffener =348.68 x 0.6 =209.21KN Weld length available =118.15 mm

12 mm weld, strength of the stiffener = 316.37 KN 12 mm weld between Stiffener & End Plate

c) Check weld between stiffener & beam flange Total tension on stiffener =2x265 =530 KN Depth of stiffener plate = 300mm Total tension in plate = 530 x 0.6 =318 kN Force per mm weld length = 0.53 kN/mm Using 6 mm thk fillet weld

SUMMARY

End plate = 32mm Thk 686 mm X 240 mm

- Bolts = 8 Nos 24mm Dia Bolts
- Stiffeners = 12mm thk stiffeners
- Weld = provide 12 fillet weld for the Beam Flange 8 mm fillet weld to the Web Provide 6 mm Weld to Stiffener & Flange
 - 12 mm weld between Stiffener & End Plate

Fig -2: Detailing of connection.

5. RESULT

Analysis and design of bolted connection of steel frame structure for various diameter of bolts, and heavy and medium section sizes, by keeping the plate thickness same throughout all the sections. The following results are observed for the design of connection and a ready reference table is made.

• It is observed that bolts having smaller diameter have more chances of structure failure.

•The tension capacity of bolt should be greater than the tension in each bolt, but in case of bolt 16mm, 20 mm the tension capacity of bolt fails and combine shear and tension is also not less than 1. So bolts of 16mm, and 20 mm is not at all preferable for medium and heavy sections of steel.

•But for the section having web depth more than 550mm, 20mm bolt diameter is safe. Because of more web depth the section is safe. For 24mm bolt diameter the section having web depth 200-350mm fails in tension capacity and combine shear and tension.

•Bolt of 30mm, 32mm, 36mm, 48mm, 54mm, 60mm, 72mm are safer for all the section sizes.

•If compared 32mm and 24mm thick end plate. There is no need to increase the plate thickness as provided plate thickness is more than the obtained plate thickness for 32mm thick end plate. But in case of 24mm thick plate sections having web depth of 200-400mm the plate thickness obtain is greater than the provided thickness therefore in such cases plate thickness has to be increased.

•Lesser is the depth of section more chances for failure of section, So it is always preferable to go for higher sections have depth of 450-600mm, And to prefer bigger diameter of bolts as it reduces the chances of bolt failure.

• If the connected plates are made of high strength steel then failure of bolt can take place by bearing of the plates on the bolts. If the plate material is weaker than the bolt material, then failure will occur by bearing of the bolt on the plate and the hole will elongate.

Table -2: R	eady reference table for Combine shear and
tension	for 32 mm thick plate of 8.8 grade bolt.

section	Ţ,	d _u	combine shear & tension									
size	Diameter(mm)		16	20	24	30	32	36	48	54	60	72
ISMB300	32	275.20	8.74	3.47	1.67	0.69	0.53	0.33	0.10	0.07	0.04	0.02
ISMB350	32	321.60	6.25	2.56	1.23	0.51	0.39	0.24	0.08	0.05	0.03	0.02
ISMB400	32	368.00	4.81	1.97	0.95	0.39	0.30	0.19	0.06	0.04	0.02	0.01
ISMB450	32	415.20	3.81	1.56	0.75	0.31	0.24	0.15	0.05	0.03	0.02	0.01
ISMB500	32	465.60	3.08	1.26	0.61	0.25	0.19	0.12	0.04	0.02	0.02	0.01
ISMB550	32	511.40	3.08	1.05	0.51	0.21	0.16	0.10	0.03	0.02	0.01	0.01
ISMB600	32	558.40	2.17	0.89	0.43	0.18	0.14	0.08	0.03	0.02	0.01	0.01
ISHB300	32	278.80	8.41	3.44	1.66	0.68	0.53	0.33	0.10	0.06	0.04	0.02
ISHB350	32	326.80	6.19	2.53	1.22	0.50	0.39	0.24	0.08	0.05	0.03	0.02
ISHB400	32	374.60	4.75	1.95	0.94	0.38	0.30	0.19	0.06	0.04	0.02	0.01
ISHB450	32	422.60	3.77	1.54	0.74	0.30	0.24	0.15	0.05	0.03	0.02	0.01

Chart -1: combine shear and tension for 32 mm thick plate of 8.8 grade bolt

6. CONCLUSIONS

•The design of different types of moment end plate connection and shear connection has been done as per IS code specifications.

•A simplified method is introduced to choose the proper thickness of the end plate for certain diameters of bolt.

•The suggested thickness of the plate is minimal to obtain failure of the bolt with the certain diameter in any case.

•Bolts of diameter 30 and above should be used to minimal the failure of bolt as well as structure.

•This method is only for determining the proper thickness of the end plate; all the other components of the connection must be verified.

•Bolted beam-column connections are widely utilized in steel construction. Various connections might be chosen to satisfy a task while all of them have advantages and drawbacks. The designer should consider certain parameters like cost, shop fabrication, shipping and installation to settle on a correct one. .

•Well-developed spreadsheets are good tools for connection design and price estimation.

•HSFG bolted connections are very stiff and hence they have good performance under fatigue loading.

REFERENCES

- International Journal of Physical Sciences Vol. 7(22), pp. 2876-2890, 9 June, 2012, "Various types of shear connectors in composite structures: A review", Ali Shariati, N. H. RamliSulong, MeldiSuhatril and Mahdi Shariati*, Department of Civil Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia. Accepted 17 January, 2012
- [2] "Analysis of the impact of temperature load on the state of stress in a bolted flange connection", Patryk Towarnicki, Rafał Grzejda West Pomeranian University of Technology, Szczecin Faculty of Mechanical Engineering and Mechatronics Szczecin, Poland.
- [3] "Comparative Study on Design Methods for High Strength Steel Bolted Connection under Static Shear", PAN Bin, SHI Yongjiu, WANG Yuanqing, Laboratory of Civil Engineering Safety and Durability of China Education Ministry, Department of Civil Engineering, Tsinghua University Beijing 100084, China.
- [4] "Comparative Study on Design Methods for Stainless Steel Bolted Connection in Different Codes", GUAN Jian¹ WANG Yuanqing² ZHANG Yong¹ SHI Yongjiu² (1.School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China-2.Department of Civil Engineering, Tsinghua University, Beijing 100084, China).
- [5] "Bolted Shear Connection of FRP-Concrete Hybrid Beams", Xingxing Zou¹; Peng Feng²; and Jingquan Wang^{3.}
- [6] 800: 2007 Indian standard general construction in steel- code of practice.
- [7] A.S ARYA J.L AJMANI "Design of steel structure" fifth edition 2001.
- [8] S.S BHAVIKATTTI "Design of steel structure by limit state method as per IS: 800-2007" fourth edition

BIOGRAPHIES

Sushruta .S. Shende¹ ¹M.Tech Scholar, Dept. of Civil Engineering YCCE, Nagpur, India.