
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1867

Continuous Integration, Delivery and Deployment Process in Software

Development

Pruthviraj Deshmukh1

1Department of Computer Science and Engineering, R V College of Engineering, Bengaluru, Karnataka, India
---***---
Abstract - Software development has become a continuous
process. Developers, designers and analysts work on different
modules of a given task, simultaneously. Consequently, there
should be a process stream that everyone follows so that one
person's commits do not obstruct the changes made by others
in the same project. Continuous Integration, Delivery and
Deployment is the best technique for rapid and continuous
improvement. As a result of this strategy, organizations are
more likely to provide new and enhanced features to existing
ventures or products on a regular basis. This article provides a
brief overview of the Continuous Integration, Delivery and
Deployment process, as well as the benefits of using this
methodology, some of the challenges encountered when using
these techniques, and some suggestions for improving these
approaches. However, there are a few issues and gaps that
need to be addressed in future research, such as capturing and
announcing logical data, gaining a thorough understanding of
how programming frameworks should be designed to support
these methodologies, and addressing the lack of knowledge
and apparatuses for planning and running secure
organization pipelines.

Key Words: Continuous Integration, Continuous
Deployment and Continuous Delivery

1. INTRODUCTION

The programming market has recently seen a lot of
competition. For this inquiry, organisations are carefully
considering allocating assets to Continuous Integration,
Continuous Delivery, and Continuous Deployment
methodologies. A thorough examination of these techniques
will aid organisations in bettering their goods. In this
approach, CI recommends adding work-in-progress multiple
times each day, while CDE and CD are concerned with the
ability to deliver esteems to customers as quickly and
reliably as by adding as much robotization support as
possible.

This Continuous Development technique has a few
advantages.

1. Assists in obtaining quick feedback from the

programming development process and clients.
2. Assists in customer visits and reliable delivery,

resulting in increased customer loyalty and product
quality.

3. The relationship enhancement and activity are
reinforced by the continuous development process.
It is possible to kill teams and manual errands.

The growing quantity of recent situations demonstrates that
uninterrupted practices are progressing in programming
better mechanical practices throughout various locations
and sizes of associations. Meanwhile, adopting these
approaches isn't a straightforward task, as ihierarchical

procedures, practises, and apparatus may be ill- equipped to

deal with the highly unexpected and testing character of these

practises.

Due to the growing importance of consistent practices, a few
new challenges, equipment, and rehearsals are gradually
appearing. These techniques are so closely interconnected
and intertwined that distinguishing them can be difficult at
times, and their ramifications are highly dependent on how a
specific organization interprets and employs them. CI is
typically thought of as the first step in acquiring CDE hone,
but actualizing CDE hone is critical for effectively and
reliably delivering programming to generation or client

conditions (i.e., CD rehearse). It is clear that no concerted
effort was made to break down and completely mix the
writing on consistent procedures in a coordinated manner.

Incorporated approach in the sense of exploring CI, CDE, and

CD methods, instruments, challenges, and practises, which

involves investigating and comprehending the connections

between them and what measures should be made to

effectively and easily go from one practise to the next.

The remainder of the paper is laid out as follows: A quick
overview of Continuous Integration (CI), Continuous
Delivery (CDE), and Continuous Deployment is given in
Section 2 (CD). Section 3 explains the CD/CI deployment
method. Section 4 discusses the advantages of this strategy
and challenges of this method are discussed in Section 5. The
Conclusion can be found in Section 6.

2. BRIEF DESCRIPTION

2.1 Continuous Integration (CI)

Continuous Integration pushes engineers to integrate their
code into a primary branch of a regular storage as frequently
as possible. An engineer will attempt to contribute
programming work items to the store a few times on any

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1868

given day, rather than developing highlights in disconnection
and presenting them all at the end of the cycle. The big idea
here is to reduce reconciliation expenses by having designers
perform it more frequently and sooner. In practice, a designer
may commonly discover limit incompatibilities between new
and existing code during the inclusion phase. The hope is that
if it's done early and often enough, such peaceful agreements
will become less difficult and expensive to carry out.

There are, of course, trade-offs. This technique change does
not provide any additional quality assurances. Many
organizations discover that incorporating new code is more
costly since they rely on human procedures to ensure that
new code does not introduce new problems or damage
existing code. Continuous joining relies on test suites and
automated test execution to reduce interactions across mix
projects. As we near the end of this paper, it's crucial to
remember that robotized testing is not the same as nonstop
testing.

The goal of CI is to turn integration into a simple, repeatable
regular advancement procedure that will help to lower
overall form expenses and discover deserts straight away in
the cycle. The success of CI will be dependent on changes in
the improvement group's way of life, such as motivation for
availability, consecutive and iterative forms, and the ability to
manage defects when they are detected early.

Fig-1: Continuous Integration Process

Fig-2: Flow of Modules in Continuous Integration

2.2 Continuous Delivery (CDE)

Continuous delivery is an extension of continuous
integration, in which the product delivery process is
mechanised even further to enable enterprises to create
whenever they want.

A continuous delivery methodology demonstrates a
codebase that can be deployed on the fly at any time.
Programming release on CDE becomes a routine event
devoid of emotion or sincerity. Groups continue with day-to-
day advancement tasks with the knowledge that they can
release a creation review release whenever they like,
without the need for extensive coordination or uncommon
late amusement testing.

CDE is dependent in the middle on an organisation pipeline
that automates the testing and mailing of forms. This
pipeline is a computerised system that runs a set of test
suites against the manufacturer in real time. CDE is highly
automatable and effectively adjustable in several distributed
computing scenarios. The assembler may fail a basic test in
each step of the pipeline and alert the group. Otherwise, it
moves on to the next test suite, with incremental test passes
triggering scheduled progression to the next section of the
pipeline. The final section of the pipeline will bring the
project to a generation proportional state. Since the
fabricate, the arrangement, and the earth are all performed
and tried simultaneously, this is a large action. The end
result is a construct that is deployable and undeniable in a
real-world production environment. On AWS, you can see a
strong demonstration of a sophisticated CI/CD workflow.
Amazon is one of the distributed computing providers with a
notable CI/CD pipeline condition, and it provides a
walkthrough method in which we can go over some its
numerous development assets and connect them in a
pipeline that is quickly adjustable and easily visible.

Many people find continuous delivery appealing since it
automates the majority of the processes that go from
entering code into the shop to releasing fully tested,
adequately used forms that are ready for production. The
assembly and testing forms have been intricately
computerised, but decisions regarding how and what should
be discharged remains a manual process. Continuous
Deployment can improve and automate those drills.

Fig-3: Continuous Delivery

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1869

2.3 Continuous Deployment (CD)

Continuous deployment broadens continuous delivery with
the goal of having the product fabricate delivered as soon as
all tests are completed. There is no obligation for a man to
pick when and what enters into production in such a
method. In a CI/CD framework, the last advancement will
normally convey whatever form parts/bundles effectively
exit the conveyance pipeline. Such pre- programmed
arrangements can be used to fast broadcast segments,
highlights, and fixes to clients, as well as provide clarity on
what is currently happening.

Client feedback on new arrangements will likely
benefit organizations that use continuous deployment.
Highlights are promptly communicated to clients, and any
flaws that emerge can be addressed quickly. Fast customer
reaction to unhelpful or misinterpreted highlights will
enable the team to refocus and avoid devoting further effort
to utilitarian area that is unlikely to yield a satisfactory
return on investment.

Continuous deployment enables the service providing
company to run constant sanity checks on the software
before it is presented to the clients. If any internal
infrastructure causes the application to break then it can be
conveyed to the service providing organization with the help
of error or bug tickets generated in the shared infrastructure
which is common to both the organizations. The delivery
team constantly merges new commits to the codebase and
the deployment framework enables testing and building the
latest version of the codebase for sanity. This ensures
continuous upgradation of the software with minimal
documentation and administrational sign offs.

Fig-4: Continuous Deployment Pipeline

3. CI/CD DEPLOYMENT PROCESS

The Consistent Deployment (CD) approach also goes above
and beyond delivering the application to generation or client
circumstances in a natural and consistent manner. In both
academic and modern settings, there is a lot of discussion on
continuous deployment and delivery. The generation
condition (i.e., real clients) is what distinguishes continuous
deployment from continuous delivery: the goal of constant

arrangement hone is to put each modification into the
generation condition naturally and consistently.

It's important to remember that CD hone implies CDE hone,
but the reverse isn't true. While the final arrangement in CDE
is a manual advance, there should be no manual advances in
CD, where designers make changes and the changes are
forwarded to generation via an arrangement pipeline. CD
rehearse is a push-based method, whereas CDE hone is a
draw-based strategy in which a company chooses what and
when to communicate. At the end of the day, CDE does not
include visits or computerized discharge, and CD is thus a
continuation of CDE. While CDE skills can be used to a
variety of frameworks and organizations, CD practice may
only be applicable for certain types of associations or
frameworks.

Fig-5: Control flow between Continuous Integration,

Delivery and Deployment

4. BENEFITS OF CI/CD DEPLOYMENT PROCESS

By switching to the CI/CD pipeline, we will have access to
five features of a continuous development process:

1. Shorter Release Cycles: Shorter release cycles will allow
us and our team to get new features into production faster,
allowing us to get our product into the hands of our
customers sooner.

2. Lower Risk: The ultimate goal of a continuous delivery
approach is to make each release less traumatic and painful
for both QA teams and customers. We lessen the danger of
bugs making it into production by releasing new updates or
additions on a regular basis, and we can address any
discovered flaws more quickly.

3. Reduced Costs: Adopting a continuous development
strategy will reduce our expenditures by removing many of
the fixed costs associated with developing and testing
application modifications. Automated environment
provisioning, for example, will lower the expense of
managing our own test infrastructure. Parallel testing
reduces the number of machines required to complete our
tests. We'll spend less time (and thus money) resolving bugs
if you commit your code on a regular basis.

4. Higher-Quality Products: One of the most common
concerns about deploying a CI/CD pipeline is that quality
will be sacrificed in favour of speed, however this is not the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1870

case. Continuous integration allows developers to work
together more effectively, which means errors are
discovered and solved faster sooner in the development
process. Automated regression and parallel tests will
increase test coverage, guaranteeing that your application is
bug-free and operates in a variety of situations. Smaller
software updates delivered on a regular basis will make
most changes (and faults) unnoticeable to the end user,
resulting in pleased consumers.

5. Better Business Advantage: Switching to a continuous
development methodology allows our team to make changes
to our software on- the-fly to suit changing market trends
and customer requirements. We'll be able to respond quickly
to changing demands and use our release process to our
advantage.

5. CHALLENGES OF CI/CD DEPLOYMENT PROCESS

1. Changes in Organizational Culture

Some firms favor older approaches and may find continuous
integration difficult to deploy. They'd have to retrain
employees, which would need a complete overhaul of
current operations. Managers may be apprehensive since
continuous integration does not assist them achieve their
immediate business goals (e.g. revenue over deliverance).

2. Maintenance Difficulty

It's not easy to set up an automated code repository. Teams
must construct a proper testing suite and devote more time
to writing test cases than to building code. This may first
slow them down and cause them to lose confidence in their
ability to complete their own work on time. If the testing
suite isn't stable, it may perform flawlessly on some days but
not on others. The team would then have to devote more
effort to determining what had occurred.

3. A Great Deal of Radar Errors

Larger development teams may notice CI error notifications
on a daily basis and begin to ignore them entirely since they
are preoccupied with other jobs and issues. They may begin
to accept a broken build as normal, and flaws may begin to
pile up.

6. CONCLUSIONS

 We were able to wrap up after a careful review and
meticulous merging of the information extracted from the
various papers. Over the last few years, programming design
analysts and specialists have become increasingly interested
in and concerned about continuous methods, continuous
integration, continuous delivery, and continuous
deployment. The techniques, apparatuses, challenges, and
practises described for embracing and implementing
consistent practises have been linked to a wide range of

usage areas, with "programming/web development system"
and "utility programming" receiving the greatest attention.
Few works have been found that specify what iand how
instruments and developments were selected and integrated
to accomplish the arranging pipeline (i.e., current discharge
pipeline).

The most common instruments used as part of sending
pipelines were Subversion and Git/GitHub as version control
systems, and Jenkins as a coordination server. In a request of
significance, the different methodologies and practises of CI,
CDE, and CD have enabled us to conclude seven basic
elements that affect the achievement of uninterrupted
practises: "Testing (Effort and Time)", "Group Awareness
and Transparency", "Great Design Principles", "Client",
"Extremely Skilled and Motivated Team", "Application
Domain", and "Proper Infrastructure" are all examples of
good design principles. Researcher Suggestions: Mechanical
level verification is provided by a large percentage of audited
documents. The announced outcomes become more tangible
as a result of this. Such findings are expected to compel
programming design specialists to learn and apply
appropriate approaches, devices, and skills, as well as
examine the aforementioned challenges in their daily work
in light of their applicability in varied circumstances. The
currently used methodologies, apparatuses, difficulties, and
practices have been organized in such a way that specialists
can understand what challenges are involved in receiving
each continuous practice, as well as what methodologies and
practices are available to support and encourage each
continuous practice.

We discovered a few issues and practices that were
consistently changing in the direction of all CI, CDE, and CD.
The basic variables can help professionals be more aware of
the factors that can influence the success of long-term
practices in their organisations. For example, while it is
critical for experts to recognise that a lack of group
mindfulness and openness may prevent them from
recognising and achieving the genuine foreseen benefits of
nonstop practices, it is also critical for experts to recognise
that a lack of group mindfulness and openness may prevent
them from recognising and achieving the genuine foreseen
benefits of nonstop practices.

REFERENCES

[1] Mahendra Prasad Nath, Santwana Sagnika,

Madhabananda Das, Manjusha Pandey, “Object

Recognition using Cat Swarm Optimization, “International

Journal of Research and Scientific Innovation (IJRSI),

Volume IV, Issue VIIS, July 2019

[2] P. Rodríguez et al., "Continuous deployment of software

intensive products and services: A systematic mapping

study", J. Syst. Softw., vol. 123, pp. 263-291, Jan. 2018

[3] Jugesh Prasad, Bhavya Kallur, Mahendra Prasad Nath,

Kanika Goyal, Chat Bot - An Edge to Customer Insight,

International Journal of Research and Scientific

Innovation (IJRSI) | Volume V, Issue V, May 2018

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1871

[4] B. Fitzgerald and K.-J. Stol, "Continuous software
engineering: A roadmap and agenda", J. Syst. Softw., vol.
123, pp. 176-189, Jan. 2017.

[5] Shahin, Mojtaba, Muhammad Ali Babar, and Liming Zhu.

"Continuous integration, delivery and deployment: a

systematic review on approaches, tools, challenges and

practices." IEEE Access 5 (2017)

[6] Mojtaba Shahin, Muhammad Ali Babar, Liming Zhu,

Continuous Integration, Delivery and Deployment: A

Systematic Review on Approaches, Tools, Challenges and

Practices, IEEE Access, March 22, 2017

[7] M. Shahin, M. Ali Babar, and L. Zhu, ―Continuous

Integration, Delivery and Deployment: A Systematic

Review on Approaches, Tools, Challenges and Practices”,

IEEE Access, 2017

[8] M. Leppanen, S. Makinen, M. Pagels, V .-P . Eloranta, J.
Itkonen, M. V. Mantyla, and T. Mannisto, ―The Highways
and Country Roads to Continuous Deployment, IEEE
Software, vol. 32, no. 2, pp. 64-72, 2015.

[9] L. Chen, ―Continuous Delivery: Huge Benefits, but
Challenges Too,ǁ IEEE Software, vol. 32, no. 2, pp. 50-54,
2015.

[10] A. A. U. Rahman, E. Helms, L. Williams, and C. Parnin,
―Synthesizing Continuous Deployment Practices Used
in Software Development, in Agile Conference (AGILE),
2015, pp. 1-10.

[11] A. Thiele. "Continuous Delivery: An Easy Must-Have for
Agile Development, Available at:
https://blog.inf.ed.ac.uk/sapm/2014/02/04/cont
inuous-delivery- an-easy-must-have-for-agile-
development/ [Last accessed: 10 July 2016]."

[12] State of DevOps Report. Available at:
https://puppetlabs.com/2017-devops-report 2017.

[13] J. Bosch, "Continuous Software Engineering: An
Introduction," Continuous Software Engineering, J.
Bosch, ed., pp. 3-13: Springer International Publishing,
2016.

[14] I. Weber, S. Nepal, and L. Zhu, ―Developing Dependable
and Secure Cloud Applications, IEEE Internet
Computing, vol. 20, no. 3, pp. 74- 79, 2017.

