ON THE INJECTIVE DOMINATION OF JUMP GRAPHS

N. Pratap Bau Rao
Department of Mathematics S.G. College, Koopal(Karnataka) INDIA

Abstract

Let $J(G)=(V, E)$ be a jump graph. A subset D of $J(V)$ is called injective dominating set (inj-dominating set) if every vertex $v \in J(V)$ - D there exists a vertex $u \in D$ such that $|\Gamma(u, v)| \geq 1$, where $|\Gamma(u, v)| 9 s$ the number of common neighbors between the vertices u and v. The minimum cardinality of such dominating set denoted by $\gamma_{\mathrm{inj}} \mathrm{J}(\mathrm{G})$) and is called injective dominating number (Inj-dominating number) of J(G). In this paper, we introduce the injective domination of a jump graph $J(G)$ and analogous to that, we define the injective independence number (Inj-independence number) $\beta_{\mathrm{inj}}(J(G)$. and injective domatic number (Inj-domatic number) $\mathrm{d}_{\mathrm{inj}} \mathrm{U}(\mathrm{G})$). Bounds and some interesting results are established.

Mathematics subject classification 95C69
Key words : Injective domination number, Injective independence number, Injective domatic number

1 .Introduction:

By a graph means a finite, undirected with no loops and multiple edges. In general we use
< $\mathrm{X}>$ to denote the sub graph induced by the set of vertices X and $\mathrm{N}(\mathrm{v}), \mathrm{N}[\mathrm{v}]$ denote the open and closed neighborhood of a vertex v , respectively. The distance between two vertices u and v in $\mathrm{J}(\mathrm{G})$ is the number of edges in a shortest path connecting them this is also known as the geodesic distance. The eccentricity of a vertex v is the greatest geodesic distance between v and any other vertex an denoted by e(v)

A set D of vertices in a graph $J(G)$ is a dominating set if every vertex in $J(V)-D$ is adjacent to some vertex in D. The dominating number $\gamma \mathrm{J}(\mathrm{G})$) is the minimum cardinality of a dominating set of $\mathrm{J}(\mathrm{G})$. We denote to the smallest integer greater than or equal to x by $\left.\Gamma^{\mathrm{x}}\right\rceil^{2}$ and the greatest integer less than or equal to x by $\left.\mathrm{L}_{\mathrm{x}}\right\lrcorner$. A strongly regular jump graph with parameter ($\mathrm{n}, \mathrm{k}, \lambda \mu$) is a graph withn vertices such that the number of common neighbors of two vertices u ans v is k, λ or μ according to whether u and v are equal, adjacent, respectively. When $\lambda=0$ the strongly regular graph $\mathrm{J}(\mathrm{G})$ is called primitive if J(G) and J(\bar{G}) are connected.

For terminology and notations not specifically defined here we rfer the rader to [5] For more details about domination number and neighborhood number and their related parameters. We refer to [3], [4]

The common neighborhood domination in graph has introduced in [2]. A subset D of $\mathrm{J}(\mathrm{V}$) is called common neighborhood dominating set ($C N$-dominating set) if every vertex $v \in J(V)$ - D there exists a vertex $u \in D$ such that $u v \in E(J(G))$ and $|\Gamma(u, v)| \geq$ 1 , where $|\Gamma(u, v)|$ is the number of common neighborhood between the vertices u and v. The minimum cardinality of such dominating set denoted by $\gamma_{\mathrm{cn}} \mathrm{J}(\mathrm{G})$) and is called common neighborhood domination number (CN -domination number) of $\mathrm{J}(\mathrm{G}$). The common neighborhood(CN-neighborhood) of a vertex
$u \in V(J(G))$ denoted by $N_{c n}(U)$ is defined as $N_{c n}(u)=\{v \in V(J(G)): u v \in E(J(G))$ and $|\Gamma(u, v)| \geq 1\}$.
The common neighborhood graph (congraph) of $J(G)$, denoted by $\operatorname{con}\left(J(G)\right.$), is the graph with the vertex set v_{1}, $\mathrm{v}_{2}, \ldots . . . \mathrm{v}_{\mathrm{p}}$, in which two vertices are adjacent if and only if they have at least one common neighbor in the graph $\mathrm{J}(\mathrm{G})[1]$.

In this paper, we introduce the concept of injective domination in jump graph. In ordinary domination between vertices is enough for a vertex to dominate another in practice. If the persons

Have common friend then it may result in friendship. Human being have a tendency to move with others when they have common friends.

2. Injective Dominating Sets:

If defense and domination problem in some situations there should not be direct contact between two individuals but can be linked by a third person this motivated us to introduced the concept of injective domination.

Definition 2.1 ([1]). Let $J(G)$ be a jump graph with vertex set $V(J(G))=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots . v_{p}\right\}$, For $I \neq j$ the common neighborhood of the verticed v_{i} and v_{j}, denoted by $\Gamma\left(v_{i}, v_{j}\right)$ is the set of vertices different from v_{i} and v_{j}, which are adjacent to both v_{i} and v_{j}.

Definition 2.2. Let $\mathrm{J}(\mathrm{G})=(\mathrm{V}, \mathrm{E})$ be a graph. A subset D of V is called injective dominating set
(Inj-dominating set) if for every vertex $v \in V$ either $v \in D$ or tere exists a vertex $u \in D$ such that
$|\Gamma(\mathrm{u}, \mathrm{v})| \geq 1$. The minimum cardinalioty of Inj-dominating set of $\mathrm{J}(\mathrm{G})$ denoted by
$\gamma_{\mathrm{inj}}(\mathrm{J}(\mathrm{G}))$ and called injective domination number (Inj-domination number) of $\mathrm{J}(\mathrm{G})$.
Proposition 2.3: Let $J(G)=(V, E)$ be a graph and $u \in V$ be such that $|\Gamma(u, v)|=0$ for all $v \in V(J(G))$. Then u is every injective dominating se, such vertices are called injective isolated vertices.

Proposition 2.4: Let $J(G)=(V, E)$ be strongly regular graph with parameters ($n, k, \lambda \mu)$. Then
$\gamma_{\text {inj }}(\mathrm{J}(\mathrm{G}))=1$ or 2.
Proposition 2.5.: For any graph $\mathrm{J}(\mathrm{G}), \gamma_{\mathrm{inj}}(\mathrm{J}(\mathrm{G})) \leq \gamma_{\mathrm{cn}}(\mathrm{J}(\mathrm{G}))$.
Proof: From the definition of the CN -dominating set of a graph J(G), For any graph J(G). For any graph J(G) any CN -dominating set D is also Inj-dominating set. Hence $\gamma_{\mathrm{inj}}\left(\mathrm{J}(\mathrm{G}) \leq \gamma_{\mathrm{cn}}(\mathrm{J}(\mathrm{G}))\right.$.

We note that Inj-domination number of a graph $J(G)$ may be greater than, smaller than or equal to the domination number of J(G).

Example 2.6.

i) $\quad \gamma_{9 \mathrm{jn}(\mathrm{J}}(\mathrm{J}(\mathrm{P} 2))=2 \quad \gamma\left(\mathrm{~J}\left(\mathrm{P}_{2}\right)\right)=1$
ii) $\quad \gamma_{9 \mathrm{jn}(\mathrm{J}}\left(\mathrm{J}\left(\mathrm{C}_{5}\right)\right)=2 \quad \gamma\left(\mathrm{~J}\left(\mathrm{C}_{5}\right)\right)=1$
iii) If $\mathrm{J}(\mathrm{G})$ is the Petersen graph, then $\gamma_{\mathrm{inj}}(\mathrm{J}(\mathrm{G}))=2 \quad \gamma_{\mathrm{cn}}(\mathrm{J}(\mathrm{G})) .=3$

Proposition 2.7:

i) For any complete graph $\mathrm{J}\left(\mathrm{K}_{\mathrm{p}}\right)$ where $\mathrm{p} \neq 2 \gamma_{\mathrm{inj}}\left(\mathrm{J}\left(\mathrm{K}_{\mathrm{p}}\right)\right)=1$
ii) \quad For any wheel graph $\left.\mathrm{J}(\mathrm{G}) \cong \mathrm{J}\left(\mathrm{W}_{\mathrm{p}}\right)\right) \quad \gamma_{\mathrm{inj}}(\mathrm{J}(\mathrm{G}))=1$
iii) For any complete bipartite graph $\left.\mathrm{J}\left(\mathrm{K}_{\mathrm{r}, \mathrm{m}}\right) \quad \gamma_{\mathrm{inj}} \mathrm{J}\left(\mathrm{K}_{\mathrm{r}, \mathrm{m}}\right)\right)=2$
iv) \quad For any graph $\mathrm{J}(\mathrm{G}), \gamma_{\mathrm{inj}}(\mathrm{Kp}+\mathrm{J}(\mathrm{G}))=1$ where $\mathrm{p} \geq 2$

Proposition2.8. For any graph $\mathrm{J}(\mathrm{G})$ with vertices $1 \leq \gamma_{\mathrm{inj}}(\mathrm{J}(\mathrm{G})) \leq \mathrm{p}$
Proposition 2.9: Let $J(G)$ be a graph with p vertices. Then $\gamma_{\text {inj }}(J(G))=p$ if and only if $J(G)$ is a forest with
$\Delta(J(G)) \leq 1$.
Proof: Let $\mathrm{J}\left({ }^{*} \mathrm{G}\right)$ be a forest with $\Delta(\mathrm{J}(\mathrm{G})) \leq 1$. Then we have two cses.
Case 1. If $J(G)$ is connected. Then either $J(G) \cong J\left(K_{2}\right)$ or $J(G) \cong J\left(K_{1}\right)$. Hence $\gamma_{\text {inj }} J(J)$ (G) $=$ p
Case 2. If $J(G)$ is is disconnected, then $J(G) \cong J\left(n_{1} K 2 U n_{2} K_{2}\right)$, thus $\gamma_{\text {inj }}(J(G))=p$

Conversely, If $\gamma_{\mathrm{inj}}(\mathrm{J}(\mathrm{G}))=\mathrm{p}$ then all the vertices of $\mathrm{J}(\mathrm{G})$ are Inj-isolated that means $\mathrm{J}(\mathrm{G})$ is isomorphic to $\mathrm{J}\left(\mathrm{K}_{1}\right)$ or $\mathrm{J}\left(\mathrm{K}_{2}\right)$ or to the disjoint union of $J\left(K_{1}\right)$ and $J\left(K_{2}\right)$, that is $J(G) \cong J\left(n_{1} K 2 U n_{2} K_{2}\right)$, for some $n_{1}, n_{2} \in\{0,1,2, \ldots\}$ Hence $J(G)$ is a forest with $\Delta(J(G)) \leq$ 1.

Proposdition 2.10: Let $J(G)\left(b\right.$ a nontrivial connect4d graph. Then $\gamma_{i n j}(J(G))=1$ if and only if there exists a vertex $v \in V(J(G))$ such that $N(v)=N_{c n}(v)$ and $e(v) \leq 2$

Prof: Let $v \in V(J(G))$ be any vertex in $J(G)$ such that $N(v)=N_{c n}(v)$ and $e(v) \leq 2$. Then for any vertex
$u \in V(J(G))-\{v\}$ if u is adjacent to v, Since $N(v)=N_{c n}(v)$, then obvious $u \in N_{i n j}(v)$. If u is not adjacent to v, then $|\Gamma(u, v)| \geq 1$. Thus for any vertex $u \in V(J(G))-\{v\},|\Gamma(u, v)| \geq 1$.. Hence, $\gamma_{\mathrm{inj}}(J(G))=1$.

Conversely, $9 \mathrm{f} \mathrm{J}(\mathrm{G})$ is a graph with p vertices and $\gamma_{\mathrm{inj}}(\mathrm{J}(\mathrm{G}))=1$., then there exist at least one vertex v
$\in V(G)$ such that $\operatorname{derg}_{\mathrm{inj}}(\mathrm{v})=\mathrm{p}-1$, then any vertex $u \in V(J(G))-\{v\}$ either contained in trianglewith v or has distance two from v. Hence, $N(v)=N_{i n j}(v)$ and $e(v 0 \leq 2$.

Theorem 2.11([6]) For any path P_{p} and any cycle C_{p} where $p \geq 3$, we hae

$$
\left.\gamma\left(\mathrm{P}_{\mathrm{p}}\right)=\gamma\left(\mathrm{C}_{\mathrm{p}}\right)=\Gamma \frac{p}{3}\right\rceil
$$

Proposition $2.12:[2])$.For any path P_{p} and any cycle C_{p}

i) $\quad \operatorname{Con}\left(\mathrm{P}_{\mathrm{p}}\right) \cong \mathrm{P}_{\Gamma \mathrm{p} / 2}{ }_{7}$ UP $\left\llcorner_{\mathrm{p} / 2}\right\lrcorner$.
ii) $\operatorname{Com}\left(\mathrm{C}_{\mathrm{p}}\right) \cong \begin{cases}\mathrm{C}_{\mathrm{p}} & \text { if } \mathrm{p} \text { is odd and } \mathrm{p} \geq 3 . \\ \mathrm{P}_{2} U P_{2} & \text { if } \mathrm{p}=4 \\ \mathrm{C}_{\mathrm{p} / 2} U \mathrm{C}_{\mathrm{p} / 2} & \text { if } \mathrm{p} \text { is even }\end{cases}$

From the definition of the common neighborhood graph and the Inj-domination in ajump graph the following propositions can easily verified.

Proposition 2.13: For any graph J(G), $\gamma_{\mathrm{inj} \mathrm{J}} \mathrm{J}(\mathrm{G}) 0=\gamma(\operatorname{con}(\mathrm{J}(\mathrm{G}))$
The proof of the following proposition is straight forward crom Theorem 2.11 and proposition 2.12
Proposition :2.14: For any cycle C_{p} with 09 dd number of vertices $p \geq 3$.

$$
\left.\gamma_{\mathrm{inj}(\mathrm{~J}(\mathrm{Cp}))}=\gamma_{(J(\mathrm{Cp}))}=\Gamma \frac{p}{3}\right\urcorner
$$

Theorem 2.15: For any cycle $C p$ with even number of vertices $p \geq 3$.

$$
\gamma_{\mathrm{inj}(\mathrm{~J}(\mathrm{CP}))}=2 \Gamma \frac{p}{6}
$$

Proof: From Proposition 2.13 ,Theorem 2.11 and proposition 2.12 , if p is even then

$$
\left.\gamma_{\text {inj } J(C \mathrm{Cp}))}=\gamma_{\mathrm{inj}}\left(\left(\mathrm{~J}\left(\mathrm{C}_{\mathrm{p} / 2}\right)\right) \mathrm{U}\left(\mathrm{C}_{\mathrm{p} / 2}\right)\right)=2 \gamma\left(\mathrm{~J}\left(\mathrm{C}_{\mathrm{p} / 2}\right)\right)=2 \Gamma \frac{p}{6}\right\urcorner
$$

Proposition 2.16: For any odd number $p \geq 3$

$$
\left.\left.\gamma_{\mathrm{inj}}\left(\mathrm{~J}\left(\mathrm{P}_{\mathrm{p}}\right)\right)=\Gamma \frac{p+1}{6}\right\rceil+\Gamma \frac{p-1}{6}\right\rceil
$$

Proof: From proposition 2.13, Theorem 2.11 and proposition 2.12 , if p is odd then,

$$
\begin{aligned}
& \gamma_{\text {inj }}\left(\mathrm{J}\left(\mathrm{P}_{\mathrm{p}}\right)\right)=\gamma\left(\mathrm{J}\left(\mathrm{P}_{\Gamma \mathrm{p} / 2\urcorner}\right) \mathrm{UJ}\left(\mathrm{P}_{\Gamma \mathrm{p} / 2}{ }_{\urcorner}\right)\right)=\gamma\left(\left(\mathrm{J}\left(\mathrm{P}_{\mathrm{p}+1 / 2}\right) \mathrm{U} \mathrm{~J}\left(\mathrm{P}_{\mathrm{p}-1 / 2)}\right)\right)=\right. \\
& \left.\left.\Gamma \frac{p+1}{6}\right\urcorner+\Gamma \frac{p-1}{6}\right\urcorner
\end{aligned}
$$

Proposition 2.17 For any even number $p \geq 4$,

$$
\left.\gamma_{\mathrm{inj}}\left(\mathrm{~J}\left(\mathrm{P}_{\mathrm{p}}\right)\right)=2 \Gamma \frac{p}{6}\right\rceil
$$

Proof: From proposition 2.13, Theorem 2.11 and p [roposition 2.12 , if p is even then, $\left.\left.\Gamma \frac{p}{2}\right\urcorner=L \frac{p}{2}\right\rfloor=\frac{p}{2}$ Hence $\gamma_{\mathrm{inj}}\left(J\left(\mathrm{P}_{\mathrm{p}}\right)\right)$ $\left.=2 \Gamma \frac{p}{6}\right\urcorner$

Theorem 2.18 Let $J(G)=(v, E)$ be a jump graph without Inj-isolated vertices. If D is a minimal Inj-dominating set the $V-D$ is an Inj-dominating set.

Proof: Let d be the minimal Inj-dominating set of $J(G)$, Suppose $V-D$ is not Inj-dominating set. Then there exists a vertex u in D such that u is not Inj-dominated by any vertex in $V-D$, that is $|\Gamma(u, v)|=0$ for anyb vertex v in $V-n D$. Since $J(G)$ has no Injisolated vertices, then there is at least one vertex in $D-\{u\}$ has common neighborhood with u, Thus $D-\{u\}$ is Inj-dominating set of $J(G)$ which contradicts tht minimality ofb the Inj-dominating set D. Thus every vertex in D has common neighborhood with at least one vertex in $V-D$. Hence $V-D$ is an Inj-dominating set.

Theorem2.19; A jump graph $J(G)$ has a unique minimal Inj-dominating set, if and only if the set of all Inj-isolated vertices forms an Inj-dominating set.

Proof: Let $J(G)$ has unique minimal Inj-dominating set D, and suppose $S=\{u \in V$: u is Inj-isolated vertex $\}$. Thus $S \subseteq D$. Now suppose $D \neq S$
let $v \in D-S$, Since v is no Inj-isolated vertex, then $V-\{v\}$ is an Inj-dominating set. Hence there is a minimal Inj-dominating set $\mathrm{D}_{1} \subseteq V-\{v\} \quad \mathrm{D}_{1} \neq \mathrm{D}$ a contradiction to the fact that $\mathrm{J}(\mathrm{G})$ has a unique minimal Inj-dominating set. Therefore $\mathrm{S}=\mathrm{D}$.

Conversely, if the set of all Inj-isolated vertices in J(G) forms an Inj-dominating set, then it is clear that J(G) has a uni9que Injdominating set.

Theorem 2.20: For any (p, q) graph J(G), $\quad \gamma_{i n j} J(G) \geq p-q$
Proof:Let D be a minimum Inj-isolated vertices in J(G), Since every vertex in $V-D$ has common neighborhood with at least one vertex of D, then $q \geq|V-D|$, Hence $\gamma_{i n j} J(G) \geq p-q$.

Theorem 2.21: Let $J(G)$ be a graph on p vertices and $\left.\delta_{\text {inj }} J(G)\right) \geq 1$ Then $\quad \gamma_{\text {inj }} J(G) \leq \frac{p}{2}$
Proof: Let D be any minimal Inj-dominating set in $\mathrm{J}(\mathrm{G})$. Then by Theorem $2.18, \mathrm{~V}-\mathrm{D}$ is also an Inj-dominating set in $\mathrm{J}(\mathrm{G})$. Hence,$\quad \gamma_{\text {inj }} J(G) \leq \min \left\{\left|\mathrm{D}_{1}\right|,|\mathrm{V}-\mathrm{D}|\right\} \leq \frac{p}{2}$.

Theorem 2.22: For any graph $J(G)$ on p vertices $\left.\quad \gamma_{i n j} J(G) \leq p-\Delta_{i n j} J(G)\right)$.
Proof: Let v be a vertex of $J(G)$ such that $\operatorname{deg}_{\text {inj }}\{v\}=\Delta_{\text {ionj }}(J(G))$. Then v has common neighborhood with $\left|N_{\text {inj }}\{v\}\right|=\Delta_{\text {inj }}(J(G))$ vertices. Thus, $\mathrm{V}-\mathrm{N}_{\mathrm{inj}}\{\mathrm{v}\}$ is an Inj-dominating set. Therefore $\gamma_{\mathrm{inj}} \mathrm{J}(\mathrm{G}) \leq\left|\mathrm{V}-\mathrm{N}_{\mathrm{inj}\{ }\{v\}\right|$, Hence
$\gamma_{\mathrm{inj}} \mathrm{J}(\mathrm{G}) \leq \mathrm{p}-\Delta_{\mathrm{inj}}(\mathrm{J}(\mathrm{G})) .$.
Proposition 2.23; For asny graph $J(G)$ with diameter less than or equal three and maximum degree $\Delta(J(G)), \gamma_{\mathrm{inj}} J(\mathrm{G}) \leq \Delta$ (J(G)) + 1

Proof: Let $\operatorname{diam}(J(G)) \leq 3$ and $v \in V(J(G))$ such that $\operatorname{deg}(v)=\Delta(J(G))$, Clarlythat, if diam $(J(G))=1$ then $J(G)$ is a complete graph and the result holds. Suppose $\operatorname{diam}(J(G))=2$ or 3 Let $\left.V_{i}(J(G)) \subseteq V(J G)\right)$ be the set of vertices of $J(G)$ which have distance I
from v, where $I=1,2,3$. Obv8ously, the set $S=V_{1}(J(G)) U\{v\}$ is an Inj-dominating set of $J(G)$ of order $\Delta(J(G))+1$. Hence $\gamma_{\text {inj }}$ $\mathrm{J}(\mathrm{G}) \leq \Delta(\mathrm{J}(\mathrm{G}))+1$.

Definition:2. 24; Let $J(G)=(V, E)$ be a jump graph. $S \subseteq V(J(G))$ is called Inj-independent set if no two vertices in S have common neighbor. An Inj-independent set S is called maximal Inj-independent set if no superset of S is Inj-independent set. Ghe Inj-independent set with maximum size called the maximum Inj-independent set in J(G) and its size called the Injindependence number of $J(G)$ and is denoted by $\beta_{\text {inj }}(J(G))$

Theorem 2.25: Let S be a maximal Inj-independent set. Then S is a minimal Inj-dominating set.
Proof: Lt S be a maximal Inj-independent set and $u \in V-S$. If $u \notin N_{i n j}(v)$ for every $v \in S$, then $S U\{u\}$ is an Inj-independent set, a contradiction to the maximality of S. Therefore $u \in N_{i n j}(v)$ for some $v \in S$. Hence, S is an Inj-dominating set. To prove that S is minimal Inj-dominating set. Suppose S is not minimal. Then for some $u \in S$ the set $S-\{u\}$ is an Inj-dominating set. Then there exist some vertex in S has a common neighborhood with u, a contradiction because S is an Inj-independent set. Therefore S is a minimal Inj-dominating set.

Corollary: 2.26: For any graph J (G), $\gamma_{\mathrm{inj}}(\mathrm{J}(\mathrm{G})) \leq \beta_{\mathrm{inj}(\mathrm{O}(\mathrm{G}) \text {). }}$.

3. Injective domatic number in a jump graph.

Let $J(G)=(V, E)$ be a jump graph .A partition Δ of its vertex set $V J(G))$ is called a domatic partition of $J(G)$ if each class of Δ is dominating set in $J(G)$. The maximum order of a partition of $V(J(G))$ into dominating sets is called domatic number of $J(G)$ and is denoted by $\mathrm{d}(\mathrm{J}(\mathrm{G}))$.

Analogously as to $\gamma(\mathrm{J}(\mathrm{G}))$ the domatic number $\mathrm{d}(\mathrm{J}(\mathrm{G}))$ was introduced, we introduce the injr=ective domatic number $d_{i n j}(J(G))$, and we obtain some bounds and establish some propoertieds of the injective domatic number of a jump graph J(G).

Definition 3.1.: Let $J(G)=(V, E)$ be a jump graph . a partition Δ of its vertex set $V(J(G))$ is called an injective domatic (in short Inj-domatic) partitioned J(G)if each class of Δ is an Inj-dominating set in $J(G)$. The maximum order of a partition of $V(J(G))$ into Inj-dominating sets called the Inj-domatic numbr of $\mathrm{J}(\mathrm{G})$ and is denoted by $\mathrm{d}_{\mathrm{inj}}(\mathrm{J}(\mathrm{G})$).

For every jump graph $J(G)$ there exists at last one Inj-domatic partition of $\mathrm{V}(\mathrm{J}(\mathrm{G}))$ namely $\{\mathrm{V}(\mathrm{J}(\mathrm{G}))\}$.Therefore $\mathrm{d}_{\mathrm{inj}}(\mathrm{J}(\mathrm{G}))$ is well-defined for any jump graph $J(G)$.

Theore4m 3.2;

i) For anybcomplete4 graph $J\left(K_{p}\right) d_{\text {inj }}\left(K_{p}\right)=d_{c n}\left(J\left(K_{p}\right)\right)=d\left(J\left(K_{p}\right)\right) p$
ii) $\quad D_{\text {inj }}(J(G))=n 1$ if and only if $J(G)$ has at least one Inj-isolatd vertex.
iii) For any wheel grph of p vertices, $d_{\text {inj }}\left(J\left(W_{p}\right)\right)=p$
iv) For any complete bipartite graph $J\left(\mathrm{~K}_{\mathrm{r}, \mathrm{m}}\right)$

$$
D_{\text {inj }}\left(J\left(K_{r, m}\right)\right)=\left\{\begin{array}{l}
\text { Min }\{r, m\} \text { if } r, m \geq 2 \\
1, \quad \text { otherwise }
\end{array}\right.
$$

v) For any jump graph $J(G)$, if $N_{\text {inj }}(v)=N(v)$ for any vertex v in $V(J(G))$, then

$$
D_{\text {inj }}(J(G))=d(J(G))
$$

Proof:

I) If $J(G)=(V, E)$ is a complete graph $J\left(K_{p}\right)$, then for any vertex v the set $\{v\}$ is a minimum CN-dominating set and also a minimum Inj-dominating set is p. Hence, $d_{\text {inj }}\left(J\left(K_{p}\right)\right)=d_{c n}\left(J\left(K_{p}\right)\right)=p$
II) Let $J(G)$ be a graph which has an Inj-isolated vertex say v, then every Inj-dominting set of $J(G)$ must contain the vertex v. Then $\mathrm{d}_{\mathrm{inj}}(J(G))=1$.

Conversely, if $\mathrm{d}_{\mathrm{inj}}(\mathrm{J}(\mathrm{G}))=1$. And suppose $\mathrm{J}(\mathrm{G})$ has no Inj-isolated vertex, then by Theorem $2.21 \gamma_{\mathrm{inj}}(\mathrm{J}(\mathrm{G})) \leq \frac{p}{2}$, so if we suppose D is a minimal Inj-dominating set $I J(G)$, then $V-D$ is also a minimal Inj-dominating set. Thus $\left.\mathrm{d}_{\mathrm{inj}} \mathrm{J}(\mathrm{G})\right) \geq 2$, a contradiction. Therefore $\mathrm{J}(\mathrm{G})$ has at last one Inj-isolated vertex.
iii) Since for every vertex v of the wheel graph the $\operatorname{deg}_{\operatorname{ionj} j}\{v\}=p-1$. Hence $d_{i n j}\left(J\left(W_{p}\right)\right)=p$
(iv) and (v) the proof is obvious.

Evidently each CN-dominating set in J(G) is an Inj-dominating set in J(G) and any
CN- domatic partition is an Inj-domatic partition. We have the following proposition.
Proposition 3.3.: For any graph $J(G), d_{i n j}(J(G)) \geq d_{c n}(J(G))$.
Theorem 3.4 : For any graph $J(G)$ with p vertices, $\mathrm{d}_{\text {inj }}(\mathrm{J}(\mathrm{G})) \leq \quad \mathrm{p} / \gamma_{\text {injU(G) })}$
Proof: Assume that $d_{i n j}(J(G))=d$ and $\left\{D_{1}, D_{2}, D_{3} \ldots \ldots . D_{d}\right\}$ is a partition of $V(J(G))$ into d numbers of Inj-dominating sets, clearly $\left|D_{\mathrm{i}}\right| \geq \gamma_{\mathrm{inj}}(\mathrm{J}(\mathrm{G}))$ for $\mathrm{I}=1,2, \ldots \ldots$. d . n we have $\mathrm{p}=\sum_{i=1}^{d}\left|D_{\mathrm{I}}\right| \geq \mathrm{d} \gamma_{\mathrm{inj}}(\mathrm{J}(\mathrm{G}))$, Hence $\left.\mathrm{d}_{\text {inj }}(\mathrm{J}(\mathrm{G})) \leq \quad p / \gamma_{\text {inj }} \mathrm{J}(\mathrm{G})\right)$

Theorem 3.5: For any graph $J(G)$ with p vertices, $\left.\mathrm{d}_{\text {inj }}(J(G)) \geq L p / p-\delta_{\text {inj }}(J(G)) \quad\right\lrcorner$
Proof: Let D be any subset of $V(J(G))$ such that $|D| \geq p-\delta_{\text {inj }}(J(G))$. For any vertex $v \in V-D$ we have $\left|N_{\text {inj }}[v\}\right| \geq 1+\delta_{\text {inj }}(J(G))$. Therefore $\mathrm{N}_{\mathrm{inj}}(\mathrm{v}) \cap \mathrm{D} \neq \phi$. Thus D is an Inj-dominating set of $\mathrm{J}(\mathrm{G})$. So we can take any $\left.\mid p / p-\delta_{\mathrm{inj}}(\mathrm{J}(\mathrm{G}))\right]$ disjoint subset ach of cardinality $p-\delta_{\text {inj }}(J(G))$. Hence

$$
\left.\mathrm{d}_{\mathrm{inj}} \mathrm{~J}(\mathrm{G})\right) \geq \mathrm{L} p / p-\delta_{\mathrm{inj}}(\mathrm{~J}(\mathrm{G})) \downharpoonleft
$$

Theorem 3.6: For any graph such that $d_{i n j}(J(G)) \leq \delta_{\text {inj }}(J(G))+1$. Further the equality holds If $J(G)$ is complete graph $\left.J\left(K_{p}\right)\right)$
Proof: Let $J(G)$ be a graph such that $d_{\text {inj }}(J(G))>\delta_{\text {inj }}(J(G))+1$. Then there exists at least $\delta_{\text {inj }}(J(G))+2$ Inj-dominating sets which they are mutually6 disjoint. Let v be any vertex in $V(J(G))$ such that $\operatorname{deg}_{\mathrm{inj}}(J(G))=\delta_{i n j}(J(G))$. Then there is at least one of the Inj-dominating sets which has no intersection with $\mathrm{N}_{\mathrm{IONJ}}[\mathrm{v}]$. Hence, that Inj-dominating set can not dominate v , a contradiction. Therefore $\left.\mathrm{d}_{\mathrm{inj}} \mathrm{J}(\mathrm{G})\right) \leq \delta_{\mathrm{inj}}(\mathrm{J}(\mathrm{G}))+1$. It is a obvious if $\mathrm{J}(\mathrm{G})$ is complete, then $\mathrm{d}_{\mathrm{inj}}(\mathrm{J}(\mathrm{G}))>\delta_{\mathrm{inj}}(\mathrm{J}(\mathrm{G}))+1$.

Theorem 3.7: For any graph $J(G)$ with p vertices $\left.d_{\text {inj }} J(G)\right)+d_{\text {inj }}\left(J\left(\bar{G}^{\text {inj }}\right) \leq p+1\right.$.
Proof: From Theorem 3.6, we have $\mathrm{d}_{\mathrm{inj}}(J(G)) \leq \delta_{\mathrm{inj}}(J(G))+1$. and $\mathrm{d}_{\mathrm{inj}}\left(J\left(\bar{G}^{\text {inj }}\right)\right) \leq \delta_{\mathrm{inj}}\left(J\left(\bar{G}^{\text {inj }}\right)\right)+1$, and clearly $\delta_{\mathrm{inj}}\left(J\left(\bar{G}^{\text {inj }}\right)\right)=\mathrm{p}-1$ $\left.-\Delta_{\mathrm{inj}} \mathrm{J}(\mathrm{G})\right)$. Hence

$$
\mathrm{d}_{\mathrm{inj}}(J(G))+\mathrm{d}_{\mathrm{inj}}\left(J\left(\bar{G}^{\text {inj }}\right)\right) \leq \delta_{\mathrm{inj}}(J(\mathrm{G}))+\mathrm{p}-\Delta_{\text {inj }}(J(\mathrm{G}))+1 \leq \mathrm{p}+1
$$

Theorem 3.8: For any graph $J(G)$ with p vertices and without Inj-isolated vertices, $\mathrm{d}_{\mathrm{inj}}(\mathrm{J}(\mathrm{G}))+\gamma_{\mathrm{inj}}(\mathrm{J}(\mathrm{G})) \leq \mathrm{p}+1$.
Proof: Let J(G) be a graph with p vertices. Then by Theorem 2.22, we have

$$
\boldsymbol{\gamma}_{\mathrm{inj}}(\mathrm{~J}(\mathrm{G})) \leq \mathrm{p}-\Delta_{\mathrm{inj}}(\mathrm{~J}(\mathrm{G})) \leq \mathrm{p}-\delta_{\mathrm{inj}}(\mathrm{~J}(\mathrm{G})),
$$

And also from Theorem 3.6, $\left.\mathrm{d}_{\mathrm{inj}} \mathrm{J}(\mathrm{G})\right) \leq \delta_{\text {inj }}(\mathrm{J}(\mathrm{G}))+$ 1.Then

$$
\mathrm{d}_{\mathrm{inj}}(\mathrm{~J}(\mathrm{G}))+\boldsymbol{\gamma}_{\mathrm{inj}}(J(G)) \leq \delta_{\mathrm{inj}}(J(G))+1 .+\mathrm{p}-\delta_{\mathrm{inj}}(J(G))
$$

Hence,

$$
\left.\mathrm{d}_{\mathrm{inj}}(\mathrm{~J}(\mathrm{G}))+\boldsymbol{\gamma}_{\mathrm{inj}} \mathrm{~J}(\mathrm{G})\right) \leq \mathrm{p}+1
$$

References:

[1] A.Alwardi, B.Arsit'c. I.Gutman and N.D.Sonar, The common neighborhood graph and its energy, Iran J.Math.Sci.Inf, 7(2) 18 (2012)
[2] Anwar Alwardi ,N.D.Sonar and Karn Ebadi, On the common neighborhood domination number, Journal of Computer and Mathemsatical Sciences 2(3),547=556 (2011)
[3] S.Armugum, C.Sivagnanam, Neighborhood connected and total domination in graphs,Proc.Int.Conf.on Disc.Math., 2334 B.Chaluvaraju, V.Lokesha and C.Nandesh kumar Mysore 45-51(2008).
[4] B.Chaluvarju, Some parameters on neighborhood number of a graph, Electronic Notes of Discrete Mathematics Elsevier, 33 139-146 (2009)
[5] F.Harary, Graph theory, Addison-Wesley, Reading Mass (1969)
[6] T.W.Haynes,S.T. Hedetneimi and P.J.Slater,Fundamentals of domination in graph.Marcel Dekker.Inc., NewYork (1998).
[7] S.M. Hedetneimi, S.T. Hedetneimi, R.C. Laskar , L.Markus and p/J/Slater, Disjoint dominating sets in graphs,Proc.Int.Conf.on Disc.Math. IIM-IISc ,Banglore 88-101(2006).
[8] V.R.Kulli and S.C.Sigarknti,Further results on the neighborhood number of a graph Indian J.Pure and Appl.Math.23(8)575577)1992).
[9] E.Sampathkumar and P.S.Neeralgi, The neighborhood number of a graph ,Indian Pure and Appl.Math.16(2)126-132 (1985).
[10] H.B.Walikar,B.D.Acharya and E.Sampathkumar, Recent developments in the theory of domination in graphs, Mehta Research institute,Allahabad,MRI Lecture Notes in Math.I (1979)
[11] N.Pratap Babu Rao , Sweta.N, Total efficient Domination in Jump graphs, International journal of Mathemtical Archieve 10(1) 2019 pp 21-25.
[12] Anwar Alwardi, R.Rangarajan and Akram Alqesmah On the injective domination of graphs,Palestine Journal of Mathematics Vol.7(1) (2008) 202-219.

