

EVALUATION AND DEVELOPMENT OF WEB APPLICATION FOR CO₂ EMISSION OF RESIDENTIAL BUILDINGS

Fathimath Rajula KT¹, M.A.Chinnamma²

¹¹P G Student, Dept. of Civil Engineering, Malabar College of Engineering and Technology, Thrissur, India. ²Professor, Dept. of Civil Engineering, Malabar College of Engineering and Technology, Thrissur, India. ***

Abstract - CO₂ emission has been increasing day by day from various sources like motor vehicles, factories, industries and construction activities. CO₂ contributes 81% of total Green House Gas (GHG) emission. According to UN environment Global status Report 39% of total CO₂ emission is from buildings and construction activities. CO₂ emission of two residential building is calculated by surveying all the inventories that emit considerable amount of CO_2 using emission factor. Emission Factor is obtained from CPCB and DEFRA, UK. Surveyed inventories for the study are Electricity, Transportation, Human Releases, Solid waste by open burning, Waste water generation, Food waste, Fuel consumption, Building materials. Carbon Sequestration is also calculated by surveying about trees. The net carbon emission of the study area was found to be 55658.188 Kg and 51322.751 kg for residential building 1 and 2 respectively. Carbon sequestration is also calculated. In this study Residential Building 1 is zero CO_2 emitting building. By analyzing the two building it is clear that Residential Building 2 is completely a zero carbon emission building design. A web application is also developed to calculate easily.

Key Words: Green House Gas, Emission Factor, Carbon Sequestration, inventories, CPCB, DEFRA.

1. INTRODUCTION

This document is CO_2 is the main green house gas emitting from human Activities. We produce greenhouse gas emissions from burning petrol when we drive, burning oil or gas for home heating, or using electricity generated from coal, natural gas, and oil, food waste, water consumption, buildings, burning of paper etc. These gases persist in the atmosphere and trap heat. CO₂ is estimated by using standard emission factors published by Department for Environment, Food, and Rural Affairs, UK (DEFRA) and Central Pollution Control Board, India (CPCB) were used in this study for calculating the GHG emissions. Emission factor the sum of emissions of CO_2 of the human activity described as mass unit of CO₂ reference flows. Two different residential area is chooses as study area. Materials used for construction also responsible for emission. Carbon sequestration is also calculated by analyzing trees.

1.1 Objectives

Main objective is to calculate total CO2 emission from selected inventories. Carbon sequestration is calculated by

analyzing trees in the surrounding area. A web application is developing using php and html for easy analysis.

1.2 Scope

Relevant in the current scenario of rising CO_2 levels in our very own ecosystem, this study reveals the importance of plants and trees in the residential surroundings.

2. METHODOLOGY

First step is to select study area. The area of study selected is two residential building of 1542 and 1658 sq. feet area. Second step is to collection of data from various inventories that emit co_2 . Emission factor from DEFRA and CPCB is multiplied by activity collected to get total emission. Finally, carbon sequestration is calculated to get net result.

3. CALCULATION

3.1 Electricity

Total electricity consumption for residential building 1 and 2 are 839 and 660 kWh respectively. Emission factor is 0.82. Total CO2 emission is 687.98 and 541.2 kgCO2.

3.2 Transportation

Emission Factor for two wheeler and four wheelers are 0.035 and 0.0145 respectively.

Total co2 emission = No. of each type of vehicle × emission factor × average distance travelled by each vehicle in a year.

CO2 emitted by house $1 = 2 \times 0.035 \times 7120 + 1 \times 0.0145 \times 13447$ = 692.98 kg

CO2 emitted by house 2 = 1 × 0.035 × 2880 = 101.08 kg

3.3 Human Release

Emission Factor for human release is 0.4 Total CO2 emission by house $1 = 0.4 \times 5=2$ kg Total CO2 emission by house $2 = 0.4 \times 4=1.6$ kg

3.4 Water Consumption

Emission Factor for water consumption is 0.34CO2 emitted by house $1 = 0.34 \times 1.35 \times 364 = 167$ kg

CO2 emitted by house $2 = 0.34 \times 0.8 \times 364 = 99.008$ kg

3.5 Liquid Waste

Total liquid waste is taken as 75-80% of total water consumption

T Volume: 08 Issue: 06 | June 2021

www.irjet.net

Emission Factor for liquid waste is 0.003124

CO2 emitted by house $1 = 0.003124 \times 1.08 \times 364 = 1.228$ kg CO2 emitted by house $2 = 0.003124 \times 0.64 \times 364 = 0.727$ kg

3.6 Solid Waste

Per capita solid waste for residential building for middle income and low income group are 0.74 and 0.41 kg respectively. Emission Factor for solid waste is 0.002989 CO2 emitted by house $1 = 0.002989 \times 0.74 \times 5 \times 364 = 4.02$ kg CO2 emitted by house $2 = 0.002989 \times 0.74 \times 4 \times 364 = 0.176$ kg

3.7 LPG Consumption

The total CO_2 emission is obtained by multiplying the total LPG consumed with the emission factor (2.71/kg) and the result obtained was as follows

 CO_2 emitted by house 1 = 460.02 kg

 CO_2 emitted by house 2 = 345.06kg

3.8 Construction Material

Table -1: Carbon Emission from Materials

Table -1: Carbon Emission from Materials						
Materials	Emissi on	Quantity (kg)		Total Carbon Emission (kg)		
	Factor	B1	B2	B1	B2	
Cement	0.967	2500	235 00	24175	22724. 5	
Fine aggregate	1.2	3750	430 0	4500	5160	
Course aggregate	0.002	7300	650 0	14.6	13	
stone	2.33	1400	950	3262	2213.5	
Wood	0.2	200	200	40	40	
Concrete mixture	0.159	1201 6	114 33	1910.5	1817.9	
Brick	0.327	500	650	163.5	212.55	
steel	5.457	1909 9.5	320 0	156	17462. 4	
paint	0.89	35.6	28	63	24.92	
Electric Work	2.84	55	68	260	193.12	
water	0.42	150	220	19099.5	92.41	
labor	0.4	700	400	280	160	

3.9 Carbon Sequestration

The formula for finding amount of Carbon sequestrated is as follows [5]

Formula = Stem Volume x Biomass Conversion Factor x Density of wood (soft wood or hard wood) x Carbon Fraction (Biomass to carbon equivalent) x Carbon to CO2 Fraction. Where, Stem volume = $(\pi/4) d^2$,

Biomass Conversion factor for softwood = 1.12 and for hardwood = 1.33.

Specific gravity (density) for softwood = 0.463 and for hardwood = 0.569.

Carbon fraction (biomass to carbon equivalent) for softwood and hardwood = 0.5,

Carbon to Carbon dioxide fraction = 3.67

Table -2: Carbon Sequestration in Building 1

Tree	Number	Stem Diamete r	Average Height	Carbon Sequestrat ed
Coconut	4	0.05	3.5	38.25
Neem	1	0.2	1.8	0.7
Banana	5	0.025	1	0.034
Jackfrui t	1	0.07	1.5	0.08
Mango	1	0.03	2.5	2.454

Table -3: Carbon Sequestration in Building 2

Tree	Number	Stem Diamete r	Average Height	Carbon Sequestrat ed
Coconut	Coconut 9		1	6.135
Mahago ny	1	0.02	1.8	0.789
Bilimbi	2	0.02	2	1.745
Jackfrui t	2	0.07	2	21.37
Mango	1	0.03	2.5	2.454
Goa	3	0.015	1.5	1.104
Teak	2	0.06	3	70.67
Banana Tree	9	0.025	1	6.135

4. DESIGN OF WEB APPLICATION

Web application is developed using php (personal home page) and html (hypertext makeup language). When application opens four options are available as shown in figure 1.

e-ISSN: 2395-0056 p-ISSN: 2395-0072

Fig -1: options displayed when application opens

In material option all materials along with emission factor is displayed as in figure2. When we choose material the program will automatically calculate the co2 emission.

Component	Emission	Select
Petrol	2.19	Choose
Diesel	26	Choose
LPG	2.71	Choose
Electricity	0.856	Choose
Water consumption	0.34	Choose
Paper burning	0.928	Choose
Human factor	0.4	Choose
Food waste	3.59	Choose
Concrete work	02	Choose
Fine Aggregate	0.115	Choose
Cement	0.67	Choose
Course Aggregate	0.0459	Choose
Brick	0.327	Activate \Choose is
Lime	12	Go to Settings to activate Window Choose

Fig -2: Different Components in Material Box.

A back option is also provided to exit from the page. We can also add materials that are not listed using the option below as shown in figure3.

Fig -3: Option to add material and emission factor

Different trees can also be selected by clicking trees and choose option in figure 4. After that, surveyed details of the trees are added as in figure 6. We can also add tree and details that are not listed. Program will automatically calculate amount of carbon sequestrated by choosing tree option.

		1 1 A	MAR WIN	<pre></pre>
Tree	Туре	Biomass Conversion Factor	Density of wood	Select
Coconut	Hard	133	0.569	Choose
Banana	Soft	1.12	0.463	Choose
Mango	Hard	133	0.569	Choose
Jackfruit	Hard	1.33	0.569	Choose
Neem	Hard	1.33	0.569	Choose
Banyan	Hard	133	0.569	Choose
Guava	Soft	1.12	0.463	Choose
Mahagony	Hard	1.33	0.569	Choose
Cashew	Soft	1.12	0.463	Choose
Teak	Hard	1.33	0.569	Choose
Bamboo	Hard	133	0.569	Choose
Bilimbi	Soft	1.12	0.463	Choose

Fig -4: Tree Details with BCF and Density.

Fig -5: Option to add tree and its details.

Fig -6: Details display when tree option is chosen.

Final calculations are displayed after inputting all the details and is obtained by clicking submit button in figure 1. Results of two buildings are obtained as total carbon emission, amount of carbon sequestrated and result as shown in figure 7 and figure 8.

ET Volume: 08 Issue: 06 | June 2021

www.irjet.net

Fig -7: Final Result of Residential Building 1

Fig -8: Final Result of Residential Building 2

5. CONCLUSIONS

The net carbon emission of the study area was found to be 55658.188 Kg and 51322.751 kg for residential building 1 and 2 respectively. It has been observed that electricity and LPG consumption is emitting more CO₂ among other inventories. By analyzing the two building it is clear that Residential Building 2 is completely a zero carbon emission building design. It is mainly because number of trees and green coverage is more and also use of less carbon emitting building materials like wooden frames instead of steel, solar lights fitted at the outside save considerable amount of energy. 14417.105 kg of extra carbon sequestration is possible, which is about 28.09 % of CO₂ emitted by that building. But plantation in residential building 1 emits CO₂ 40545.638 kg CO₂ in excess of sequestration. From this analysis carbon emission can be reduced either by planting trees or by replacing high CO2 emitting materials with low CO2 emitting materials.

REFERENCES

- Megha S Ramesh, Sulthana B.S, Ajmi A, Sanoj S Razna Rahim (2019) Carbon Footprint Assessment of MESITAM International Journal of Engineering Research & Technology Vol. 8 Issue 06, June ISSN: 2278-0181.
- [2] **Jeffy George, Jeevan Jacob** (2018) Assessment and Reduction of Embodied Carbon in buildings International Research Journal of Engineering and Technology, Volume: 05, April, Issue: 04 e-ISSN: 2395-0056.
- [3] Che Muhammad Fatihi Hafifi Che Wahid1, Muhammad Rozaid Ramli1, Eeydzah Aminudin, Zainura Zainon Noor, Monh Neardey, Rozana Zakaria, Mohd Rosli Hainin, Rosli Mohamad Zin, Mohd Khairul Idham Mohd Satar, Muhammad Naqiuddin Mohd Warid, Muhd Zaimi Abd. Majid and Chai Chang Sa'ar (2018) Review on the method for

carbon footprint calculation of highway development Journal of Material Science and engineering IOP Conf. Ser513 012001.

- [4] **ChanghaiPeng and XiaoWu** (2015,) Case Study of Carbon Emissions from a Building's Life Cycle Based on BIM and Ecotect Advances in Materials Science and Engineering ArticleID954651,15 pages.
- [5] Arya V Arnold, Dr.Sunil Edward (2014) A model for Low Carbon Campus in Kerala International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 ISSN2229-5518.
- [6] Mitchell, J. F. B., Lowe, J., Wood, R. A. and Vellinga, M.,Extreme events due to uman-induced climate change". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 364, No. 1845, pp. 2117–33.
- [7] **Mary Lissy P N**,(2012) Carbon footprint of an educational institution as technique for sustainable development". The International Journal of Engineering and science, vol 1 (2) pp 196-200.