

'Planning Designing & Estimating of Residential Building'

Mr. Suyog R Jadhav¹, Ms. Sejal S Bhogan², Ms. Renuka V Bhogan³, Mr. Sahil D Sawant⁴, Mr. Mukul M Chodankar⁵, Prof. Keshav Ramdas Manerikar⁶

¹⁻⁶Department of Civil Engineering, Yashwantrao Bhonsale Polytechnic, Sawantwadi, Sindhudurg, Maharashtra ***

Abstract - The principal objective of this project is to planning designing and estimation of Residential Building. the first objective of this project is to realize sufficient knowledge in planning, designing and estimating. Our project deals with the plan and style of Residential Building. Designing involves identifying the hundreds which influence a structure and therefore the forces and stresses which arise within that structure thanks to those loads, perform analysis to urge moments and shear forces on different elements of the structure then design the structure for ultimate loads and moments. The hundreds are often self-weight of the structures, other dead loads, live loads, moving (wheel) loads, wind load, earthquake load, load from natural process etc. Auto CAD may be a software tool to style functional design of plan. Estimation includes finding the quantities of materials required for the development of the structure and requirements of labour etc., finally determining the general cost of the structure before execution of labour. During this project work, an effort is formed consistent with Building by laws and style of residential building as per is: 456-2000, IS-1200 and SSR. The layout planning may be a part of urban development it includes planning of residential houses, commercial complexes, service roads, primary health centers, school...& other amenities sewerage system for whole layout (includes treatment, sewer main, storm water drains), water distribution system. This article includes design& estimation of residential building in plot of layout planned.

Key Words: Planning, Designing, Estimating, Building

1. INTRODUCTION

Shelter is the one of the basic needs of the habitation. In this project we have complete the planning designing and estimating of the residential building. The project is completed with the references to the Indian standard codes. In our project we are introducing our topic "Planning, Designing and Estimating of Residential Building". Structural design is an art and art and science of designing with economy and elegance, a safe, serviceable and a durable structure. The entire process of structural planning and style requires not only imagination and conceptual thinking but also sound knowledge of science of structural engineering besides knowledge of practical aspects, such as relevant design codes and bye-laws, backed by sample experience, institution and judgment. In this project, an attempt is made on planning, design and estimation of residential building. The main object of our project is to know the various aspect of building like planning, designing and estimation. Before construction of any residential building, we required making plan on AutoCAD, normally AutoCAD software is used for planning of residential building in 2D drawings form that we can draw elevation and sections of buildings and Revit is used to draw 3D drawing. The design of residential building is administered as per Limit State analysis. The various IS code are used for design of Residential building. Estimations are completed by using rates from schedule of Rate (2020-21) by Public Work Department.

1.1 Problem Definition:

Planning:

Planning of the residential building is the arrangements of the various components of units of a building in systematic manner so as to forma meaningful and homogeneous structure to meet its functional purpose. Building planning is the graphical representation of a building will be looked like after construction.

Design:

The design is process of section percussion from the analysis results by using suitable analysis method. The aim of design is to achievement of an acceptable probability that structures being designed will perform satisfactorily during their intended life

Estimation:

A cost estimate is defined for this report/project as the initial projected building construction cost figure. Cost estimation is the process by which, based on information available at a particular phase of project development, the ultimate cost of a project is estimated. This quantification of cost is the initial figure that allows the project to proceed to the next phases for final design and construction.

Aim of Project:

The aim of the project is to plan, design and estimation of framed structure of a residential building.

2. SCOPE OF PROJECT

This project is about Planning, Designing and Estimating of Residential building. Building planning is the arrangement of various component or unit of a building in systematic manner so as to form a meaning and homogeneous structure to meet its functional purpose. It is by builder and contractor to construct buildings of all kinds. Building planning is also useful when it is essential to estimate how much a project will cost and preparing project budgets building planning is also useful. When approaching the designing of residential building, the thing to consider is occupants, lighting and ventilation. By considering all these factors the scaled plan is designed. This ensures efficient use of floor space without wasting it. If done right, it accounts for all possible use of a given space. An estimate is process by which based on information available at a particular phase of project, the estimate is determining the feasibility and profitability of a potential project. An accurate estimation keeps all parties focused on delivering a project on time and under budget.

Table -1: Details of the Project:
--

Type of Building	Residential Building	
Type of Structure Frame	Frame Structure	
Number of Floors	3 (G + 2)	
Floor to Floor Height	2.9 m	
Height of Plinth	0.6 m.	
Plot Area of Building	1548.00 Sq.m.	
	Front – Service road	
Plot Detail	followed a green zone from	
r lot Detall	the between Dodamarg and	
	Bhedasi.	
Type of Apartment	1BHK	

Arrangement of Rooms

Living room – This is the area for general use where family spends much of their time. It is usually near the entrance of the house. During winters, this area receives much of the sunshine and in summer, the sunrays enter from southern part.

Kitchen – this is usually made in the eastern side of the plot for morning sunshine, which refreshes and purifies the air.

Bedroom – this area should provide privacy to the members and should provide provision for table, chairs, and cupboards. Attached toilets may be provided for ease of convenience.

Bath & W.C. – Usually, bath and W.C. are combined in a single room and attached to bedroom for increase of convenience and privacy. The bathroom is usually made white with glazed tiles with complete showers, bathtubs etc.

Verandah – A residential building must be provided with open verandahs at the front and rear side of the home. This verandah provides protection to the home from sunrays, wind and rain. It also provides with a place to sit and enjoy. This area varies between 10%-20% of the total area.

Stair case– The staircase should be placed in the front of the building if it is intended for visitors and should be placed at the back of the home if family members would use it more. Rises & treads should be uniform to smooth movement.



Fig -1: Ground floor plan

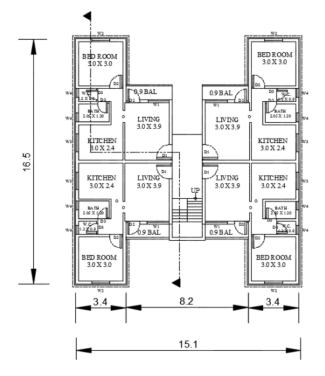


Fig -2: First and second floor

Fig -3: 3D view of Building

3. DETAILS OF DESIGN

Design of Slab is plane structural members whose thickness is small as compared to its length and breadth. Slabs are most frequently used as roof covering and floors in various shapes such as square, rectangular, circular, triangle, etc. in building. Slabs supports mainly transverse loads and transfers them to the supports by bending action in one or more directions. Beams or walls are the common supports for the slabs.

Types of Slabs One Way Slab Two Way Slab Cantilever Slab

3.1 Slab Design of Bed Room Area (S1)

Dimension of Slab (3.2×3.2) M20 grade concrete, Fe 415 HYSD bar Check for Slab Span Ration = Ly/Lx = 3200/3200 = 1 < 2The Slab should be designed as two way slab. Given: lx = 3.2 m = 3200 mm. = 3.2 m = 3200 mm. ly = 0.062. αx = 0.062.αy F.F. = 1 KN/m2L.L = 2.9 KN/m2Step 1: Estimation of Slab Thickness (davail) If lx < 3.5 and L.L. < 3 KN/m2. D $= lx / 35 \times 0.8$ = 3200 /35 ×0.8 = 114.28 mm ≌ 120 mm. D Assume $\emptyset = 08 \text{ mm}$ and dc = 15mm davail = D - dc - $\emptyset / 2$ = 120 - 15 - 8 /2 davail = 101 mmStep 2: Effective Span (le) For cantilever slab, effective span (le) is taken as: le x= 3.2 m

Step 3: Determine the Intensity of UDL (w) Load Calculation a. Self-weight of Slab = $(1 \ 1 \ D) \ 25 = (1 \ 1 \ 0.12) \ 25 = 3 \ KN/m$. b. Floor Finish = 1 1 F.F. = 1 1 1 = 1 KN/m. c. Live Load = 1 1 L.L. = 1 1 2.9 = 2.9 KN/m. Total Load = w = a + b + c = 3 + 1 + 2.9 = 6.9 KN/m. Design of Udl = wd = w f = $6.9 \ 1.5 = 10.35 \ \text{KN/m}$. Step 4: Calculate Design Moment (Md) Mxd = x wd l2xe = 0.062 10.35 3.22 = 6.57 KN.m Myd = y wd l2xe = 0.062 10.35 3.22 = 6.57 KN.m Step 5: Calculate Required Effective Depth (d reqd) and **Overall Thickness (D)** Calculate (dreqd) by equating: Mulim = MxdFor M20 and Fe 415 0.138 fck b d2 = 6.57 106 0.138 20 1000 d2reqd = 6.57 106 d reqd = 48.79 mm < davail (101 mm)hence Safe. Step 6: Calculate Area (Astx) and Spacing (Sx) of main steel X - direction. Area of main steel (Assume suitable diameter of main bar - 8 mm, 10 mm or 12 mm) $= 0.5 \text{ fck / fy} (1 - \sqrt{1 - (4.6 \text{ Mxd}) / (\text{fck } \times b \times d^2))} \times b \times d$ Astx $= 0.5 \times 20 / 415 (1 - \sqrt{1 - (4.6 \times 6.57 \times 10^{6})}) (20 \times 10^{6})$ 1000× [101] ^2)) ×1000×101 = 187.47 mm2 Astx Spacing of main steel is taken as least of: $= 1000 \times A\emptyset /Astx$ Sx $=(1000 \times \pi/4 \times 8^{2})/187.47$ = 268.12 mm. Sx = 3d $= 3 \times 101$ = 300 mm Sx = 300 mm Provide $Sx = Sx = 268.12 \text{ mm} \cong 260 \text{ mm} \text{ C} - \text{C}$ Step 7: Calculate Area (Asty) and Spacing (Sy) of Main **Steel Y - direction.** d' = d - Ø = 101 - 10 = 91 mm $= 0.5 \text{ fck/fy} (1 - \sqrt{1 - (4.6 \text{ Myd})/(\text{fck} \times b \times d^{2})) \times b \times d^{2}}$ Astv $= 0.5 \times 20/415(1 - \sqrt{1 - (4.6 \times 6.57 \times 10^{6})}) (20 \times 10^{6})$ 1000× [91] ^2)) ×1000×91 = 210.13 mm2Astv Spacing of Main Steel is taken as least of $= 1000 \times A\emptyset / Astd$ Sy $=(1000 \times \pi/4 \times 8^{2})/210.13$ = 239.21 mm Sy $= 3 \times d' = 3 \times 9$ = 273 mm. Sv = 300 mm. Provide Sy = 239.21 mm \cong 230 mm

International Research Journal of Engineering and Technology (IRJET) e-ISSN

T Volume: 08 Issue: 06 | June 2021

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

Table: 2 Design of Slab:-

Sr.	Type of Slab	Size of Slab	Main Reinforcement		Distribution Reinforcement		Depth
No.	Type of Slab	(mm)	Diameter (mm)	Spacing (mm)	Diameter (mm)	Spacing (mm)	(mm)
1	Two Way Slab (S1)	320 × 320	8	260	8	230	
2	Two Way Slab (S2)	240 × 320	8	210	8	120	
3	Two Way Slab (S3)	260 ×320	8	240	8	210	200
4	Two Way Slab (S4)	310 × 410	10	300	10	270	
5	Cantilever Slab (S5)	110 ×320	10	300	8	290	

3.2 Design of Beam

Concrete is fairly strong in compression but very weak in tension. Hence Plain concrete cannot be used in situation where considerable tensile stresses develop. If flexural member like beams and slabs are made of plain concrete their load carrying capacity is very low due to its low tensile strength. Since Steel is very strong in tension steel bars are provided to resist tensile stress at a place where the maximum tensile stresses are developed. In case of simply supported beam, tensile stresses are induced in bottom layer because of positive bending moment (sagging bending moment) and hence steel bars are provided near the bottom of the beam.

There are three types of reinforced concrete beams:

1) Singly reinforced beams.

2) Doubly reinforced beams and

3) Singly or doubly reinforced flanged beams. Design of Beam

B1 Beam Size = 230×230 b = d/2 le =Span = 0.23/2 + 3 + 0.23/2 = 3.23 m w = 20 KN/m. Mu = $(wd \times le^2)/8$ = $(20 \times (3.23)^2)/8$ Mu = 26.082 KN.m

Step 1: Calculate design moment

Md = Mu $\times \gamma f$ $= 26.082 \times 1.5$ = 39.123 KN.m Md = 39.123 × 106 N.mm. Step 2: Calculate Mulim for balanced section for Fe 250. Mulim = 0.149 fck bd2 Step 3: Calculate d, by equating Mulim = Md 0.149 fck bd2 $= 39.123 \times 106$ $0.149 \times 20 \times d/2 \times d2$ $= 39.123 \times 106$ $2.98 \times (d^3)/2$ $= 39.123 \times 106$ 1.49 d³ $= 39.123 \times 106$

d ³	= 26257046.98	
d	= 297.223 mm ≅ 300 mm	

Step 3: Calculate D and b

Assume effective cover d' = 40 mm

D	= d + d'				
	= 300 + 40				
	= 340 mm				
and					
b	= d/2				
	= 300/2				
	= 150 mm				
Step 4: Calculate area of reinforcement Ast					
Ast	= (Ptlim $\times b \times d$)/	100			
	= (0.088 fck ×b >	<d) 100<="" td=""></d)>			
(For Fe	250 = Ptlim = 0.0	988 fck)			
	= (0.088 ×20 ×1	50 ×300)/100			
Ast	= 792 mm ²				
Step 5: Calculate no. of bars required					
		(Assume bar diameter = 8 mm)			
No. of b	ars required	$= Ast / (\pi / (4) \times \emptyset^2)$			
		$= 792 / (\pi / (4) \times 20^2)$			

= $2.52 \cong 3$ Nos. Provide 3 bars of 20 mm diameter on tension side. **Table: 3** Design of Beam:-

Sr. No.	Beam No.	Size of Beam (mm)	Span (mm)	Cover (mm)	Diameter	No of Bars	Depth
1	B1	230 × 230	3230	40	20	2	300
2	B 2	230 × 230	3230	40	20	3	300
3	B3	230 × 230	2480	40	20	2	250
4	B4	230 × 230	2630	40	20	2	260
5	B 5	230 × 230	3375	40	20	2	350
6	B6	230 × 230	4202	40	20	4	360

3.3 Design of Column

A vertical member whose effective length is greater than 3 times its least lateral dimension carrying compressive loads is called as column transfer the loads from the beams of slabs to the footing or foundations. The inclined member carrying compressive loads as in case of frames and trusses is called as struts. Pedestal is a vertical compression member whose effective length is less than 3 times its least lateral dimension. Generally the column may be square, rectangular or circular in shape.

Short Column.

When this ratio of effective length to the least lateral dimensions of this column is less than 12, then it is known a short column

 $lef / b \le 12$

lef = effective length

b = least lateral dimension of column

International Research Journal of Engineering and Technology (IRJET) e-I

IRJET Volume: 08 Issue: 06 | June 2021

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

Long Column

A long or slender column is the one whose ratio of effective length to its least lateral dimension is not less than 12. Then it is termed as a long column. lef / b \geq 12 lef = effective length b = least lateral dimension of column Design of Column (C1) Given: Column Size = 230 × 450 Breadth = b = 230 mm

- Depth = d = 450 mm
- fck = 20 N/mm2
- fy = 415 N/mm2
- Step No. 1: Check of Eccentricity.

emin = L/500 + D/800

= 2440/500 + 450/30

= 19.88 mm

- emax = $0.05 \times D$
 - = 0.05 × 450
 - = 22.5 mm
- emin (19.88 mm) < emax (22.5 mm) ,hence safe
- Step 2: Design Longitudinal Reinforcement.
- Asc = $0.01 \times \text{Ag}$ = $0.01 \times (b \times D)$ = $0.01 \times (220 \times D)$
 - = 0.01 × (230 × 450) = 1035 mm2

(Select bar diameter and number of bars having total area approximately equal to Asc)

Provide 8 bars of 12 mm diameter and 2 bars of 25 mm diameter.

Asc. provided = $8 \times A20 + 2 \times A25$ = $8 \times \pi/4 \times 122 + 2 \times \pi/4 \times 252$ = 904.779 + 981.747= 18886.526 > 1035 mm2....hence safe.

Check for percentage of Steel

Ptprovided = (Asc.provided)/Ag × 100 = 1886.526/((230 × 450)) × 100 Ptprovided = 3.38 % Ptmin (0.8 %) < Ptprovided (1.82 %) < Ptmax (6 %)

Hence Safe.

Step 3: Design of lateral ties

Diameter of lateral ties is taken greater of $:1/4 \times diameter$ of largest bar

= 1/4 × 25 = 6.25 mm 6 mm. ∴ Provide 8 mm diameter lateral ties.

Spacing or pitch of later ties is taken least of:

Least lateral dimension

= 230 mm 16 × Diameter of smallest bar = 16 × 12 = 192 mm. 300 mm

Provide lateral ties 8 mm Ø @ 192 mm C-C. **Step No. 4: Calculate Ag, Asc and Ac.**

Ag = $b \times D$

- = 230 × 450
- Ag = 103500 mm2

= no. of bars $\times A\emptyset$ Asc $= 4 \times \pi/4 \times d2$ $= 8 \times \pi/4 \times 122$ = 904.79 mm2Asc = Ag - Asc Ac = 103500 - 904.79 = 102595.21 mm2Ac Step No. 5: Calculate Ultimate Load Carrying Capacity of Column Pu. Pu = $(0.4 \times \text{fck} \times \text{Ac}) + (0.67 \times \text{fy} \times \text{Asc})$ $= (0.4 \times 20 \times 102595.21) + (0.67 \times 415 \times 904.79)$ = 1072338.54 N Pu = 1072.34 KN Step No. 6: Calculate Working Load. Pu $= Pu/\gamma f$

= 1072.34/1.5

Pu = 714.89 KN.

Table: 4 Design of Column:-

	Schedule of column				
Sr. No.	Type	Size in (mm)	Longitudinal Steel	Lateral Tiles	
1	C1	230 × 450	12 Ø - 8 No	8 mm Ø @ 192 mm C-C.	
2	C2	230 × 375	12 Ø - 6 No	8 mm Ø @ 192 mm C-C.	
3	C3	230 × 300	12 Ø - 6 No	8 mm Ø @ 192 mm C-C.	
4	C4	230 × 310	12 Ø - 4 No	8 mm Ø @ 192 mm C-C.	

3.4 Design of Footing

Foundation is an important part of the structure which transfers the load of the super structure to the foundation soil the foundation distributes the load over a hanger area so that the pressure on the soil does not exceed its allowable bearing capacity and restricts the settlement of the structure with in the permissible limits. Foundation increases the stability of the structure. Foundations may be shallow or deep foundation depending up on the load and type of foundation soil if the load to be supported is very high and soil is of low bearing capacity deep foundation like pile foundation well foundation etc. are provide if the soil with adequate bearing capacity is available at reasonable depth, shallow foundation are provided.

Types of column footing One Way shear consideration (Wide beam theory) Two way shear consideration (Punching shear) Design of Footing (F1)

Given: Column Size = 230 mm × 450 mm

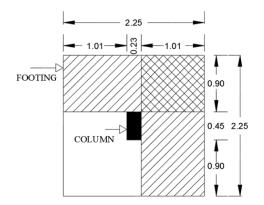
Footing Size = 2250 mm × 2250 mm

fck = M20:

fy = Fe 415.

Factored Load = 800 KN -on column;

Self-weight = 5%


Ultimate bearing capacity = 300 KPa Step 1: Calculate Bending Moment

Upward soil pressure (P)

= (Factored load on Column)/ (Size provided)

= (1.5 × 800)/ (2.25 × 2.25)

Fig: 4 Footing and Column Plan

Р = 237.037 KN/m2 Mx = 1 × 1.01 × 237.037 × 1.01/2 = 120.90 KN.m $= 1 \times 0.9 \times 237.037 \times 0.9/2$ My = 95.99 KN.m **Step 2: Calculate dreqd** Mumax = 0.138 fck bd2 ...for Fe 415 Equating Mumax to Mx 0.138 fck bd2 = 120.90 × 106 $0.138 \times 20 \times 230 \times d2$ $= 120.90 \times 106$ dregd = 436.409 mm say 440 mm Assuming cover 70 mm D = 440 + 50= 490 mm Step 3: Calculate Area (Astx) and Spacing (Sx) in X-Direction Astx = 0.5 fck /fy (1- $\sqrt{1}$ - (4.6 Mu)/(fck ×b×d2)) ×b×d $= 0.5 \times 20/415 (1 - \sqrt{1 - (4.6 \times 120.90 \times 106)}) (20)$ ×230 × (4402) 230 × 440 = 944.223 mm2 Assuming 16 mm Ø bars Spacing $Sx = 1000 \times A\emptyset$ /Astx $= (1000 \times \pi/4 \times (16) 2)/944.223$ = 212.93 mm say 210 mm Step 4: Calculate Area (Asty) and Spacing (Sy) in Y-Direction Astv $= 0.5 \times 20 / 415 (1 - \sqrt{1 - (4.6 \times 95.99 \times 106)} / (20 \times 230)$ × (424)2) 230 × 424 Here d' = 440 - diameter of bar used = 440 - 16 = 424 mm Asty = 745.654 mm2Spacing of 16 mm Ø bars $= 1000 \times A\emptyset /Astx$ Spacing Sy $=(1000 \times \pi/4 \times (16)2)/745.654$ = 269.64 mm say 260 mm In X - direction 16 mm Ø @ 210 mm In Y - direction 16 mm Ø @ 260 mm

	Schedule of footing				
Sr. No.	Footing No. Size	In X -Direction	In Y - Direction		
1	F1 2250 X 2250	16 mm Ø @ 210 mm	16 mm Ø @ 260 mm		
2	F2 2100 X 2100	16 mm Ø @ 210 mm	16 mm Ø @ 250 mm		
3	F3 1800 X 1800	16 mm Ø @ 210 mm	16 mm Ø @ 230 mm		
4	F4 1350 X 1350	16 mm Ø @ 230 mm	16 mm Ø @ 260 mm		

4. CONCLUSIONS

This project includes the planning of Residential Building using AutoCAD, Design using Is Code and concludes with the cost estimate for the entire project. The cost estimate for the project has been calculated using Long Wall Short Wall Method in Microsoft Excel. For the Abstract cost CPWD Schedule of rates has been followed. In this project Planning, Designing, and Estimating of Residential Building. We all the member of our team has learned to plan a building with reference of National Building Cod of India- 2005.

This project includes the layout of G+2 residential building using AutoCAD, and concludes with the cost estimate for the entire project. The layout of the proposed G+2 residential building is based on a plot of area 1548.00 sq.m.

Planning, designing and estimating, these are the tree steps which are very important while constructing any structure. In this project we have detailed discuss about the planning, designing and estimating of the residential building. In future may be there are different methods are adopt to do the planning designing and estimating. For example there are newly software are comes in future to create plan. New software and advance option are generated to do these processes easily as we think that in future there are new software's, methods and advance option are developed. Especially for students to do their work easily.

REFERENCES

- [1] IS 875 (Part 1), Part 1: Dead Loads--Unit Weights of Building Materials (Second revision), Code of Practice for Design Loads (Other Than Earthquake) For Buildings and Structures, Bureau of Indian Standards, New Delhi, 2000.
- [2] IS: 875 (Part 2), Part 2: imposed loads (Second revision), Code of Practice for Design Loads (Other Than Earthquake) For Buildings and Structures, Bureau of Indian Standards, New Delhi, 1987.
- [3] Estimating and Costing by B. N. Dutta. (Book).
- [4] Estimating, Costing, Specifications & Valuations in Civil Engineering By Monojit Chakraborti (Book).
- [5] Is 456: 2000 'Plain and Reinforced concrete code of practice (Fifth revision).
- [6] Design of R.C.C structure by Nilam Sharma

Volume: 08 Issue: 06 | June 2021

- [7] Journal of Advanced Engineering Technology E-ISSN 0976-3945IJAET/Vol.III/ Issue IV/Oct.-Dec., 2012/104-106Research Paper "Earthquake analysis and design vs non earthquake analysis and design using STAAD Pro" ByB. Suresh, P.M.B Raj kiran Nanduri http://dx.doi.org/10.3991/ijet.v7i2.1906
- [8] Dr. S.R. Karve & Dr. V.L. Shah "Illustrated design of Reinforced concrete Buildings"
- [9] Reinforced concrete Structures by A.K. Jain and B.C. Punmia for design of beams, columns and Slab.
- [10] Fundamentals of Reinforced concrete structure by N.C. Sinha
- [11] Reinforced Concrete Vol 1 DR.H.J.SHAH Code Books 1. IS 456-2000 code book for design of beams, columns and slabs 2. SP-16 for design of columns.
- [12] Planning, Analysis and Design of Residential Building(G+5) By using STAAD Pro. Dunnala Lakshmi Anuja, V.S.Nagasai PG Scholar, Assistant Professor Srinivasa Institute of Engineering And Technology, Cheyyereu, Amalapuram, A.P, India, Srinivasa Institute of Engineering And Technology, Cheyyereu, Amalapuram, A.P, India. IJEDR 2019 | Volume 7, Issue 3 | ISSN: 2321-9939
- [13] Planning Analysis and Design of Residential Building, Quantity Survey B.Pradeep Kumar Sk.Yusuf Basha ISSNN0:2348:4845
- [14] D.Ramya, A.V.S.Sai Kumar "Comparative Study on Design and Analysis of Multistoreyed" 4(10), 125–130, IJESRT, Oct 2015.