
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3395

Comparison between ARM AMBA Protocols and Verification of APB

Protocol Using System Verilog & UVM

Soumya Rai1, Virendra Pratap Yadav2

1M. Tech, Dept. of ECE, SHEAT College of Engineering and Management, Varanasi, India
2Associate Professor, Dept. of ECE, SHEAT College of Engineering and Management, Varanasi, India

---***---

Abstract - Increasing technology increases the amount of
logic that can be placed on a silicon chip, resulting in the
development of highly integrated SoC (System on Chip)
designs. The most important aspect of a SoC is how well it is
interconnected. An on-chip bus architecture is used by the SoC.
The AMBA (Advanced Microcontroller Bus Architecture) bus is
the most widely used on-chip bus introduced by ARM. Almost
85-90 percent of any SoC's on-chip bus is AMBA (Advanced
Microcontroller Bus Architecture). The most commonly used
AMBA protocols for on-chip communication are APB, AHB, and
AXI in the form of an AHB/AXI to APB bridge, with AHB and
AXI interfacing high bandwidth peripherals and APB
interfacing low bandwidth peripherals. Pipelining, burst, and
split transfers are among the advanced features included in
these protocols. In this paper, we describe a case study for
various AMBA SOC bus protocols and compare their
performance: AMBA (Advanced Microcontroller Bus
Architecture) protocols A verification environment of the
AMBA APB protocol using the System Verilog language and
the Universal Verification Methodology is simulated using the
Aldec Riviera Pro simulator, which is freely available on the
EDA playground. This paper begins with a brief overview of
the AMBA 2.0 protocol, AMBA 3.0 protocol, and AMBA 4.0
protocol, and concludes with a discussion of a performance
comparison analysis of all three AMBA bus protocols with
APBand AXI protocol simulation results.

Key Words: SoC, AMBA, AXI, APB, AHB, UVM, System
Verilog.

1.INTRODUCTION

Advanced Micro Controller Bus Architecture (AMBA) Bus
Protocols is a collection of ARM interconnecting
specifications that standardise chip communication
mechanisms between different functional blocks (or IP) for
building high-performance SOC designs. Usually, these
designs include one or more microcontrollers or
microprocessors together with a variety of other
components—internal memory or external memory bridge,
DSP, DMA, accelerators and various other peripherals such
as USB, UART, PCIE, I2C, etc [1]. All incorporated on a single
chip. The main incentive of AMBA protocols is to provide a
standard and efficient way of interconnecting these blocks
with re-use across multiple designs.

In recent years due to the growing market conditions for
low-power, a minimum area with lowest engineering cost
and high-performance systems, as well as the enhancement
of semiconductor process technology, the demand for Very
Large-Scale Integration (VLSI) increased to the point that all

device components are expected to be integrated into a
single chip called a System on chip (SoC). These intellectual
property (IPs) with different features are inserted into a
chip, and all of these IP modules may have completed their
design and verification separately. However, several
scenarios are posed unexpectedly with the individual IPs,
and thus the whole SoC can lead to failure. Incompatibility
between IP interfaces causes a common transaction error
problem. Thus, for the implementation of any System on chip
(SoC) it has become a rule that the standardised and pre-
tested bus protocol interface architecture should be
integrated. So on-chip communication using a bus protocol,
the specification of which provides a standard interface that
facilitates IP integration, has become the basis of the SoC
architecture. Some of the standards for bus-based
communication architecture have been set over the past few
years in order to facilitate the reusability of IPs and to
achieve SoC convergence in time.

1.1. EVOLUTION OF AMBA PROTOCOL

The ARM architecture-based microcontroller system consists
of the various AMBA protocols (APB, AHB, ASB or AXI) as
required by the system. The basic role of the AMBA protocol
is the provision of communication media for peripheral
devices. SoC consists of on chip memory, high bandwidth
memory, and Direct Memory Access Device [2]. In order to
learn more about the AMBA protocols, first we need to
understand exactly where these various protocols are used,
how they have evolved and how they all integrate into the
SOC architecture. Fig -1 (AMBA 2.0 spec reference)
demonstrates the conventional AMBA-based SOC
architecture that uses AHB (Advanced High Performance) or
ASB (Advanced System Bus) protocols for high bandwidth
interconnect and APB (Advanced Peripheral Bus) protocols
for low bandwidth peripheral interconnect.

In the year 1996 AMBA was launched by ARM, initially AMBA
buses were the Advanced Peripheral Bus (APB) and the
Advanced System Bus (ASB). In its revised second version,
AMBA 2 (1999), AMBA High-Performance Bus (AHB) was
launched by ARM, a single clock-edge protocol. Further in the
year 2003, ARM launched their third generation, AMBA 3,
which includes the Advanced Extensible Interface (AXI) to
achieve even higher interconnect performance and the
Advanced Trace Bus (ATB) as part of the Main Sight on-chip
debug and trace solution. AMBA 4 specifications, beginning
with AMBA 4 AXI4, were introduced in 2010 and then
expanded system-wide consistency with AMBA 4 AXI
Coherency Extensions in 2011 (ACE). In 2013, the AMBA 5
Coherent Hub Interface (CHI) specification was released, with

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3396

a redesigned high-speed transport layer and features
designed to minimise congestion. With a limited number of
usable blocks (IP) integrated into SOC designs, the shared bus
protocols (AHB/ASB) began to reach limitations earlier, and a
point-to-point communication protocol —AXI was
implemented in the latest AMBA 3 revision (Advanced
Extensible Interface). A further improved version —AXI 4
was released in 2010. Fig. 2 shows this evolution of protocols
along with SOC design patterns in the industry.

Fig -1: ARM AMBA Bus Architecture [3].

Fig -2: Evolution of AMBA Protocols [5].

Fig -3(a) demonstrates how an AXI interconnect can be used
to create a SOC with different functional blocks talking via a
master-slave protocol. The interconnect shown in fig -3(b)
may be a custom crossbar or a switch configuration, or even
an off-the-shelf NOC (Chip Network) IP that supports
multiple AXI masters and slaves. The AXI interconnect allows
to scale up the number of agents connectivity compared to
the previous AHB/ASB bus. Bridge from AXI to APB on one of
the slave ports of AXI interconnect is mainly used to bridge
communications to a group of peripherals shared on the
APB bus.

Fig -3(a): Use of AXI Interconnect in SOC to establish
communication between different functional blocks.

Fig -3(b): Illustrative diagram of AXI Interconnect.

Further Evolution of AMBA protocols has taken place during
the age of mobile and smartphone, due to requirement of
SOCs with dual/quad/octa-core processors with integrated
shared caches and the need for hardware-managed
coherency across the memory subsystem. This contributed
to the implementation of ACE (AXI Coherency Protocol
Extension) in revision 4 of the AMBA.

Finally, in the current age of heterogeneous computing for
HPC and data centre markets, the convergence trend
continues with a growing number of processor cores along
with a number of heterogeneous computing elements such
as GPU, DSP, FPGAs, memory controllers and IO subsystems.
In 2013, AMBA 5 implemented the CHI (Coherent Hub
Interconnect) protocol as a redesign of the AXI/ACE
protocol. The signal-based AXI/ACE protocol has been
replaced with a modern packet-based CHI layered protocol
that can scale very well for the near future.

2. AMBA AHB PROTOCOL

AHB is the latest generation of AMBA buses designed to meet
the specifications of high-performance synthesizable designs.
It is a high-performance bus system that serves multiple bus
masters and provides high bandwidth operation. AHB
protocol has various features that are required for high-
performance, high clock frequency systems including wider
data bus configurations (64/128 bits), non-tristate
implementation, single-clock edge operation, split
transactions, single-cycle bus master handover and burst
transfers. The bridging between this higher level of bus and
the current ASB/APB can be achieved effectively to ensure
that any existing design can be easily merged. The AMBA AHB
architecture could include one or more bus masters, normally
the device will have at least one processor and test interface.
However, it would also be common for a Digital Signal
Processor (DSP) or a Direct Memory Access (DMA) to be used
as a Bus Master. The most common AHB slaves are the
external memory interface, the APB bridge and any internal
memory. Any other peripherals in the system may also be
used as an AHB slave. However, the low-bandwidth
peripherals normally reside on the APB.

2.1. AHB BUS INTERCONNECTION

The AMBA AHB bus protocol is designed to be used in
conjunction with the central multiplexor interconnection
scheme. Using this scheme, all bus masters drive out the
address and control signals indicating the transfer they wish
to perform, and the arbiter determines which master has its
address and control signals routed to all slaves. Central

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3397

decoder is also required to control the read data and the
response.

Figure 4, illustrates the structure required for the AMBA AHB
design with three masters and four slaves.

Fig -4: Multiplexer Interconnection [3].

2.2. AN OVERVIEW OF AMBA AHB OPERATION

The master must be granted access to the bus before the
AMBA AHB transfer can begin. This process is started by the
master applying the request signal to the arbiter. The arbiter
then indicates when the master will be granted the use of the
bus.

The AMBA AHB Bus Master will start the transfer by driving
the address and control signals. These signals provide
information on the address, direction and width of the
transfer, as well as an indication as to whether the transfer is
part of the burst. Two different forms of burst transfer are
allowed, first is incrementing bursts, which do not wrap at
address boundaries and the other one is wrapping bursts,
which wrap at particular address boundaries.

The write data bus is used to move the data from the master
to the slave while the read data bus is used to move the data
from the slave to the server. Each transfer consists of an
address and control cycle, one or more data cycles. The
address cannot be extended and therefore all slaves must
sample the address during that time. However, the data can
be extended with the HREADY signal. When this is low, Signal
causes waiting states to be inserted into the transfer and
allows the slave to provide or sample data for extra time.

There are four types of Response signals in AMBA AHB,
during any transfer the slave shows the status of the transfer
by using these four response signals, HRESP [1:0] namely:

 OKAY The OKAY response is used by slave to
indicate that the transfer is progressing normally
and that when HREADY goes HIGH this shows the
transfer has been completed successfully.

 ERROR The ERROR response given by slave
indicates that a transfer error has been occurred
during the transfer and the transfer has been
unsuccessful.

 RETRY and SPLIT Both the RETRY and SPLIT
transfer responses by slave indicate that the transfer
cannot complete immediately, but the bus master
should continue to attempt the transfer but there is
some difference between the SPLIT and RETRY is
response is that, a SPLIT response tells the arbiter to
give priority to all other masters until the SPLIT
transfer can be completed simply means readjusting
the priorities, whereas the RETRY response only
tells the arbiter to give priority to higher priority
masters.

During normal operation, the master is permitted to
complete all data transfers in a particular burst only, before
the arbiter grants the bus access to another master. Despite
that, in order to avoid excessive arbitration latencies, it is
possible for the arbiter to break up the burst and, in such
cases, the master must re-arbitrate the bus in order to
complete the remaining transfers in the burst.

2.3. TRANSFER TYPES IN AHB

The transfer types in AHB are categorized into four different
types, as indicated by the HTRANS [1:0] signals.

 IDLE: When HTRANS [1:0] is ‘00’ then transfer type
is IDLE. This type indicates that there is no need for
data transfer. When a bus master is granted access
to the bus but does not wish to perform a data
transfer, the IDLE transfer type is used. Slaves must
always respond to IDLE transfers with a zero-wait
state OKAY response, and the transfer will be
ignored by the slave.

 BUSY: When HTRANS [1:0] is ‘01’ then transfer type
is BUSY. Bus masters can use the BUSY transfer type
to insert IDLE cycles in the middle of transfer bursts.
This transfer type indicates that the bus master is
still in the middle of a transfer burst, but the next
transfer cannot take place right away. When a
master employs the BUSY transfer type, the address
and control signals must correspond to the next
transfer in the burst. The slave should disregard the
transfer. Slaves must always respond to zero wait
state OKAY transfers with a zero-wait state OKAY
response.

 NONSEQ: When HTRANS [1:0] is ‘10’ then transfer
type is NONSEQ. This type represents the first
transfer of a burst or a single transfer. The address
and control signals have nothing to do with the
previous transfer. On the bus, single transfers are
treated as bursts of one, and thus the transfer type is
NONSEQUENTIAL.

 SEQ: When HTRANS [1:0] is ‘10’ then transfer type is
NONSEQ. The rest of the transfers in a burst are
SEQUENTIAL, and the address is related to the
previous transfer. The control information is the
same as it was in the previous transfer. The address

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3398

is equal to the previous transfer's address plus the
size (in bytes). In the case of a wrapping burst, the
transfer's address wraps at the address boundary
equal to the transfer's size (in bytes) multiplied by
the number of beats (either 4, 8 or 16). All transfer
types in detail are shown in fig -5.

Fig -5: This figure shows the transfer types in AHB [3].

3. AMBA APB PROTOCOL

The Advanced Peripheral Bus (APB) is a bus hierarchy in the
Advanced Microcontroller Bus Architecture (AMBA) that is
optimized for low power consumption and low interface
complexity. The AMBA APB should be used to interface with
any low-bandwidth peripherals that do not require the high
performance of a pipelined bus interface.

The most recent revision of the APB ensures that all signal
transitions are only related to the clock's rising edge. This
advancement means that APB peripherals can be easily
integrated into any design flow, with many benefits such as
APB protocol performance being independent of the clock's
mark-space ratio, performance being improved at high-
frequency operation, static timing analysis being simplified
by the use of a single clock edge, and many Application-
Specific Integrated Circuit (ASIC) libraries having a better
segregation.

3.1. STATE DIAGRAM FOR APB PROTOCOL

Figure 5, shows a state diagram that can be used to represent
the activity of the peripheral bus.

Fig -5: State diagram for APB protocol specification [3].

The operation of the APB state machine is described by the
three states given below:

IDLE - The peripheral bus's default state.

SETUP - When a transfer is required, the bus enters the
SETUP state, at which point the appropriate select signal,
PSELx, is asserted. The bus will always move to the ENABLE
state on the next rising edge of the clock after remaining in
the SETUP state for one clock cycle.

ACCESS - The enable signal, PENABLE, is asserted in the
ENABLE state. During the transition from SETUP to ENABLE,
the address, write, and select signals all remain stable. The
ENABLE state is also only valid for one clock cycle, after
which the bus will return to the IDLE state if no further
transfers are required. If another transfer is to follow, the bus
will move directly to the SETUP state. It is acceptable for the
address, write, and select signals to glitch during the ENABLE
to SETUP transition.

3.2. WRITE TRANSFER IN APB

The address, write data, write signal, and select signal all
change after the rising edge of the clock to begin the write
transfer. The SETUP cycle is the first clock cycle of the
transfer. The enable signal PENABLE is asserted after the
next clock edge, indicating that the ENABLE cycle is in
progress. During the ENABLE cycle, the address, data, and
control signals are all valid. At the end of this cycle, the
transfer is complete.

At the end of the transfer, the enable signal, PENABLE, will
be deasserted. Unless the transfer is immediately followed
by another transfer to the same peripheral, the select signal
will also be LOW.

To save power, the address and write signals will remain
unchanged after a transfer until the next access occurs. Only
a clean transition on the enable signal is required by the
protocol. In the case of back-to-back transfers, the select and
write signals may glitch.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3399

Fig -6: This figure shows the write transfer in APB
protocol.

3.3. READ TRANSFER IN APB PROTOCOL
The timing of the address, select, write and strobe signals are
all the same as for the write transfer in APB protocol.
Additionally, in the case of a read transfer, the slave should
provide the data during the ENABLE cycle and this data is
sampled at the end of the ENABLE cycle on the rising edge of
clock.

Fig -7: This figure shows the read transfer in APB
protocol.

3.4. APB BRIDGE AS APB MASTER

The APB bridge is the AMBA APB’s sole bus master.
Furthermore, the APB bridge is a slave on the higher-level
system bus. In APB we have single master which is APB
bridge but we can have multiple slaves maximum up to 16
slaves.

The APB bridge unit is helpful in converting system bus
transfers to APB transfers and performs a variety of
functions, including decoding the address and generating a
peripheral select, PSELx. During a transfer, only one select
signal can be active. The address is latched and held valid
throughout the transfer. Drives the APB data onto the system
bus for a read transfer, generates a timing strobe for the
transfer, and then drives the data onto the APB for a write
transfer.

Fig -8: This figure shows the APB signal interface of an
APB bridge.

3.5 VERIFICATION ENVIRONMENT FOR APB
PROTOCOL

The importance of verification in VLSI technology cannot be
overstated. Because it is used to find bugs in RTL designs at
an early stage, the overall design should not be destructive.
So, for the APB design, we are creating an environment in
System Verilog and using the UVM methodology. The
primary goal of developing a verification environment is to
generate stimulus for the DUT (design under test) and then
check the results to ensure that the function is correct. As a
result, by referring to the coverage report, test cases can be
modified or added.

3.6. SYSTEM VERILOG ENVIRONMENT

System Verilog is a hardware verification language that is
used for functional verification. It implements the high-level
data structures found in object-oriented languages such as
C++. These data structures enable higher levels of
abstraction and modeling of complex data types. System
Verilog, like the Verilog hardware languages, includes
constructs for modeling hardware concepts like cycles, tri-
state values, and wires. As a result, System Verilog can be
used to simulate and validate HDL designs with high-level
test cases.

Fig -9: System Verilog Verification Environment.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3400

Figure 9, depicts the System Verilog environment. The
environment includes a Verilog-written DUT and a System
Verilog test bench that includes a System Verilog interface, a
simulation module, and a test program. The generator is
used in the system Verilog testbench to generate constrained
random test vectors. These vectors are transmitted to the
driver, who can then simulate the DUT. Verification reports
on states, transactions, and model messages are generated
by the monitor. The scoreboard examines the results and, as
a result, any changes in the modifications that are required
can be made. The benefit of System Verilog is object-oriented
programming, which greatly improves the reusability of
testbench components. The interface connects the DUT to
the System Verilog test bench, which contains the test
program.

3.7. UVM ENIVORNMENT

The Universal Verification Methodology (UVM) is a standard
verification methodology for validating RTL (Register
Transfer Level) designs. It is made up of a base class library
written in System Verilog. By extending these classes, the
verification engineer can create a variety of verification
components. Furthermore, UVM includes a slew of other
useful verification features, such as the use of macros to
implement complex functions and a factory for object
creation.

Sequence item: The transactions are created by extending
the uvm_sequence_item. This component generates random
numbers for the address and data. Field automation macros
are applied to this class's data members.

Sequences: A sequence is a collection of transactions. Users
in the sequence class can create complex stimuli. These
sequences can be randomized, extended to form new
sequences, and combined.

Sequencer: The UVM sequencer acts as a liaison between
the driver and the sequence. It sends the transaction to the
driver for execution and receives the driver's response. It
also serves as an arbitrator for multiple parallel sequences.

Driver: The driver initiates the next transaction request and
routes it to the lower-level components. Driver class is
created by extending uvm_driver.

Monitor: The Monitor extracts signal information from the
bus, converts it to transactions, and sends it through the
analysis port to the scoreboard for comparison.

Agent: The verification components driver, monitor,
coverage collector, and sequencer are all instantiated by the
agent. TLM connections are also used to connect these
components. The agent can operate in either active or
passive mode. In the active mode, the agent instantiates a
driver, a sequencer, a collector, and a monitor, whereas in
the passive mode, only the monitor and the collector are
instantiated and configured.

Environment: The Environment class in uvm instanstiate
and configures all subcomponents such as agents, drivers,
and monitors.

Testbench: The uvm_test is a subclass of the
uvm_component. For the given verification environment,

various test cases can be generated and stimulus is applied
to the DUT during the run phase.

All the components required for the creation of verification
environment are testbench.sv, apb_transaction.sv,
apb_sequence.sv, apb_sequencer.sv, apb_driver.sv,
apb_monitor.sv, apb_agent.sv, apb_scoreboard.sv,
apb_subscriber.sv, apb_env.sv, apb_test.sv.

Fig -10: APB protocol environment.

4. AMBA AXI PROTOCOL

For communication between master and slave components,
the AMBA AXI protocol supports high-performance, high-
frequency system designs. The AXI protocol has several
characteristics, including the fact that it is suitable for high-
bandwidth and low-latency designs, and that it meets the
interface requirements of a wide range of components, It
provides flexibility in the implementation of interconnect
architectures, and it is appropriate for memory controllers
with high initial access latency. It supports high-frequency
operation without the use of complex bridges and is
backward-compatible with AHB and APB interfaces.

The following are some of the protocol's key features:

 Unaligned data transfers using byte strobes are
supported.

 Address/control and data phases should be kept
separate.

 Support for the issuance of multiple outstanding
addresses.

 Separate read and write data channels allow for
low-cost Direct Memory Access (DMA).

 Burst-based transactions are used, with only the
start address issued.

 Allows for the simple addition of register stages to
provide timing closure.

 Out-of-order transaction completion is supported.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3401

4.1. AXI PROTOCOL ARCHITECTURE

In the upcoming section we will see the detailed architecture
of AXI protocol. The AXI protocol is a burst-based protocol
that defines five distinct transaction channels:

• Read address, whose signal names start with AR.

• Read data with signal names that begin with R.

• Write address, with signal names starting with AW.

• Write data, whose signal names begin with W.

• Write response channel creates a response with signal
names that begin with B.

An address channel transports control information
describing the type of data to be transferred. Data is
transferred between master and slave using one of two
methods:

• A write data channel that allows data to be transferred
from the master to the slave. The slave uses the write
response channel to signal the completion of the transfer to
the master in a write transaction.

• A read data channel to transfer data from the slave to the
master.

The AXI protocol allows for multiple outstanding
transactions, out-of-order transaction completion, and
address information to be issued prior to actual data
transfer.

4.2. AXI INTERFACE AND INTERCONNECT

As illustrated in Figure 11, a typical system consists of
several master and slave devices that are linked together via
some form of interconnect. The AXI protocol defines a single
interface for interfaces between a master and an
interconnect, a slave and an interconnect, and a master and a
slave. This interface definition is compatible with a wide
range of interconnect implementations. An interconnect
between devices is equivalent to another device with
symmetrical master and slave ports through which the true
master and slave devices can be connected.

Fig -11: Interconnect and Interface of AXI [8].

There are three interconnect topologies: shared address and
data buses, shared address and multiple data buses, and
multilayer with multiple address and data buses. Most
systems employ one of three topologies.

The address channel bandwidth requirement in most
systems is significantly less than the data channel bandwidth
requirement. By combining a shared address bus with
multiple data buses to enable parallel data transfers, such
systems can achieve a good balance between system
performance and interconnect complexity.

4.3. HANDSHAKE PROCESS IN AXI

To transfer address, data, and control information, all five
transaction channels use the same VALID/READY handshake
process. This two-way flow control mechanism means that
both the master and slave can control the rate at which
information is transferred between them. When address,
data, or control information is available, the source
generates the VALID signal. The READY signal is generated
by the destination to indicate that it is ready to accept the
information. Only when both the VALID and READY signals
are HIGH does transfer occur. There must be no
combinatorial paths between input and output signals on
master and slave interfaces.

Figures 12–14 depict examples of the handshake process. As
shown in Figure 12, the source presents information after T1
and asserts the VALID signal. After T2, the destination
asserts the READY signal. The source must maintain the
stability of its information until the transfer occurs at T3,
when this assertion is recognized.

Fig -12: VALID before READY handshake.

It is not permitted for a source to assert VALID before
asserting READY. When VALID is asserted, it must remain
asserted until the handshake occurs, which occurs at a rising
clock edge when both VALID and READY are asserted.

The destination asserts READY after T1 in Figure 13, before
the address, data, or control information is valid. This
assertion indicates that it is willing to accept the data. After
T2, the source presents the data and asserts VALID, and the
transfer occurs at T3, when this assertion is recognized. In
this case, transfer takes place in a single cycle.

Fig -13: READY before VALID handshake [8].

It is permissible for a destination to wait for VALID to be
asserted before asserting the corresponding READY. If
READY is asserted, it is permissible to deassert READY
before asserting VALID. Both the source and the destination
in Figure 14, indicate that they can transfer the address,
data, or control information after T1. In this case, the
transfer occurs at the rising clock edge, when both VALID

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3402

and READY assertions can be recognized. These assertions
imply that the transfer takes place at T2.

Fig -14: VALID with READY handshake [8].

5. SIMULATION RESULTS OF APB PROTOCOL

Verification Environment for APB Protocol is written in
System Verilog and UVM. A complete UVM Summary Report
is generated after simulating these codes with the Aldec

Riviera Pro simulator. The simulation results show that data
read from a specific memory location is the same as data
written to that memory location. As a result, the design is
functionally correct. The UVM report summary also ensures
that the design is functionally correct. Figure 15, depicts the
APB data transfer from Master/bridge to slave with the
various states. This figure shows write operation performed
at around 500 ns PWDATA is 11 in Hexadecimal.

Figure 16, shows the read operation. The data Read from
master is same as the data has been written to slave. This
figure shows write operation performed at around 2940 ns
PRDATA is 8F in Hexadecimal.

Fig -15: Simulation results from write operation obtained after verification of APB.

Fig -16: Simulation results for read operation obtained after verification of APB.

The UVM report contains the results of the UVM testbench
simulation. Figure 17, depicts the UVM report summary
generated after completing all UVM phases. The UVM INFO
field in the UVM report summary in figure 17, indicates that
there are Three hundred four (304) information messages.
The data provided by the UVM report summary ensures that
the design is error-free and does not generate any warnings
or fatal errors because the UVM ERROR, UVM WARNING, and
UVM FATAL values are all zero.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3403

Fig -17: UVM Report Summary.

6. COMPARISION BETWEEN AMBA PROTOCOLS

In this paper, we examined three important AMBA protocols
in accordance with industry standards. These protocols are
widely used in the VLSI industry for on-chip communication.

We started with evolution of AMBA protocols, from first
generation to fifth generation, their features, architecture,
bus length, complexity, response types, performance, types of
phases, are compared and the detailed comparison table 1 is
provided, which shows comparison between three important
industry level protocols namely APB, AHB and AXI.

AHB protocols supports one channel so as to carry out all
data transactions to the connected peripherals. Hence,
managing multiple masters requesting for a specific slave are
often done using an arbitration algorithm. The arbiter in AHB
use to manage these requests and the decoder decodes the
responses received from slaves after that send them to the
required masters. Here, when a specific transaction goes on,
no other transaction can start unless the previous one is
complete. This is one of the drawbacks which was handled
with the introduction of another concept of split-transactions.

AXI, on the other hand, is a multi-channel bus with distinct
channels for read and write addresses, read and write data,
and response. The concept of split-transaction does not exist
in AXI because separate channels are present for separate
operations. However, the concept of out-of-order execution is
present here.

Table -1: Detailed comparison between APB, AHB and AXI Protocol.

Features APB AHB AXI

AMBA Specification Advanced Peripheral
Bus

Advanced High-
Performance Bus

Advanced eXtensible
Interface

Processors All ARM 7,9,10 ARM 11

Performance Low bandwidth
peripheral

High performance
synthesis

High performance, high
frequency

No. of Control
signals

4 27 77

Phases Idle, Setup, Access Bus request, Address,
Data

Address, Data, Response

Burst Transfer Not supported Supported Supported

Burst Type - Single, Incrementing,
wrapping

Fixed, Incrementing,
Wrapping, Reserved

Burst Length 1 1-32 1-16

Complexity Easy to interface More complex than APB Most Complex

Interconnect Type Central Mux

(One to one connection)

Central Mux

(One to one connection)

Crossbar

(One to many connection)

Bus length Up to 32 bits wide 64/128 bits Up to 256 bits

No. of Masters Single master (i.e., APB
Bridge)

Max 16 Masters Max 16 Masters

No. of slaves Up to 16 Slaves Up to 16 Slaves Up to 16 Slaves

Power Consumption Minimal power
consumption

More power
consumption than APB

50 % more power
consumption than AHB

Pipelined Transfer Non-Pipelined Pipelined Operation, up
to 2 transfers supported

Pipelined Operation

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3404

QOS Not Present Not Present Present

No. of Cycles for Data
Transfer

At least 2 cycles At least 2 cycles At least 2 cycles

Response Type PSLVERR (to indicate
error condition on APB

Transfer)

OKAY, ERROR, SPLIT,
RETRY

OKAY, EXERROR, SLVERR,
DECERR

Read & Write Simultaneous
read/write not supported,

Separate read data and
write data bus

Simultaneous
read/write not supported,
Single Read/Write channel

Simultaneous read/write
not supported, Separate

Read/ Write Channel

Address Boundary - 1 kb Boundary 4 kb Boundary

7. CONCLUSIONS

 This paper began with an overview of the AMBA bus
architecture, followed by a discussion of the evolution of
AMBA protocols, and concluded with a detailed discussion of
the APB bus protocol. According to the specification, the APB
bus is designed in Verilog HDL and verified in System Verilog
and Universal Verification Methodology. The simulation
results show that data read from a specific memory location
is the same as data written to that memory location. As a
result, the design is functionally correct. The UVM report
summary also ensures that the design is functionally correct.

REFERENCES

[1] URL:https://anysilicon.com/understanding-amba-bus-
architechture-protocols/

[2] Nikhil B. Gaikwad, Vijay N. Patil “Verification of AHB
Protocol Using System Verilog Assertions.”
International Journal of Advance Research and
Innovative Ideas in Education, vol 4, Issue-5, 2018.

[3] ARM, “AMBA Specification (Rev 2.0)”.

[4] ARM, “An AMBA Specification Overview V1.0”.

[5] URL:https://developer.arm.com/architectures/system-
architectures/amba

[6] “AMBA AHB”- Specification by ARM Limited.

[7] URL: https://www.eetimes.com/aceing-the-verification-
of-a-cache-coherent-system-using-uvm/#

[8] Arm Holdings, "AMBA AXI and ACE Protocol
Specification"

[9] URL:https://en.wikipedia.org/wiki/Advanced_eXtensibl
e_Interface

[10] ARM, “AMBA 5 CHI Architecture Specification”.

[11] Abderahman Kriouile, Wendelin Serwe. “Formal
Analysis of the ACE Specification for Cache Coherent
Systems-on-Chip”. FMICS - 18th International Workshop
on Formal Methods for Industrial Critical Systems,
ERCIM Working Group on Formal Methods for Industrial
Critical Systems (FMICS), Sep 2013, Madrid, Spain.
pp.108-122. hal-00858521.

[12] Vaishnavi R.K, Bindu.S, Sheik Chandbasha, “Design and
Verification of APB Protocol by using System Verilog and
Universal Verification Methodology”, IRJET, Volume 6,
Issue 6, pp. 652-656, June 2019.

[13] URL:http://www.maven-silicon.com.

[14] Shankar, Dipti Girdhar, Neeraj kr. Shukla, “Design and
Verification of AMBA APB Protocol”, International
Journal of Computer Applications, Volume 95, Issue 21,
pp. 29-35, June 2014.

[15] Saurin Shah, Nirav Patel, “System verilog Based AMBA
AHB Verification Environment”, IJERT, Vol. 3, Issue 5, pp.
1988-1990, May 2014.

[16] Murli .M., Umadevi. S, Sakthivel.S.M., “Verification IP for
AMBA AXI Protocol using System Verilog”, International
Journal of Applied Engineering Research, Volume 12,
Issue 17, pp. 6534-6541, 2017.

[17] Harini H G, Kavitha V, “TLM based AMBA AXI4 protocol
implementation using Verilog with UVM environment”,
IJISET, Vol. 2, Issue 5, pp. 1107-1112, May 2015.

[18] G.Kanaka Maha Lakshmi, M. Manasa Lakshmi, “AMBA-
AXI Protocol Verification by using System Verilog”,
IRJET, Volume 3, Issue 8, pp. 136-140, August 2016.

[19] URL:https://www.chipverify.com/systemverilog/syste
mverilog-tutorial

https://anysilicon.com/understanding-amba-bus-architechture-protocols/
https://anysilicon.com/understanding-amba-bus-architechture-protocols/
https://developer.arm.com/architectures/system-architectures/amba
https://developer.arm.com/architectures/system-architectures/amba
https://www.eetimes.com/aceing-the-verification-of-a-cache-coherent-system-using-uvm/
https://www.eetimes.com/aceing-the-verification-of-a-cache-coherent-system-using-uvm/
https://static.docs.arm.com/ihi0022/e/IHI0022E_amba_axi_and_ace_protocol_spec.pdf
https://static.docs.arm.com/ihi0022/e/IHI0022E_amba_axi_and_ace_protocol_spec.pdf
https://en.wikipedia.org/wiki/Advanced_eXtensible_Interface
https://en.wikipedia.org/wiki/Advanced_eXtensible_Interface
http://www.maven-silicon.com/
https://www.chipverify.com/systemverilog/systemverilog-tutorial
https://www.chipverify.com/systemverilog/systemverilog-tutorial

