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Abstract - Increasing technology increases the amount of 
logic that can be placed on a silicon chip, resulting in the 
development of highly integrated SoC (System on Chip) 
designs. The most important aspect of a SoC is how well it is 
interconnected. An on-chip bus architecture is used by the SoC. 
The AMBA (Advanced Microcontroller Bus Architecture) bus is 
the most widely used on-chip bus introduced by ARM. Almost 
85-90 percent of any SoC's on-chip bus is AMBA (Advanced 
Microcontroller Bus Architecture). The most commonly used 
AMBA protocols for on-chip communication are APB, AHB, and 
AXI in the form of an AHB/AXI to APB bridge, with AHB and 
AXI interfacing high bandwidth peripherals and APB 
interfacing low bandwidth peripherals. Pipelining, burst, and 
split transfers are among the advanced features included in 
these protocols.  In this paper, we describe a case study for 
various AMBA SOC bus protocols and compare their 
performance: AMBA (Advanced Microcontroller Bus 
Architecture) protocols A verification environment of the 
AMBA APB protocol using the System Verilog language and 
the Universal Verification Methodology is simulated using the 
Aldec Riviera Pro simulator, which is freely available on the 
EDA playground. This paper begins with a brief overview of 
the AMBA 2.0 protocol, AMBA 3.0 protocol, and AMBA 4.0 
protocol, and concludes with a discussion of a performance 
comparison analysis of all three AMBA bus protocols with 
APBand AXI protocol simulation results. 

Key Words:  SoC, AMBA, AXI, APB, AHB, UVM, System 
Verilog. 
 
1.INTRODUCTION  

Advanced Micro Controller Bus Architecture (AMBA) Bus 
Protocols is a collection of ARM interconnecting 
specifications that standardise chip communication 
mechanisms between different functional blocks (or IP) for 
building high-performance SOC designs. Usually, these 
designs include one or more microcontrollers or 
microprocessors together with a variety of other 
components—internal memory or external memory bridge, 
DSP, DMA, accelerators and various other peripherals such 
as USB, UART, PCIE, I2C, etc [1]. All incorporated on a single 
chip. The main incentive of AMBA protocols is to provide a 
standard and efficient way of interconnecting these blocks 
with re-use across multiple designs.  

In recent years due to the growing market conditions for 
low-power, a minimum area with lowest engineering cost 
and high-performance systems, as well as the enhancement 
of semiconductor process technology, the demand for Very 
Large-Scale Integration (VLSI) increased to the point that all 

device components are expected to be integrated into a 
single chip called a System on chip (SoC). These intellectual 
property (IPs) with different features are inserted into a 
chip, and all of these IP modules may have completed their 
design and verification separately. However, several 
scenarios are posed unexpectedly with the individual IPs, 
and thus the whole SoC can lead to failure. Incompatibility 
between IP interfaces causes a common transaction error 
problem. Thus, for the implementation of any System on chip 
(SoC) it has become a rule that the standardised and pre-
tested bus protocol interface architecture should be 
integrated. So on-chip communication using a bus protocol, 
the specification of which provides a standard interface that 
facilitates IP integration, has become the basis of the SoC 
architecture. Some of the standards for bus-based 
communication architecture have been set over the past few 
years in order to facilitate the reusability of IPs and to 
achieve SoC convergence in time. 

1.1. EVOLUTION OF AMBA PROTOCOL 

The ARM architecture-based microcontroller system consists 
of the various AMBA protocols (APB, AHB, ASB or AXI) as 
required by the system. The basic role of the AMBA protocol 
is the provision of communication media for peripheral 
devices. SoC consists of on chip memory, high bandwidth 
memory, and Direct Memory Access Device [2]. In order to 
learn more about the AMBA protocols, first we need to 
understand exactly where these various protocols are used, 
how they have evolved and how they all integrate into the 
SOC architecture. Fig -1 (AMBA 2.0 spec reference) 
demonstrates the conventional AMBA-based SOC 
architecture that uses AHB (Advanced High Performance) or 
ASB (Advanced System Bus) protocols for high bandwidth 
interconnect and APB (Advanced Peripheral Bus) protocols 
for low bandwidth peripheral interconnect. 

In the year 1996 AMBA was launched by ARM, initially AMBA 
buses were the Advanced Peripheral Bus (APB) and the 
Advanced System Bus (ASB). In its revised second version, 
AMBA 2 (1999), AMBA High-Performance Bus (AHB) was 
launched by ARM, a single clock-edge protocol. Further in the 
year 2003, ARM launched their third generation, AMBA 3, 
which includes the Advanced Extensible Interface (AXI) to 
achieve even higher interconnect performance and the 
Advanced Trace Bus (ATB) as part of the Main Sight on-chip 
debug and trace solution. AMBA 4 specifications, beginning 
with AMBA 4 AXI4, were introduced in 2010 and then 
expanded system-wide consistency with AMBA 4 AXI 
Coherency Extensions in 2011 (ACE). In 2013, the AMBA 5 
Coherent Hub Interface (CHI) specification was released, with 
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a redesigned high-speed transport layer and features 
designed to minimise congestion.  With a limited number of 
usable blocks (IP) integrated into SOC designs, the shared bus 
protocols (AHB/ASB) began to reach limitations earlier, and a 
point-to-point communication protocol —AXI was 
implemented in the latest AMBA 3 revision (Advanced 
Extensible Interface). A further improved version —AXI 4 
was released in 2010. Fig. 2 shows this evolution of protocols 
along with SOC design patterns in the industry.  

 

Fig -1: ARM AMBA Bus Architecture [3]. 

 

Fig -2: Evolution of AMBA Protocols [5]. 

Fig -3(a) demonstrates how an AXI interconnect can be used 
to create a SOC with different functional blocks talking via a 
master-slave protocol. The interconnect shown in fig -3(b) 
may be a custom crossbar or a switch configuration, or even 
an off-the-shelf NOC (Chip Network) IP that supports 
multiple AXI masters and slaves. The AXI interconnect allows 
to scale up the number of agents connectivity compared to 
the previous AHB/ASB bus. Bridge from AXI to APB on one of 
the slave ports of AXI interconnect is mainly used to bridge 
communications to a group of peripherals shared on   the 
APB bus.  

 

 
Fig -3(a): Use of AXI Interconnect in SOC to establish 
communication between different functional blocks. 

 
Fig -3(b): Illustrative diagram of AXI Interconnect. 

 
Further Evolution of AMBA protocols has taken place during 
the age of mobile and smartphone, due to requirement of 
SOCs with dual/quad/octa-core processors with integrated 
shared caches and the need for hardware-managed 
coherency across the memory subsystem. This contributed 
to the implementation of ACE (AXI Coherency Protocol 
Extension) in revision 4 of the AMBA.  

 
Finally, in the current age of heterogeneous computing for 
HPC and data centre markets, the convergence trend 
continues with a growing number of processor cores along 
with a number of heterogeneous computing elements such 
as GPU, DSP, FPGAs, memory controllers and IO subsystems. 
In 2013, AMBA 5 implemented the CHI (Coherent Hub 
Interconnect) protocol as a redesign of the AXI/ACE 
protocol. The signal-based AXI/ACE protocol has been 
replaced with a modern packet-based CHI layered protocol 
that can scale very well for the near future.  
 
2. AMBA AHB PROTOCOL 

AHB is the latest generation of AMBA buses designed to meet 
the specifications of high-performance synthesizable designs. 
It is a high-performance bus system that serves multiple bus 
masters and provides high bandwidth operation. AHB 
protocol has various features that are required for high-
performance, high clock frequency systems including wider 
data bus configurations (64/128 bits), non-tristate 
implementation, single-clock edge operation, split 
transactions, single-cycle bus master handover and burst 
transfers. The bridging between this higher level of bus and 
the current ASB/APB can be achieved effectively to ensure 
that any existing design can be easily merged. The AMBA AHB 
architecture could include one or more bus masters, normally 
the device will have at least one processor and test interface. 
However, it would also be common for a Digital Signal 
Processor (DSP) or a Direct Memory Access (DMA) to be used 
as a Bus Master. The most common AHB slaves are the 
external memory interface, the APB bridge and any internal 
memory. Any other peripherals in the system may also be 
used as an AHB slave. However, the low-bandwidth 
peripherals normally reside on the APB.  

2.1. AHB BUS INTERCONNECTION 

The AMBA AHB bus protocol is designed to be used in 
conjunction with the central multiplexor interconnection 
scheme. Using this scheme, all bus masters drive out the 
address and control signals indicating the transfer they wish 
to perform, and the arbiter determines which master has its 
address and control signals routed to all slaves. Central 
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decoder is also required to control the read data and the 
response.  

Figure 4, illustrates the structure required for the AMBA AHB 
design with three masters and four slaves.  

 
Fig -4: Multiplexer Interconnection [3]. 

2.2. AN OVERVIEW OF AMBA AHB OPERATION 

The master must be granted access to the bus before the 
AMBA AHB transfer can begin. This process is started by the 
master applying the request signal to the arbiter. The arbiter 
then indicates when the master will be granted the use of the 
bus.  

The AMBA AHB Bus Master will start the transfer by driving 
the address and control signals. These signals provide 
information on the address, direction and width of the 
transfer, as well as an indication as to whether the transfer is 
part of the burst. Two different forms of burst transfer are 
allowed, first is incrementing bursts, which do not wrap at 
address boundaries and the other one is wrapping bursts, 
which wrap at particular address boundaries. 

The write data bus is used to move the data from the master 
to the slave while the read data bus is used to move the data 
from the slave to the server. Each transfer consists of an 
address and control cycle, one or more data cycles. The 
address cannot be extended and therefore all slaves must 
sample the address during that time. However, the data can 
be extended with the HREADY signal. When this is low, Signal 
causes waiting states to be inserted into the transfer and 
allows the slave to provide or sample data for extra time.   

There are four types of Response signals in AMBA AHB, 
during any transfer the slave shows the status of the transfer 
by using these four response signals, HRESP [1:0] namely: 

 OKAY The OKAY response is used by slave to 
indicate that the transfer is progressing normally 
and that when HREADY goes HIGH this shows the 
transfer has been completed successfully. 

 ERROR The ERROR response given by slave 
indicates that a transfer error has been occurred 
during the transfer and the transfer has been 
unsuccessful. 

 RETRY and SPLIT Both the RETRY and SPLIT 
transfer responses by slave indicate that the transfer 
cannot complete immediately, but the bus master 
should continue to attempt the transfer but there is 
some difference between the SPLIT and RETRY is 
response is that, a SPLIT response tells the arbiter to 
give priority to all other masters until the SPLIT 
transfer can be completed simply means readjusting 
the priorities, whereas the RETRY response only 
tells the arbiter to give priority to higher priority 
masters. 

During normal operation, the master is permitted to 
complete all data transfers in a particular burst only, before 
the arbiter grants the bus access to another master. Despite 
that, in order to avoid excessive arbitration latencies, it is 
possible for the arbiter to break up the burst and, in such 
cases, the master must re-arbitrate the bus in order to 
complete the remaining transfers in the burst.  

2.3. TRANSFER TYPES IN AHB 

The transfer types in AHB are categorized into four different 
types, as indicated by the HTRANS [1:0] signals. 

 IDLE:  When HTRANS [1:0] is ‘00’ then transfer type 
is IDLE. This type indicates that there is no need for 
data transfer. When a bus master is granted access 
to the bus but does not wish to perform a data 
transfer, the IDLE transfer type is used. Slaves must 
always respond to IDLE transfers with a zero-wait 
state OKAY response, and the transfer will be 
ignored by the slave.  

 BUSY: When HTRANS [1:0] is ‘01’ then transfer type 
is BUSY. Bus masters can use the BUSY transfer type 
to insert IDLE cycles in the middle of transfer bursts. 
This transfer type indicates that the bus master is 
still in the middle of a transfer burst, but the next 
transfer cannot take place right away. When a 
master employs the BUSY transfer type, the address 
and control signals must correspond to the next 
transfer in the burst. The slave should disregard the 
transfer. Slaves must always respond to zero wait 
state OKAY transfers with a zero-wait state OKAY 
response. 

 NONSEQ: When HTRANS [1:0] is ‘10’ then transfer 
type is NONSEQ.  This type represents the first 
transfer of a burst or a single transfer. The address 
and control signals have nothing to do with the 
previous transfer. On the bus, single transfers are 
treated as bursts of one, and thus the transfer type is 
NONSEQUENTIAL.  

 SEQ: When HTRANS [1:0] is ‘10’ then transfer type is 
NONSEQ. The rest of the transfers in a burst are 
SEQUENTIAL, and the address is related to the 
previous transfer. The control information is the 
same as it was in the previous transfer. The address 
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is equal to the previous transfer's address plus the 
size (in bytes). In the case of a wrapping burst, the 
transfer's address wraps at the address boundary 
equal to the transfer's size (in bytes) multiplied by 
the number of beats (either 4, 8 or 16). All transfer 
types in detail are shown in fig -5. 

 

Fig -5: This figure shows the transfer types in AHB [3]. 

3. AMBA APB PROTOCOL 

The Advanced Peripheral Bus (APB) is a bus hierarchy in the 
Advanced Microcontroller Bus Architecture (AMBA) that is 
optimized for low power consumption and low interface 
complexity. The AMBA APB should be used to interface with 
any low-bandwidth peripherals that do not require the high 
performance of a pipelined bus interface.  

The most recent revision of the APB ensures that all signal 
transitions are only related to the clock's rising edge. This 
advancement means that APB peripherals can be easily 
integrated into any design flow, with many benefits such as 
APB protocol performance being independent of the clock's 
mark-space ratio, performance being improved at high-
frequency operation, static timing analysis being simplified 
by the use of a single clock edge, and many Application-
Specific Integrated Circuit (ASIC) libraries having a better 
segregation. 

3.1. STATE DIAGRAM FOR APB PROTOCOL 

Figure 5, shows a state diagram that can be used to represent 
the activity of the peripheral bus.  

 

 

Fig -5: State diagram for APB protocol specification [3]. 

The operation of the APB state machine is described by the 
three states given below: 

IDLE - The peripheral bus's default state.  

SETUP - When a transfer is required, the bus enters the 
SETUP state, at which point the appropriate select signal, 
PSELx, is asserted. The bus will always move to the ENABLE 
state on the next rising edge of the clock after remaining in 
the SETUP state for one clock cycle.  

ACCESS - The enable signal, PENABLE, is asserted in the 
ENABLE state. During the transition from SETUP to ENABLE, 
the address, write, and select signals all remain stable. The 
ENABLE state is also only valid for one clock cycle, after 
which the bus will return to the IDLE state if no further 
transfers are required. If another transfer is to follow, the bus 
will move directly to the SETUP state. It is acceptable for the 
address, write, and select signals to glitch during the ENABLE 
to SETUP transition.  

3.2. WRITE TRANSFER IN APB 

The address, write data, write signal, and select signal all 
change after the rising edge of the clock to begin the write 
transfer. The SETUP cycle is the first clock cycle of the 
transfer. The enable signal PENABLE is asserted after the 
next clock edge, indicating that the ENABLE cycle is in 
progress. During the ENABLE cycle, the address, data, and 
control signals are all valid. At the end of this cycle, the 
transfer is complete.  

At the end of the transfer, the enable signal, PENABLE, will 
be deasserted. Unless the transfer is immediately followed 
by another transfer to the same peripheral, the select signal 
will also be LOW.  

To save power, the address and write signals will remain 
unchanged after a transfer until the next access occurs. Only 
a clean transition on the enable signal is required by the 
protocol. In the case of back-to-back transfers, the select and 
write signals may glitch.  
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Fig -6: This figure shows the write transfer in APB 
protocol. 

3.3. READ TRANSFER IN APB PROTOCOL 
The timing of the address, select, write and strobe signals are 
all the same as for the write transfer in APB protocol. 
Additionally, in the case of a read transfer, the slave should 
provide the data during the ENABLE cycle and this data is 
sampled at the end of the ENABLE cycle on the rising edge of 
clock. 

 

Fig -7: This figure shows the read transfer in APB 
protocol. 

3.4. APB BRIDGE AS APB MASTER 

The APB bridge is the AMBA APB’s sole bus master. 
Furthermore, the APB bridge is a slave on the higher-level 
system bus. In APB we have single master which is APB 
bridge but we can have multiple slaves maximum up to 16 
slaves. 

The APB bridge unit is helpful in converting system bus 
transfers to APB transfers and performs a variety of 
functions, including decoding the address and generating a 
peripheral select, PSELx. During a transfer, only one select 
signal can be active. The address is latched and held valid 
throughout the transfer. Drives the APB data onto the system 
bus for a read transfer, generates a timing strobe for the 
transfer, and then drives the data onto the APB for a write 
transfer.  

 

 

Fig -8: This figure shows the APB signal interface of an 
APB bridge. 

3.5 VERIFICATION ENVIRONMENT FOR APB 
PROTOCOL 

The importance of verification in VLSI technology cannot be 
overstated. Because it is used to find bugs in RTL designs at 
an early stage, the overall design should not be destructive. 
So, for the APB design, we are creating an environment in 
System Verilog and using the UVM methodology. The 
primary goal of developing a verification environment is to 
generate stimulus for the DUT (design under test) and then 
check the results to ensure that the function is correct. As a 
result, by referring to the coverage report, test cases can be 
modified or added.  

3.6. SYSTEM VERILOG ENVIRONMENT 

System Verilog is a hardware verification language that is 
used for functional verification. It implements the high-level 
data structures found in object-oriented languages such as 
C++. These data structures enable higher levels of 
abstraction and modeling of complex data types. System 
Verilog, like the Verilog hardware languages, includes 
constructs for modeling hardware concepts like cycles, tri-
state values, and wires. As a result, System Verilog can be 
used to simulate and validate HDL designs with high-level 
test cases.  

 

Fig -9: System Verilog Verification Environment. 
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Figure 9, depicts the System Verilog environment. The 
environment includes a Verilog-written DUT and a System 
Verilog test bench that includes a System Verilog interface, a 
simulation module, and a test program. The generator is 
used in the system Verilog testbench to generate constrained 
random test vectors. These vectors are transmitted to the 
driver, who can then simulate the DUT. Verification reports 
on states, transactions, and model messages are generated 
by the monitor. The scoreboard examines the results and, as 
a result, any changes in the modifications that are required 
can be made. The benefit of System Verilog is object-oriented 
programming, which greatly improves the reusability of 
testbench components. The interface connects the DUT to 
the System Verilog test bench, which contains the test 
program.  

3.7. UVM ENIVORNMENT 

The Universal Verification Methodology (UVM) is a standard 
verification methodology for validating RTL (Register 
Transfer Level) designs. It is made up of a base class library 
written in System Verilog. By extending these classes, the 
verification engineer can create a variety of verification 
components. Furthermore, UVM includes a slew of other 
useful verification features, such as the use of macros to 
implement complex functions and a factory for object 
creation.  

Sequence item: The transactions are created by extending 
the uvm_sequence_item. This component generates random 
numbers for the address and data. Field automation macros 
are applied to this class's data members.  

Sequences:  A sequence is a collection of transactions. Users 
in the sequence class can create complex stimuli. These 
sequences can be randomized, extended to form new 
sequences, and combined.  

Sequencer:  The UVM sequencer acts as a liaison between 
the driver and the sequence. It sends the transaction to the 
driver for execution and receives the driver's response. It 
also serves as an arbitrator for multiple parallel sequences. 

Driver: The driver initiates the next transaction request and 
routes it to the lower-level components. Driver class is 
created by extending uvm_driver.  

Monitor: The Monitor extracts signal information from the 
bus, converts it to transactions, and sends it through the 
analysis port to the scoreboard for comparison. 

Agent: The verification components driver, monitor, 
coverage collector, and sequencer are all instantiated by the 
agent. TLM connections are also used to connect these 
components. The agent can operate in either active or 
passive mode. In the active mode, the agent instantiates a 
driver, a sequencer, a collector, and a monitor, whereas in 
the passive mode, only the monitor and the collector are 
instantiated and configured.  

Environment: The Environment class in uvm instanstiate 
and configures all subcomponents such as agents, drivers, 
and monitors.  

Testbench: The uvm_test is a subclass of the 
uvm_component. For the given verification environment, 

various test cases can be generated and stimulus is applied 
to the DUT during the run phase.  

All the components required for the creation of verification 
environment are testbench.sv, apb_transaction.sv, 
apb_sequence.sv, apb_sequencer.sv, apb_driver.sv, 
apb_monitor.sv, apb_agent.sv, apb_scoreboard.sv, 
apb_subscriber.sv, apb_env.sv, apb_test.sv. 

 

Fig -10: APB protocol environment. 

4. AMBA AXI PROTOCOL 

For communication between master and slave components, 
the AMBA AXI protocol supports high-performance, high-
frequency system designs. The AXI protocol has several 
characteristics, including the fact that it is suitable for high-
bandwidth and low-latency designs, and that it meets the 
interface requirements of a wide range of components, It 
provides flexibility in the implementation of interconnect 
architectures, and it is appropriate for memory controllers 
with high initial access latency. It supports high-frequency 
operation without the use of complex bridges and is 
backward-compatible with AHB and APB interfaces.  

The following are some of the protocol's key features:  

 Unaligned data transfers using byte strobes are 
supported.  

 Address/control and data phases should be kept 
separate.  

 Support for the issuance of multiple outstanding 
addresses.  

 Separate read and write data channels allow for 
low-cost Direct Memory Access (DMA).  

 Burst-based transactions are used, with only the 
start address issued.  

 Allows for the simple addition of register stages to 
provide timing closure.  

 Out-of-order transaction completion is supported.  
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4.1. AXI PROTOCOL ARCHITECTURE 

In the upcoming section we will see the detailed architecture 
of AXI protocol. The AXI protocol is a burst-based protocol 
that defines five distinct transaction channels:  

• Read address, whose signal names start with AR.  

• Read data with signal names that begin with R.  

• Write address, with signal names starting with AW.  

• Write data, whose signal names begin with W.  

• Write response channel creates a response with signal 
names that begin with B.  

An address channel transports control information 
describing the type of data to be transferred. Data is 
transferred between master and slave using one of two 
methods:  

• A write data channel that allows data to be transferred 
from the master to the slave. The slave uses the write 
response channel to signal the completion of the transfer to 
the master in a write transaction.  

• A read data channel to transfer data from the slave to the 
master.  

The AXI protocol allows for multiple outstanding 
transactions, out-of-order transaction completion, and 
address information to be issued prior to actual data 
transfer.  

4.2. AXI INTERFACE AND INTERCONNECT 

As illustrated in Figure 11, a typical system consists of 
several master and slave devices that are linked together via 
some form of interconnect. The AXI protocol defines a single 
interface for interfaces between a master and an 
interconnect, a slave and an interconnect, and a master and a 
slave. This interface definition is compatible with a wide 
range of interconnect implementations. An interconnect 
between devices is equivalent to another device with 
symmetrical master and slave ports through which the true 
master and slave devices can be connected.  

 

Fig -11: Interconnect and Interface of AXI [8]. 

There are three interconnect topologies: shared address and 
data buses, shared address and multiple data buses, and 
multilayer with multiple address and data buses. Most 
systems employ one of three topologies.  

The address channel bandwidth requirement in most 
systems is significantly less than the data channel bandwidth 
requirement. By combining a shared address bus with 
multiple data buses to enable parallel data transfers, such 
systems can achieve a good balance between system 
performance and interconnect complexity. 

 

4.3. HANDSHAKE PROCESS IN AXI 

To transfer address, data, and control information, all five 
transaction channels use the same VALID/READY handshake 
process. This two-way flow control mechanism means that 
both the master and slave can control the rate at which 
information is transferred between them. When address, 
data, or control information is available, the source 
generates the VALID signal. The READY signal is generated 
by the destination to indicate that it is ready to accept the 
information. Only when both the VALID and READY signals 
are HIGH does transfer occur. There must be no 
combinatorial paths between input and output signals on 
master and slave interfaces.  

Figures 12–14 depict examples of the handshake process. As 
shown in Figure 12, the source presents information after T1 
and asserts the VALID signal. After T2, the destination 
asserts the READY signal. The source must maintain the 
stability of its information until the transfer occurs at T3, 
when this assertion is recognized.  

 

Fig -12: VALID before READY handshake. 

It is not permitted for a source to assert VALID before 
asserting READY. When VALID is asserted, it must remain 
asserted until the handshake occurs, which occurs at a rising 
clock edge when both VALID and READY are asserted.  

The destination asserts READY after T1 in Figure 13, before 
the address, data, or control information is valid. This 
assertion indicates that it is willing to accept the data. After 
T2, the source presents the data and asserts VALID, and the 
transfer occurs at T3, when this assertion is recognized. In 
this case, transfer takes place in a single cycle. 

 

Fig -13: READY before VALID handshake [8]. 

It is permissible for a destination to wait for VALID to be 
asserted before asserting the corresponding READY. If 
READY is asserted, it is permissible to deassert READY 
before asserting VALID. Both the source and the destination 
in Figure 14, indicate that they can transfer the address, 
data, or control information after T1. In this case, the 
transfer occurs at the rising clock edge, when both VALID 
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and READY assertions can be recognized. These assertions 
imply that the transfer takes place at T2.  

 

Fig -14: VALID with READY handshake [8]. 

5. SIMULATION RESULTS OF APB PROTOCOL 

Verification Environment for APB Protocol is written in 
System Verilog and UVM. A complete UVM Summary Report 
is generated after simulating these codes with the Aldec 

Riviera Pro simulator. The simulation results show that data 
read from a specific memory location is the same as data 
written to that memory location. As a result, the design is 
functionally correct. The UVM report summary also ensures 
that the design is functionally correct. Figure 15, depicts the 
APB data transfer from Master/bridge to slave with the 
various states. This figure shows write operation performed 
at around 500 ns PWDATA is 11 in Hexadecimal. 

Figure 16, shows the read operation. The data Read from 
master is same as the data has been written to slave. This 
figure shows write operation performed at around 2940 ns 
PRDATA is 8F in Hexadecimal. 

 

 

Fig -15: Simulation results from write operation obtained after verification of APB. 

 

Fig -16: Simulation results for read operation obtained after verification of APB. 

The UVM report contains the results of the UVM testbench 
simulation. Figure 17, depicts the UVM report summary 
generated after completing all UVM phases. The UVM INFO 
field in the UVM report summary in figure 17, indicates that 
there are Three hundred four (304) information messages. 
The data provided by the UVM report summary ensures that 
the design is error-free and does not generate any warnings 
or fatal errors because the UVM ERROR, UVM WARNING, and 
UVM FATAL values are all zero.  

 

 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 08 Issue: 06 | June 2021                 www.irjet.net                                                                     p-ISSN: 2395-0072 

 

© 2021, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 3403 

Fig -17: UVM Report Summary. 

 

 

6. COMPARISION BETWEEN AMBA PROTOCOLS 

 

In this paper, we examined three important AMBA protocols 
in accordance with industry standards. These protocols are 
widely used in the VLSI industry for on-chip communication.  

We started with evolution of AMBA protocols, from first 
generation to fifth generation, their features, architecture, 
bus length, complexity, response types, performance, types of 
phases, are compared and the detailed comparison table 1 is 
provided, which shows comparison between three important 
industry level protocols namely APB, AHB and AXI. 

AHB protocols supports one channel so as to carry out all 
data transactions to the connected peripherals. Hence, 
managing multiple masters requesting for a specific slave are 
often done using an arbitration algorithm. The arbiter in AHB 
use to manage these requests and the decoder decodes the 
responses received from slaves after that send them to the 
required masters. Here, when a specific transaction goes on, 
no other transaction can start unless the previous one is 
complete. This is one of the drawbacks which was handled 
with the introduction of another concept of split-transactions. 

AXI, on the other hand, is a multi-channel bus with distinct 
channels for read and write addresses, read and write data, 
and response. The concept of split-transaction does not exist 
in AXI because separate channels are present for separate 
operations. However, the concept of out-of-order execution is 
present here.  

 

Table -1: Detailed comparison between APB, AHB and AXI Protocol. 

  

Features APB AHB AXI 

AMBA Specification Advanced Peripheral 
Bus 

Advanced High-
Performance Bus 

Advanced eXtensible 
Interface 

Processors All ARM 7,9,10 ARM 11 

Performance Low bandwidth 
peripheral 

High performance 
synthesis 

High performance, high 
frequency 

No. of Control 
signals 

4 27 77 

Phases Idle, Setup, Access Bus request, Address, 
Data 

Address, Data, Response 

Burst Transfer Not supported Supported Supported 

Burst Type - Single, Incrementing, 
wrapping 

Fixed, Incrementing, 
Wrapping, Reserved 

Burst Length 1 1-32 1-16 

Complexity Easy to interface More complex than APB Most Complex 

Interconnect Type Central Mux 

(One to one connection) 

Central Mux 

(One to one connection) 

Crossbar 

(One to many connection) 

Bus length Up to 32 bits wide 64/128 bits Up to 256 bits 

No. of Masters Single master (i.e., APB 
Bridge) 

Max 16 Masters Max 16 Masters 

No. of slaves Up to 16 Slaves Up to 16 Slaves Up to 16 Slaves 

Power Consumption Minimal power 
consumption 

More power 
consumption than APB 

50 % more power 
consumption than AHB 

Pipelined Transfer Non-Pipelined Pipelined Operation, up 
to 2 transfers supported 

Pipelined Operation 
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QOS Not Present Not Present Present 

No. of Cycles for Data 
Transfer 

At least 2 cycles At least 2 cycles At least 2 cycles 

Response Type PSLVERR (to indicate 
error condition on APB 

Transfer) 

OKAY, ERROR, SPLIT, 
RETRY 

OKAY, EXERROR, SLVERR, 
DECERR 

Read & Write Simultaneous 
read/write not supported, 

Separate read data and 
write data bus 

Simultaneous 
read/write not supported, 
Single Read/Write channel 

Simultaneous read/write 
not supported, Separate 

Read/ Write Channel 

Address Boundary - 1 kb Boundary 4 kb Boundary 

7. CONCLUSIONS 

 This paper began with an overview of the AMBA bus 
architecture, followed by a discussion of the evolution of 
AMBA protocols, and concluded with a detailed discussion of 
the APB bus protocol. According to the specification, the APB 
bus is designed in Verilog HDL and verified in System Verilog 
and Universal Verification Methodology. The simulation 
results show that data read from a specific memory location 
is the same as data written to that memory location. As a 
result, the design is functionally correct. The UVM report 
summary also ensures that the design is functionally correct.  
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