
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4659

Framework migration from Visual Basic 6 (VB6) to ReactJS

Hrithik M R1, Dr. Sharvani G.S2

1Department of Computer Science and Engineering, R.V. College of Engineering, Bengaluru, India
2Associate Professor, Department of Computer Science and Engineering, R.V. College of Engineering,

Bengaluru, India
---***--
Abstract - With Windows 7 end of support and VB 6.0 IDE
not being supported on Windows 10 we have huge risk with
respect to the continue development environment for Practice
Management and EDI plugin code developed in VB6. Given the
challenges outlined above for using a code converter like
Mobilize to migrate the Visual Basic 6.0 (VB6) code, taking a
step back to assess options for migrating the VB6 code is
warranted. At a high level, “Convert VB6 to a REST service-
based architecture with light weight UI frontend” approach
has been identified. The paper discusses about the existing
systems, steps involved in conversion, architecture to address
this problem.

Key Words: Visual Basic, ReactJS, Spring framework, REST
API, Practice Management

1.INTRODUCTION

There are many different organizations which provide health
care in the United States. Most health-care facilities are
owned and operated by private companies. Private health
insurance and public health insurance are used to provide
healthcare coverage (e.g., Medicare, Medicaid). Unlike most
other industrialized countries, the United States does not
have a universal healthcare system. To improve clinical and
financial outcomes, organization collaborates with
healthcare organizations across the care continuum. They
have built an application, which is used for healthcare
administration. This product is an application which is fully
integrated Electronic Health Record (EHR) and Practice
Management (PM) system. Everything from billing to clinical
processes may be customized with this product to meet our
unique practice requirements. This software is used in US
hospitals for medical administration.

An electronic health record (EHR) is a
comprehensive database of a patient's clinical data and
medical history, including demographics, vital signs,
diagnoses, prescriptions, treatment plans, progress notes,
issues, vaccination dates, allergies, x-rays, and test and
laboratory results.

Practice management is concerned with a medical

practice's day-to-day operations. Users can enter patient
information, schedule appointments, keep track of insurance
payors, complete billing tasks, and generate reports. This
application has various modules like chart, scheduling,
registration, administration, and billing.

1.1 Scope and Motivation

 As per new US regulatory rules, many data elements for
nationwide, interoperable health information exchange have
already been supported by this application. But there are few
new data elements that need to be supported as part of new
regulatory rules i.e., previous name, previous address for a
patient. So, there is need for enhancement to add new
functionalities in Registration module. Hence this project
adds the extra functionalities and aligns the application with
new regulatory rules.

2. LITERATURE REVIEW

In 2017, Having an efficient software application with less
response time is very important. The selection of
technologies, language and framework plays an important
role. In [1], by Hongjun Li, the author has explained about
how to use RESTful Web service frameworks in Java to
develop RESTful Web service and described about several
Restful web service frameworks RestEasy, Restlet, Struts 2,
Grails, Axis2, sqlRest. The limitation of this paper was it did
not compare between the frameworks. The authors of [2] by
Urjita Thakar, Amit Tiwari, and Sudarshan Varma
demonstrate how to consume SOAP based as well as RESTful
services in composition while maintaining the advantage of
RESTful services' lightweight nature. The work related to
selecting appropriate component services, detecting faulty
component services, and replacing them was not discussed in
this study. K Munonye and P Martinek compared and
evaluated the performance of REST API implementations
based on the Microsoft.Net framework with the Java SDK in
their paper [3]. The paper's limitations were that the same
workstation served as both the server and the client, that
only two metrics were examined in this study: code
complexity and response time, and that the dataset was small.
The authors of [4] Zhixiang Niu, Cheng Yang, and Yingya
Zhang, explained how to design a system based on JSON data
format and RESTful web services that has high data exchange
efficiency, simple interfaces, ease of modification and
expansion, and good cross-terminal support. The limits
described in this study are to improve the system's
performance and enhance the performance by utilizing some
other new technologies. The authors of [5] HaiTao Wang and
BaoXian Jia, explain how framework integration can improve
system development efficiency and reduce coding workload.
The paper's weakness was that it did not explain how to
improve system performance, user access speed, or system
framework security. Yuxiang Hou introduces the design and
implementation of the framework for Spring, Spring MVC,
and MyBatis in the development of Web applications in [6]

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4660

and it simplifies the development process and workload of
the system to improve the system's expansion and
convenience of deployment. Zhang Zhenyou, Gu Wei, and Cao
Zhi demonstrate how Hibernate technology makes the
system dynamically linked to multiple heterogeneous
database systems in their paper [7]. The limitation of this
paper is there was no information of query optimization. The
authors of [8] Qinglin Wu, Yanzhong Hu, and Yan Wang,
explained how to create, test, and optimize data persistence
layer methods to improve data access efficiency and ensure
the quality of Web applications.

3. METHODOLOGY

3.1 Existing systems:

The steps to build a social distancing detector include:

Methodology diagram clearly explains the workflow of the
project as to what is exactly done at each stage of the project.

Fig 3.0: Methodology diagram for enhancement of
application

All the steps mentioned in the above diagram are
explained below:

Add tables to database:
This is the first step. To record the new data of the patient,
new tables with required attributes are added in database
which is MSSQL server.

UI development:
The user interface is created to add, edit and display the
patient’s previous demographics using WPF. Dialogs with
new and edit buttons and grid view to display the data is
created.

Writing business logic (APIs):
The business logic to fetch and save data to the database is
encapsulated in REST APIs in Java using JAX-RS annotations
and Spring-Hibernate integration. All DB operations (fetch,
insert, update and delete) are performed through JBoss
service layer.

API integration:
On client side The APIs are called on client side (user
interface) to display the data to the user or to insert the new
data into database.

Unit Testing and Automation Testing:
Unit testing is done by writing Junit test cases using
EasyMock framework. Performance testing of web services
is done using JMeter. Automation testing of UI and Web
services is done using the testing framework, SpecFlow.

Steps involved in converting VB6 to a REST service-based
architecture with light weight UI frontend :

 1] The main logic of VB modules can be placed inside the
REST services by performing access / manucaption
operations on the data.

2] The UI part can be rendered in a lightweight JavaScript
(ReactJS/Ng/etc.) based controls running inside an
embedded Chromium engine wrapped inside COM
component conforming to module binding architecture of
product.

 3] REST endpoints will be accessed for the all the data
content which are to be rendered on UI.

4] If there are workflows which require invoking of C#
components by the UI content, then this can be achieved by
abstracting the invocation path leveraging the product API.

5] There has to be a proper structure maintained for the
content in JavaScript, so that whenever there is a complete
migration into different format, then the rewrite of the UI
should be minimal and primarily focused on routing, context
sharing and invoking other modules of product.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4661

3.2 Architecture:

Fig 3.1: Typical Spring Framework architecture

The PM solution has a five-stage workflow that starts from
the time the patient schedules an appointment and goes
through till the patient checks out and a claim is generated.

The solution includes five key modules:

• Medical billing to help clinics get paid faster EHR – to
ensure accurate and fast management of patient encounters
• Patient communication and engagement modules that help
reduce patient no-shows by as much as 8%
• Seamless patient care to improve patient experience and
loyalty
• Epocrates – a clinical intelligence module that improves the
quality of physician decisions.

The solution is completely web based and runs in data
centers. Users do not have to procure servers, firewalls, or
other complex equipment. There is no requirement to set up
servers, databases, or authentication systems, nor grapple
with security issues.

3.3 Data flow diagrams:

DFD Level 0:

Fig 3.2: DFD level 0 for enhancement of application

DFD Level 1:

Fig 3.3: DFD level 1 for enhancement of application

Sequence diagram:

Fig 3.4: Sequence diagram of application

4. IMPLEMENTATION

Step 1] Lay out the foundation:

 First, some background. We’re not reinventing the wheel
here. Facebook did the same thing across their entire
ecosystem. It is possible.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4662

 The power of ReactJS is that it’s a library, not a
framework. This lets us work modular, migrating one
component at a time until we can (eventually) achieve
complete separation of UI and APIs, setting up the stage for a
modern architecture. For more background on ReactJS, check
out Pluralsight.

 The first thing we need to do is identify a self-contained
component of the app. This could be a new feature, either
something easy or a pain point. You can write this new
component using ReactJS.

 There are two ways to integrate a new ReactJS component
into an existing platform when its UI is rendered in the server
and sent as an HTTP response. We have two options,

1] Rendering full pages

 If the component that we are creating is a full-page, we
can create an entirely new ReactJS site with its own URL and
separate it from Spring UI. For this, we need a reverse proxy,
which can be configured using Apache, Nginx, etc.

Fig 4.0: Reverse proxy configuration

2] Rendering specific components

 In some cases, rendering a full page isn’t an option.
Sometimes our pages are too complex, and we want to start by
migrating only specific components in specific pages.

Fig 4.1: Identify one component, build the API
for that and create a ReactJS component

Step 2] Iterate and Move Away from Legacy Code:

 We must keep strong semantics in our APIs. If we identify
that we are building an entirely new module, we can create a
new API.

This is a step in the direction of a microservices approach. As
we scale, these new APIs can be built using other languages
or techniques, connect to different kinds of data modules
(like a NoSQL database), or serve needs.

 We have to keep clear documentation for each API (I
recommend Apiary) and use our existing business logic
(services layer) whenever necessary.

 Also, we’ll be able to create mobile apps and connect them to
the same APIs. As a bonus point, we can use React Native and
reuse some of our existing ReactJS components.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4663

Fig 4.2: Expand APIs layer, create more ReactJS
components and mobile apps

Step 3] Deprecate Spring framework presentation layer:

 Nowadays, software moves fast. If we are running quickly
enough with agile methodologies, we’ll be able to achieve an
architecture that accomplishes all the goals we initially
outlined much sooner than we’d expect.

Now, we’ll have a web app 100% built using ReactJS, and
we are cutting down the dependency to the presentation
layer of Spring.

We have all our data exposed via Restful services, and as
an example, the diagram contains a new API built using a
different language (Go) and a NoSQL database (Redis).

 For simplicity, some things are omitted. Any API may or
may not access the DBMS, depending on the needs. Different
ReactJS components will use different endpoints and
different APIs.

 It’s OK if a component uses more than one API, but if it
happens too much, it probably means that your API
architecture needs review.

Fig 4.3: A modern API architecture and ReactJS
web app.

5. CONCLUSION AND FUTURE ENHANCEMENT

5.1 Conclusion:

Enhancement has been done to the registration module
of the application. User can record patient’s previous
demographics such as patient’s previous name and
addresses and save in the database through API calls. User
interface and backend has been modified to add extra
functionalities successfully. The application is in align with
new regulatory requirements.

Cloud-based solutions can offer benefits not available in
other practice management systems, including:

• Continual, non-disruptive, behind-the-scenes upgrades that
quickly respond to changes in industry requirements, from
changes to individual codes (which can happen often with
government payers) to a transition to an entire code set, as
will happen with ICD-10.

• The ability to continually gather performance data from
within the individual practice as well as from practices
across the nation, not only helping to improve performance
of the overall cloud-based solution, but also providing
performance benchmarks for every practice on the network.

• Interconnection with other practices, hospitals, rehab
centers, labs, and health care information sources.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4664

3.2 Limitations:

 The application that has been developed is supported by
Windows operating system but not Linux operating system.
This is the limitation of the project.

3.3 Future Enhancement:

• Upgrade the User interface to more interactive pages and
develop components using latest technologies like ReactJS,
AngularJS.

• The user interface can be made more interactive. The user
interface can be uplifted from WPF to ReactJS to align with
new technologies.

• Convert important functionalities into reusable API and
integrate them into the existing design for better workflow.

6. ACKNOWLEDGEMENT

 We would like to acknowledge the support provided by
Teaching and Non-Teaching staff of Department of Computer
Science & Engineering, RV College of Engineering through
required assistance during the research work.

7. REFERENCES

[1] Abbott, M.L., Fisher, M.T, “The Art of Scalability: Scalable

Web Architecture, Processes, and Organizations for the
Modern Enterprise”, Pearson Education (2009)

[2] Azhar Amir, “Visual Basic 6.0 to .NET Migration- White
Paper”, Infosys

[3] K. Gowthaman, K. Mustafa and R.A. Khan, ‘Source Code
Migration to DOT NET Framework: A Re-engineering
Application Perspective’, International Journal of
Computer Information Systems, 2018

[4] Valjakka, Andreas, “A Reengineering Framework for the
Migration of a Legacy Front End”, Tampere
University, Dec 2019.

[5] A. Aguilar, ‘Planning a Successful Visual Basic 6.0 to .Net
Migration:8 Proven Tips ‘, International Journal of
Computer Information Systems, 2011

[6] Abbott, M.L., Fisher, M.T, “The Art of Scalability: Scalable
Web Architecture, Processes, and Organizations for the
Modern Enterprise” , Pearson Education, 2018

[7] Abel Avram, “Case Study: Migrating a VB6 Large
Application to .NET “, International Conference on Web
Engineering, 2011

[8] Cao Ronggui, “Progress and challenges of public hospital
reform,” Chinese Hospitals, vol. 14, no. 6,2010, pp. 1-5.

[9] Hu Xiao, Zhou Dian,and Wu Dan, “Analyzing the
advantages and disadvantages of drugmarkon being
cancelled in state-owned hospitals,” The Chinese Health
Service Management, vol.1, 2011, pp.32-25.

[10] A N Diwedi, “Tracking the healthcare management
landscape: implications for integrated healthcare
management and practice” Computer Applications, vol.
25, pp. 2817- 2819, Dec. 2005

[11] Gao Ang, Wei Wenxue, “Application of Java data
persistence with Hibernate and Struts framework,”

Computer Applications, vol. 25, pp. 2817-2819, Dec.
2005

[12] Budi Kurniawan, Struts2 design and programming: a
tutorial, BrainySoftware.com, 2008.

[13] Zhang Xi, Yu Shuju, “The research on interoperability of
Spring framework,” Computer Knowledge and
Technology, pp. 1-5, Mar. 2008.

[14] Song Hanzeng, Shen Lin, “Simplification of Java database
access with Hibernate service,” Computer Applications,
vol. 23, pp. 135-137, Dec. 2003.

