PERFORMANCE BASED EVALUATION OF MULTISTORY FLAT SLAB COMPARED WITH CONVENTIONAL RC FRAMED STRUCTURE

Mohitkumar.Gudarad¹, Basavaraj Gudadappanavar²

¹P.G student, Dept. of Civil Engineering, SDMCET Dharwad, Karnataka, India ²Assistant Professor, SDMCET Dharwad, Karnataka, India ***______***______***_____***_____***

Abstract :- In the present world of construction the study of different structural analysis of building plays a major role in the construction work, Here the study of compative analysis of performance of RC conventional structure is done with structure having flat slab with and without drop this analysis is carried out for base shear , wind load , storey displacement , Natural time period, Best location of shear wall ,storey stiffness, bending moment, for G+10 storey building having both RC conventional frame and flat slab structure, this is studied under zone III also under the soft soil condition ,the structural is analysed for equivalent static force , linear dynamic response spectrum analysis , Push over analysis as per IS code, this study aim for the getting best performance results for different model conditions using Etabs.

Keywords:- Flat slab, Base shear, wind load, storey displacement, Natural time period, shear wall, Linear dynamic response spectrum, Equivalent static force.

1. INTRODUCTION

A flat slab is typical type of construction in which a reinforced slab is built monolatically with the supporting columns and is reinforced in two or more directions, without any provision of beams. The flat slab thus transfers the load directly to the supporting columns suitably spaced below the slab ,Because of exclusion of beam system in this type of construction , a plain ceiling is obtained, thus giving attractive appearance from architectural point of view. The plain ceiling diffuses the light better and is considered less vulnerable in the case of fire than the usual beam slab construction. The flat slab is easier to construct and requires cheaper form work .concrete is more logically used in this types of construction, and hence in the case of large spans and heavy load, the total cost is considerably less compared to the normal slab.

1.1 COMPONENTS OF FLAT SLAB CONSTRUCTION

- 1. **Drop of flat slab** :- The slab in a flat slab construction may be either with drop or with out drop. Drop is that part of the slab around the column , which is of greater thickness than the rest of the slab,
- 2. **Capital or column head**:- Some times the diameter of a supporting column is increased below the slab . this part of column this part of column with increased diameter is called column head the
- 3. **Panel** :- A panel of a flat slab construction is the area enclosed between the center line connecting adjacent columns in two directions and out line of the column heads.

2. OBJECTIVES

- 1. To analyze seismic performance of G+10 story multistory flat slab with the conventional RC frame on sloping and plain grounds.
- 2. To study the behavior of structure under equivalent static and response spectrum method.
- 3. To study the behavior of structure under Non linear static analysis (Pushover).
- 4. To compare the flat slab and RC structure.

3. METHODOLOGY

MODELLING

In this project, A 10 story building having each story height 3 meters is modeled. The buildings are fixed at the base. In this project including the ground story each story heights of buildings are same. The dimensions of building considered along X & Y directions are 30m by 30m in plain. It has 5 at 6m bay along X direction and 5 at 6m bay along Y direction. Thus 4 models were modeled out of which two models are on the plain ground and other two model are on the sloping ground all four model include both Rcc frame and Flat slab building .which are subjected to seismic analysis and wind analysis and various structural loads.

3.1 INPUT DATA

1. For RCC frame structure on plain ground.

Material properties

Yield stress for steel, Fy= 500 MPa

Characteristric strength, fck = 20MPa

Unit weight of concrete = 20 KN/m^3

Modulus of Elasticity of concrete, E_c =20000 MPa

Modulus of elasticity of steel, $Es = 2x10^5$

Sectional properties

Floor to floor height = 3 m

Size of beam = 400x600 mm

Size of column = 400x1000 mm

Thickness of slab = 125 mm

2. For Flat slab structure on plain ground.

Material properties

Yield stress for steel, Fy= 500 MPa

Characteristric strength, fck = 30MPa

Unit weight of concrete = 30 KN/m^3

Modulus of Elasticity of concrete, $E_c = 2768.13$ MPa

Modulus of elasticity of steel, $Es = 2x10^5$

Sectional properties

Floor to floor height = 3 m

Size of column = 800x800 mm

Thickness of slab = 250 mm

Thickness of drop = 550 mm

3. For RCC frame structure on plain	Thickness of drop = 700 mm			
ground.	Loads considered			
Material properties	1) Dead load			
Yield stress for steel, Fy= 500 MPa	Column load = 0.8 x 0.8 x 25=16 KN/m			
Characteristric strength, fck = 20MPa	Slab load = 0.23 x 25 = 5.75 KN/m ²			
Unit weight of concrete = 20 KN/m ³	Drop slab load = $0.7 \times 25 = 17.5 \text{ KN/m}^2$			
Modulus of Elasticity of concrete, E_c =20000 MPa	Main wall = $0.23 \times 3 \times 18 = 12.42 \text{ KN/m}^2$			
Modulus of elasticity of steel, $Es = 2x10^5$	Partition wall = $0.15 \times 3 \times 18 = 8.1 \text{ KN/m}^2$			
Sectional properties	Paranet load = $0.23 \times 1.2 \times 18 = 4.968 \text{ KN}/\text{m}^2$			
Floor to floor height = 3 m	2) Live load			
Size of beam = 450x700 mm	The live load of 2 KN (m ³ is considered (As nor IC			
Size of column = 450x1100 mm	875- Part 2)			
Thickness of slab = 125 mm	Seismic load			
4. For Flat slab structure on sloping	Seismic zones of values zone 3 are considered			
ground.	Seismic zone Z = 3			
Material properties	Importance factor = I =1			
Yield stress for steel, Fy= 500 MPa	Response reduction factor = R = 3			
Characteristric strength, fck = 30MPa	Soil type = Medium soil			
Unit weight of concrete = 30 KN/m ³	Total height of building = 33 m			
Modulus of Elasticity of concrete, $E_c = 27386.13$ MPa	3) Materials			
Modulus of elasticity of steel, $Es = 2x10^5$	The modulus of elasticity of RCC as per IS 456 2000 is given by $Ec = 5000 \text{ fck}^{1/2}$ High yield			
Sectional properties	strength deformed bars (HYSD) having yield strength 500 N/mm ² widely used in design practice and for the present study.			
Floor to floor height = 3 m				
Size of column = 800x800 mm				

Thickness of slab = 250 mm

4) Load combinations

Load combinations considered are 1.5(DL+LL) according to IS 1893:2002,

For equivalent static analysis, Response spectrum and Pushover analysis the loads :

Gravity load, (DL+LL) the percentage of imposed load was selected from the table 8.IS 1893:2002. It is 25% of imposed load less than 3KN/m².Lateral load in X direction.Lateral load in Y direction. The beam and column sizes are selected and modeled in ETAB software then its material properties and section properties are assigned. Then the various loads are assigned which includes dead load, live load and earthquake load. Then 4 models are modeled as RCC conventional building on the sloping and plane ground, and also flat slab building on the sloping and plane ground, These models are analysed for Equivalent static method ,Response spectrum method ,Pushover analysis. The results and conclusions are shown in the next chapter.

Fig 1 shows 3D model of RC building on plain ground

Fig 2 shows the 3D elevation of flat slab building

Fig 4 shows 3D elevation of flat slab on sloping ground

4. RESULTS AND DISCUSSIONS

Results from the analysis are storey stiffness, storey displacement, base shear and time period are known from both static and response spectrum analysis for both

RESULTS AND GRAPHS FROM EQUIVALENT STATIC METHOD AND RESPONSE SPECTRUM METHOD

a. NATURAL TIME PERIOD:

The time required for undamped system to complete one cycle of free vibration is the

			RCC		Flat
		RCC	Frame	Flat	slab
		Frame	on	slab	on
		on	slopin	on	slopin
		plain	g	plain	g
		groun	groun	groun	groun
		d	d	d	d
Natur					
al					
time	Mod				
period	e 1	1.961	1.504	1.117	1.026
Natur					
al					
time	Mod				
period	e 30	0.21	0.016	0.012	0.008

conventional RC and flat slab buildings are known. The main difference can be found between the storey stiffness, storey displacement, time period and base shear, Results of push over analysis are also shown.

natural period of vibration of the system in units of seconds. Table shows different values of natural time period for rc conventional slab and flat slab building. Graphs for variation of natural time period for RC conventional and flat slab building for 10 storey building is shown

Results of Natural Time Period for RC conventional slab and flat slab

b. BASE SHEAR

Base shear is the estimated of maximum expected lateral force that will occur due to seismic ground motion at the base of a structure. The total lateral force (V_b) can be calculated from the formula

$$V_b = A_h w$$

	Equivalent static method		
Base shear	(KN)		
DCC Example on	Longitudinal	Transverse	
RUC Frame on	direction	direction	
plain ground	10043.0106	10629.8943	
DCC Evenue en	Longitudinal	Transverse	
RUC Frame on	direction	direction	
sloping ground	9957.105	11863.7382	
Elet elek en	Longitudinal	Transverse	
Flat Slab on	direction	direction	
piani grounu	6480.4858	6480.4858	
Flat alah an	Longitudinal	Transverse	
riat siab on	direction	direction	
sloping ground	7389.3374	7389.3374	

Table 5.3 :- Analysis of base shear with respect to equivalent static method.

Γable 5.4 :- Analysis of base shear with respect to	
Response spectrum method.	

	Docnonco	cnoctrum
	Response	spectrum
Base shear	analysis (KN)	
DCC Frame on	Longitudinal	Transverse
nlain ground	direction	direction
plain ground	15484.0058	77.5822
DCC Frame on	Longitudinal	Transverse
sloping ground	direction	direction
sioping ground	18094.773	339.6316
Flat clab on	Longitudinal	Transverse
riat Slab Oli	direction	direction
plain ground	14853.9136	0.0225
Flat clab on	Longitudinal	Transverse
sloping ground	direction	direction
stoping ground	8305.9412	22.9176

Graph showing Base shear comparision

c. STOREY STIFFNESS

"The lateral stiffness of storey is generally defined as the ratio of story shear to story displacement". Structure have vertical stiffness or strength variations for many reasons thus change in story stiffness results change in strength for the same story.

d. STORY STIFFNESS VALUE FOR EQUIVALENT STATIC METHOD

		RCC F	rame on	Flat s	ab on
		plain	ground	plain g	round
Sto		Stiffne	Stiffnoss	Stiffne	Stiffne
ry		ss X	V VN /m	ss X	ss Y
no		KN/m	1 KN/111	KN/m	KN/m
DI	EIV	11608	0	17243	0
ГL	ELA	101	0	326	0
DI	ELX	11560	0	17243	0
ГL	+E	700	0	326	0

Т

International Research Journal of Engineering and Technology (IRJET)

Volume: 08 Issue: 07 | July 2021

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

PL	ELX -E	11565 548	0	17243 326	0
DI	EIV	0	679646	0	17243
ГL	ELI	0	7.715	0	326
л	ELY	0	675918	0	17243
PL	+E	0	3.244	0	326
וח	ELY	0	665593	0	17243
PL PL	-E	U	3.289	U	326

	Е				
BA	EL	61055	33436	873508	0
SE	Y	04.903	40.08	5.694	0
B٨	EL		33629		000204
	Y+	0	88.69	0	090294
SE	Е		8		9.033
B٨	EL	55200	32842		006500
	Y-	35200 2F 102	49.52	0	40500
5E	Е	25.182	5		4.952

STORY STIFFNESS VALUE FOR EQUIVALENT STATIC METHOD

		RCC Frame on sloping ground		Flat s sloping	lab on ground
Sto		Stiffne	Stiffne	Stiffnes	Stiffness
ry		ss X	ss Y	s X	V VN /m
no		KN/m	KN/m	KN/m	
BA	EL	81034	0	852774	0
SE	Х	30.389	0	5.854	0
BA SE	EL X+ E	80195 69.974	0	841783 2.52	0
BA SE	EL X-	81981 56.702	0	0	886730 7.316

e. STORY STIFFNESS VALUE FOR RESPONSE SPECTRUM METHOD

		RCC Frame on plain ground		Flat sla plain gr	b on ound
Sto			Stiffn		Stiffn
510		Stiffness	ess Y	Stiffness	ess Y
1y no		X KN/m	KN/	X KN/m	KN/
110			m		m
CI	RS	1503656	0	2143367	0
GL	Х	.412	0	.904	0
CI	RS	1503656	0	2143367	0
GL	Y	.412	0	.904	0
CI	RS	1503656	0	2143367	0
GL	Ζ	.412	U	.904	0

Т

IRJET

STORY STIFFNESS VALUE FOR RESPONSE SPECTRUM METHOD

		RCC Frame on sloping ground		Flat sla sloping g	b on round
Sto			Stiffn		Stiffn
510		Stiffness	ess Y	Stiffness	ess Y
ry		X KN/m	KN/	X KN/m	KN/
110			m		m
BAS	RS	8090415.	0	8521507.	0
E	Х	874	0	167	0
BAS	RS	8090415.	0	8521507.	0
Е	Y	874	0	167	0
BAS	RS	8090415.	0	8455106.	0
E	Z	874	U	381	0

f. STORY DRIFT VALUE FOR EQUIVALENT STATIC METHOD

		RCC Fra	ame on	Flat s	lab on
		plain g	ground	plain g	ground
Stor		Drift X	Drift Y	Drift	Drift
y no		mm	mm	X mm	Y mm
3	ELX	10.84 3	0.001	4.887	1.47E -11
3	ELX+ E	10.84 3	0.807	4.887	0.328
3	ELX-E	10.84 3	0.808	4.887	0.328
3	ELY	0.238	17.07 9	2.37E -11	4.887
3	ELY+ E	1.035	16.30 4	0.328	4.887
3	ELY-E	0.58	16.22 6	0.328	4.887

STORY DRIFT VALUE FOR EQUIVALENT STATIC METHOD

		RCC Frame on sloping ground		Flat slab on sloping ground	
Story no		Drift X mm	Drift Y mm	Drift X mm	Drift Y mm
3	ELX	6.314	0.026	4.286	0.013
3	ELX+E	6.318	0.492	4.289	0.3

Volume: 08 Issue: 07 | July 2021

www.irjet.net

3	ELX-E	6.309	0.446	0.289	4.282
3	ELY	0.145	9.566	4.284	0.273
3	ELY+E	0.703	10.987	6.06E- 06	4.282
3	ELY-E	0.372	10.93	0.289	4.282

g. STORY DRIFT VALUE FOR RESPONSE SPECTRUM METHOD

		RCC Frame on plain ground		Flat slab on plain ground	
Story no		Drift X mm	Drift Y mm	Drift X mm	Drift Y mm
2	RSX	2.462	0.002	10.299	2.39E- 07
2	RSY	2.462	0.002	10.299	2.39E- 07
2	RSZ	1.641	0.001	10.299	2.39E- 07

STORY DRIFT VALUE FOR RESPONSE SPECTRUM METHOD

		RCC Frame on sloping ground		Flat slab on sloping ground	
Story no		Drift X mm	Drift Y mm	Drift X mm	Drift Y mm
2	RSX	1.834	0.467	1.537	0.243
2	RSY	1.834	0.467	1.537	0.243
2	RSZ	1.223	0.312	4.742	0.74

5. CONCLUSIONS

RC conventional slab compared with Flat slab

- **1.** From the results it is evident that natural time period is more for RC conventional than for flat slab (irrespective of the building located in plain ground or sloping ground).
- **2.** From the results we can say that, base shear for RC conventional is more than flat slab.
- **3.** Storey stiffness at the bottom storey is more compared with top storey ,thus as

the storey height increases stiffness value decreases gradually.

- **4.** Storey displacement increases as there is an increases in storey height for all the models irrespective of all the conditions.
- 5. With comparisions of both methods Response spectrum analysis has given more accuracy than equivalent static method.
- **6.** For more accurate results of structure Pushover analysis is performed as it gives structural accuracy compared with the other two methods.
- **7.** Performance point of RC conventional and flat slab were observed before the collapse of building, and its concluded that building is safe.

6. REFERENCES

- 1. Sumit Pawah, Vivek Tiwari, Madhavi Prajapati, "Analytical Approach to Study Effect of Shear Wall on Flat Slab &Two Way Slab", Volume 4, Issue 7, July 2014.
- 2. Abhijit Salunkhe, S.B.Mohite, "A Comparative Study of Seismic Behavior of Flat Slab Structure and Conventional Framed Structure", Volume 1, Issue 6, DEC 2017.
- B.Anjaneyulu, K Jaya Prakash. "Analysis And Design Of Flat Slab By Using Etabs Software", Vol. 4, Issue 2, FEBRUARY-2016.
- **4.** K. G. Patwari, L. G. Kalurkar "Comparative study of RC Flat Slab & Shear wall with Conventional Framed Structure in High Rise Building" Volume No.5 Issue 3, 27-28 Feb. 2016.

- 5. Vishesh P. Thakkar. Anuj K. Chandiwala.et.al "Comparative Study of Seismic Behavior of Flat Slab and Conventional RC Framed Structure "Vol. 6 Issue 04, April-2017.
- 6. Priyanka Desai, Basavaraj Gudadappanavar, "Performance based evaluation of conventional RC framed structure compared with multistorey Flat slab " Volume: 04 Issue: 08 , Aug -2017.