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Abstract - Web Applications are liable to information 

security threats due to the compelling information it acquires 

from the users. Possessing data is the most powerful thing in 

this day and age. Wrongly acquired data can be used to exploit 

a company- which can be devastating, both in financial and 

reputational damage. The threats according to OWASP Top 10 

include SQLi, Cross-Site Scripting (XSS), XXE, etc., In this paper, 

we focus on building a tool- it uses ensemble learning 

algorithms to train the payloads (SQLi and XSS) and detect 

attacks when user gives input; if any such attacks are detected 

the public Ip address of the user will be blocked. 

Key Words:  Web Security, Web application, Cross-Site 

Scripting, Vulnerabilities, SQL injection, Machine learning. 

1. INTRODUCTION  
 
The Open Web Application Security Project (OWASP) is a 

non-profit organisation dedicated to enhancing software 

security. The OWASP TOP 10 [1] is a regular knowledge 

document for web application protection and developers. It 

reflects widespread agreement on the most serious security 

threats to web applications.  

The most pressing ones are SQLi and XSS attacks among the 

Top 10 threats. Every minute, Cybercrime costs $2,900,000 a 

minute, and top corporations pay $25 per minute for 

security breaches [2]. The need to reduce the risk for data 

breaches and attacks has been higher than ever. There is a 

necessity to build an application that can control and/or 

prevent unauthorized access to sensitive information.  

Existing mechanisms to detect an attack are mostly static-

based approaches and a very limited area of research is 

dedicated towards dynamic approaches using Machine 

learning [3] [4] [5].  

We introduce the background of attacks in question i.e., SQLi 

and XSS in section 1.2 and 1.2, followed by a detailed 

explanation of different approaches in section 2. The 

proposed system and the evaluation of the results obtained 

from the said system are discussed in sections 3 and 4 

respectively. And finally, a demonstration of our tool. 

 
 
 
 

1.1 SQLi Attacks 
 

Most of the websites have a system of authorizing existing 

users and registering new users. Every registered user has a 

set of email addresses/user names and passwords. These 

details are stored and managed in the server using a 

software system known as Relational DBMS. To access and 

manage the data stored in the RDBMS, a specific language 

called SQL is used. SQL stands for Structured Query 

Language. As defined, it uses queries structured in a specific 

order to interact with the RDBMS. 

When a user logs in to a website, they submit a set of user 

names and passwords. These inputs are then checked with 

data stored in the database and if the user entered a valid 

user name and password, the user is authorized. A malicious 

user can gain unauthorized access to an account/website by 

entering malicious SQL statements instead of the user’s 

name and password in a compromised web application. This 

is called SQL Injection (SQLi) [13][15]. 

There are three categories of SQLi: 

1. Error-based SQLi: 

“1’UNION select 1,2,3--+” -> gives an error if the tables 

have a smaller number of columns than mentioned in 

the query. 

2. Union-based SQLi: 

“1’UNION select database(), version()--+”-> name of the 

database and version are returned. Any information can 

be retrieved by mentioning it in the query.   

3. Blind SQLi: 

a. Boolean: Attackers send a query which returns 

either TRUE or FALSE; this information can be used 

to infer what kind of data is stored. 

b. Time-based: Depending upon the time database 

takes to return a response, attackers designate 

whether the result is TRUE or FALSE. 

1.2 XSS Attacks 
Before JavaScript was released, websites were just a 

collection of static pages. The advent of JavaScript in the year 

1995, brought forth a new level of interactivity of web pages. 

JavaScript helps us to build what we call dynamic web pages. 

It allows the developers to modify the web pages at the 
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client's side without the need for sending a request to the 

server. 

A new case of a web application vulnerability known as 

Cross-Site Scripting (XSS) was discovered as JavaScript 

became more popular and was used more frequently. XSS is 

a security vulnerability that allows a malicious user to alter 

the code on a website such that when that website is opened 

by a user that code is executed in the user's browser. 

“The malicious script is delivered to the user's browser via 

the web page or web application. Forums, message boards, 

and web pages with commenting capabilities are popular 

targets for Cross-site Scripting attacks” [14][16]. 

XSS attacks are classified into three types. 

1. Reflected XSS: This can be as simple as writing a 

JavaScript code for an alert. Cookies and other vulnerable 

information can be obtained. It executes only once. 

2. Stored XSS: Here the code written by the attacker is stored 

in the database and it is executed whenever that 

particular page is accessed. 

3. DOM-based XSS: The attacker will inject malicious code in 

the DOM that will be reflected on the web page.  

2. LITERATURE SURVEY 
 

One of the most famous tools in detecting SQLi attacks is 

considered to be AMNESIA. “[…] presented AMNESIA, a 

prototype tool that implements our technique for Java-based 

web applications, and an empirical evaluation of the 

technique. The empirical evaluation of the technique was 

performed on a set of seven web applications that consisted 

of two applications developed by a student team, but also 

used by other researchers, and five real applications. 

AMNESIA was able to stop all of the 1,470 attacks that we 

performed on the considered applications without producing 

any false positive for the 3,500 legitimate accesses to the 

applications. Furthermore, AMNESIA proved to be quite 

efficient in practice, at least for the cases considered—the 

overhead imposed by the technique on the web application 

was barely measurable.” [6] 

CANDID -“We have presented a novel technique to 

dynamically deduce the programmer intended structure of 

SQL queries and used it to effectively transform applications 

so that they guard themselves against SQL injection attacks. 

[…] At a more abstract level, the idea of computing the 

symbolic query on sample inputs in order to deduce the 

intentions of the programmer seems a powerful idea that 

probably has more applications in systems security.” [7] 

Buehrer et al. used a similar approach of comparing the 

generated queries with the ones that should have been 

generated (programmer intended) [17]. Other approaches 

include using random numerals or strings of characters for 

detection [21], SQL guard is also another where it uses 

parsing mechanisms [22].  Dynamic training is similar to 

pattern matching [23]. Another detection method is 

proposed by Fonseca et al, “this paper analyses 715 

vulnerabilities and 121 exploits of 17 web applications using 

field data on past security fixes. Some web apps were written 

in a weakly typed language, while others were written in a 

strongly typed language. Results suggest that applications 

written with strong typed languages have a smaller number 

of reported vulnerabilities and exploits.” [30] 

With the evolution of Machine Learning, Komiya et al 

proposed detecting both SQLi and XSS attacks using different 

classifier algorithms [5]. They implemented two different 

feature extraction techniques. One was blank separation and 

other was tokenization. Tokenization method was 

considered to be more efficient.  To succeed [5], Sonali 

Mishra [3] did similar work but by using regular expressions. 

They inferred that naïve bayes [10] is not as efficient as 

gradient boosting algorithms. They concluded with 

significant difference in accuracies between gradient 

boosting and naïve bayes. The former having more accuracy. 

However, very limited research has been done on XSS 

attacks. Komiya et al [5] implemented a Machine Learning 

algorithm on SQLi as well as XSS data. Because of the 

restricted availability of datasets, XSS has not been delved 

into much. Our paper discusses training XSS and SQLi data 

using ensemble learning techniques- GBM, Light GBM, 

XGBoost, and AdaBoost. 

3. PROPOSED SYSTEMS 
 
In this section, we introduce our proposed methodology. It 

will help detect malicious code by training the available data 

using machine learning algorithms. This approach was first 

proposed by Komiya et al [5]. We decided to implement and 

evaluate Naïve Bayes [27], SVM using a linear kernel 

[11][18][31] (results are not included since they’re already 

implemented) and Boosting [19][12][32][42] algorithms. 

For data cleaning we considered two approaches – 

tokenization (1) and also further cleaning the data by 

removing stop words, stemming (2)—they're discussed 

deeper in section 3.1. 

3.1 Datasets 

We trained machine learning algorithms using data obtained 

from Kaggle [8][9].  The data is first subjected to pre-
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processing. This will help in the classification algorithms 

producing better results. 

As part of the pre-processing of data, it removes all the blank 

rows (If any) [26]. And it will change all the text to lower 

case. This is an essential step as python is case sensitive. The 

third most important step is the tokenization-each entry in 

the data will be broken into a set of words [24]. The data 

pre-processed until here is fit into the models, the accuracies 

were noted, which we consider (1). Further, we removed 

Stop words, non-numeric and performed word-stemming 

[25] (2). 

After final processing (1) and (2), the end output is stored 

and is split into training and test data sets.  The target 

variable is label encoded-this will transform classes into 

numerical values. Finally, we vectorized the words [28] 

using TF-IDF vectorizer. Now, we ran different algorithms to 

classify and check for accuracy. Fig-1 and Fig-2 show a step-

wise pre-processing of the dataset for (1) and (2) techniques. 

 
Figure-1 Flow of the proposed system (1) 

 

 
Figure-2 Flow of the proposed system (2) 

 
4. RESULT ANALYSIS 

 
We applied and assessed three ensemble learning 

approaches apart from Gradient Boosting- AdaBoost, 

XGBoost, and LightGBM. Gradient boosting algorithm has the 

high computational time. Adaboost suits well for a binary 

classification of data. LightGBM and XGboost are almost 

similar- very fast computational time and uses less memory 

as it uses histograms. LightGBM uses leaf-wise code splitting 

where as XGboost and the other algorithms use Level-wise 

node splitting. Two data-processing techniques are valuated 

and the results for each technique is shown in Tables, Table 

1-4. Payloads available for SQLi are immensely larger than 

that of XSS payloads However, the XSS attacks datasets were 

more refined than SQLi attacks payload. The classification 

results of each machine learning approach are analysed by 

Precision, and Recall [20][29].  

Figures from Figure 7 to Figure 16 are evaluation results-

they’re graphs plotted between precision and recall by (1). 

The first (1) data pre-processing technique and the (2) had a 

drastic difference in their computational time, which was 

expected as the data cleaning has cut down to one step i.e., 

tokenization. The former had higher accuracy than the latter. 

The in the latter technique, word stemming is performed 

which can be efficient only with data with no jargons. 

Removing stop words also can cause damage as query 
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language has stop words as it’s point of execution. Hence, (1) 

technique is considered to be more efficient, [5] and [1] also 

suggested the same technique. The accuracies are compared 

for the former and latter techniques in the figures- Fig- 7 and 

Fig-8.  These evaluation results lead us to believe that (1) 

process can yield higher accuracies.  Establishing that, Light 

GBM algorithm has shown a whooping accuracy of 99.5%. 

Since it is faster and utilizes lower memory, it implied that it 

was the best model to use. 

 

Figure 3- Accuracies by (1) and (2) on SQLi attacks 

 

Figure 4- Accuracies by (1) and (2) on XSS attacks 

 Accuracy Avg. 

Precision 

Recall 

Gradient Boosting 99.23% 0.99 

 

0.99 

 

AdaBoost 99.50% 

 

0.99 

 

0.99 

XGBoost 99.39% 0.99 0.99 

Light GBM 99.51% 0.99 0.99 

Table-1 SQLi attacks (1) 

 Accuracy Avg. 

Precision 

Recall 

Gradient Boosting 93.71% 0.89 0.92 

 

AdaBoost 94.45% 0.89 0.92 

XGBoost 94.33% 0.89 0.92 

Light GBM 94.22% 0.89 0.92 

Table-2 SQLi attacks (2) 

 Accuracy Avg. Precision Recall 

Gradient Boosting 99.50% 1.0 1.0 

AdaBoost 99.56% 1.0 1.0 

XGBoost 99.54% 1.0 1.0 

Light GBM 99.59% 1.0 1.0 

Table-3 XSS attacks (1) 

 Accuracy Avg. 

Precision 

Recall 

Gradient Boosting 89.25% 0.90 0.89 

AdaBoost 87.78% 

 

0.89 0.89 

XGBoost 96.01% 0.96 0.96 

Light GBM 95.54% 0.96 0.96 

Table-4 XSS attacks (2) 
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Figure-9 The Recall-Precision graph of Adaboost in XSS 

 

Figure-10 The Recall-Precision graph of XGBoost in XSS 

 

 

Figure-11 The Recall-Precision graph of Gradient boosting 

in XSS 

 

Figure-12 The Recall-Precision graph of Light GBM in XSS 

 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 08 Issue: 07 | July 2021                 www.irjet.net                                                                      p-ISSN: 2395-0072 

 

© 2021, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 2936 

 

Figure-13 The Recall-Precision graph of Adaboost in SQLi 

 

Figure-14 The Recall-Precision graph of XGBoost in SQLi 

 

 

Figure -15 The Recall-Precision graph of Gradient boosting 

in SQLi 

 

Figure -16 The Recall-Precision graph of Light GBM in 

SQLi 

5. IMPLMENTATION 
 

After developing the model to detect and prevent SQLi and 

XSS attacks, we deployed the model onto a CRUD application 

developed using flask [33] and the database we utilized was 

MySQL [34]. Whenever a user provides dynamic input, the 

model sanitizes the input to determine whether or not 

malicious code is there before committing to the database. If 

the model detects any suspicious activity, it will prompt an 

error saying there has been an attempt to breach.  Figures, 

Fig-17-Fig 20 display a sample demonstration of how our 

experimental website works when a malicious code is given 
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as input. The data for the models used to deploy in this 

specific website was pre-processed by (1) technique since it 

showed significant results.   

When any attack is detected instead of just giving a warning 

to the client or in this case an attacker, we built a tool which 

will sanitize the input using technique (1) before passing it 

through the database, but if any malicious activity is found, 

the public IP address of that particular user is stored. 

Whenever said user tries to access the website again at a 

later time, our tool will find that the public IP address is 

already in the ban list and will not grant access to the user. 

Figure-20 gives a simple demonstration of the tool. The 

machine learning algorithm with which the pre-processed 

data is predicting is Light GBM as it gave significant 

accuracies, when compared with other boosting algorithms. 

(Table 1 and Table 3) 

 

Figure-17 A Website built to demonstrate working of SQLi 

and XSS models 

Figure-18 Deliberately giving an SQL query to prompt an 

attack 

 

Figure-19 Deliberately giving malicious code to prompt 

XSS attack 

Figure-20 Denying access if there is an attack  

6. CONCLUSION 

Web applications are exploited on a day-to-day basis as they 

contain sensitive information. Two of the most common 

exploitation techniques are SQLi and XSS. Our project 

attempts to solve these perpetual attacks by building 

classifiers on payloads of both SQLi and XSS. Gathering from 

our analysis, tokenization of data is the best technique for 

pre-processing (1), and also the computational time was 

significantly lesser for (1). After Evaluating the results, Light 

GBM clearly stood out from the rest of the boosting 

algorithms with 99.51% and 99.59% accuracies for SQLi and 

XSS respectively. For further enhancement- investigation on 

malicious code i.e., curating a more efficient and specific 

dataset is recommended as the payloads are very limited. 
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