
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3320

Improving Hadoop MapReduce job execution by Load Balancing using

Machine Learning Techniques

Akash S H1, Annappa Swamy D R2

 1PG Student, Dept. of Computer Science and Engineering, MITE, Mangalore, Karnataka, India
2Associate Professor, Dept. of Computer Science and Engineering, MITE, Mangalore, Karnataka, India

---***--
Abstract -For academics and scientists, Hadoop has become a
crucial tool for storing and analyzing large amounts of data.
The Hadoop Distributed File System is used to store this
massive amount of data (HDFS). In HDFS, a block placement
policy is used to break a very large file into blocks and
distribute them throughout the cluster in an extremely
dispersed way. Hadoop and HDFS, in general, are meant to
function quickly on a consistent cluster. However during this
era of networking, we cannot think of having merely a cluster
of consistent nodes. As a result, owing of the diverse cluster, a
storage strategy that will work quickly on each consistent is
required. Thus, the necessity of programs which will be
running in a time-efficiently way and providing consistent yet
since the heterogeneous environment will be sufficient data1
in Hadoop.

MapReduce is a programming framework for creating Map-
Reduce programs that may operate in parallel on a distributed
environment. MapReduce makes it possible for Hadoop
applications to execute. Hadoop places data blocks on nodes
using the HDFS block placement strategy. Every now and then,
the Hadoop cluster becomes unbalanced due to the
overutilization of a few nodes versus the less utilized nodes, or
newly generated new nodes with no blocks held on them.
Hadoop has a built-in utility called HDFS Balancer that can
help you overcome this problem

Key Words: Hadoop, Load Balancing, Data Blocks, HDFS
Storage.

1.INTRODUCTION

Hadoop [1] has become popular due to its ability to make use
of common machines. The Hadoop Distributed File System
(HDFS), MapReduce, and Yet Another Resource Negotiator
(YARN) are the three most important components [3]. HDFS
allows nodes in the distributed cluster to store data. HDFS is
a well-known adherent file system that can be installed on
any machine.

The data blocks are stored by Hadoop on the cluster's
multiple nodes. The strategy of storing blocks in Hadoop aids
in the uniform distribution of data blocks among cluster
nodes. This policy allows the data blocks to be moved around
in a manner that is compatible with the following approach:

• Splitting the huge number of files into blocks and
replicating the blocks in order to address the replication
issue described in the hdfs-site.xml file.

• That particular data node. Otherwise, you can put it on
any of the cluster's data nodes.

• If available, the next precise copy of the block will be
placed on other racks of the nodes, or even placed on a
similar rack of the initial replica.

 • The third copy must be installed on any rack node
where the second copy is already present.

2. HDFS Block Placement Policy

Blocks are mapped to processes inside the same node by Data
Locality when using HDFS's block placement policy, however
when dealing with large data, it's common to need to map
data blocks to processes across several nodes. Hadoop
includes a feature that copies the data block wherever
mappers are operating to affect this. Because of I/O latency or
network congestion, this causes numerous performance
degradations, particularly on heterogeneous clusters. We
utilize an efficient technique to balance the data block on
particular nodes, i.e. custom block placement, by separating
the total number of nodes into two classes: Nodes that are
homogeneous vs. heterogeneous, or that are high performing
vs. low performing. This policy ensures that load is
distributed evenly among the nodes and that data blocks are
placed exactly where we want them for processing.

3.HDFS Balancer

When the load is not evenly distributed between the nodes,
load imbalance might develop inside the cluster. The
flexibility of Hadoop is another factor that contributes to
cluster imbalance. At any moment, we can add data nodes to
an existing cluster. Because freshly added data nodes won't
have any data blocks, this might create cluster imbalance. In
order to achieve efficient outcomes, it is critical to have a
balanced cluster. The HDFS Balancer tool is used to distribute
load across a Hadoop cluster.

The intended threshold limit that is established on the cluster
is used to move the number of blocks. When the HDFS
Balancer tool is set to operate with the default threshold limit
of 10%, it tries to maintain a 10% difference in disc
utilization from overall cluster use. That means that if cluster
utilization is 60 percent of the cluster limit, each node's disc
use will be anywhere between 50 and 70 percent [4].

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3321

There are two issues with HDFS Balancer: the first is that it
moves information blocks without investigating what the
threshold limit of nodes where information blocks are being
moved is, and the second is that there is no method for
controlling the translation behaviour of information blocks of
determined documents/datasets as it were. It's also
important to remember that transferring data from one node
to the next requires a lot of data transmission bandwidth so
that cluster balancing can happen quickly.

4.Techniques Used to Solve a Load Balancing Issue in
Hadoop

There are two popular approaches to resolving load
balancing concerns in Hadoop: The first option is to rebalance
the cluster by moving the data, while the second option is to
migrate the Task itself. Researchers are focusing on Task
Migration rather than Data Migration since data transfer
across hubs would increase the temporal complexity.

4.1 Hadoop Schedulers

Can accomplish load balancing to decrease job or task
information migration to a degree [8]. The latency time,
completion time, and data locality of several Hadoop
programming methods are all assessed. Six Big Data
applications are enforced in this experiment using three
alternative scheduling queue configurations: single queue,
multi-queue, and mixed multi-queue. The majority of the
tests were carried out by fine-tuning the scheduling rules for
the Hadoop environment. The following conclusions are
reached:

• In a single queue, Fair-DRF surpasses the other
three in terms of execution time and effective
resource utilization capabilities. The only flaw is that
C.P.U. use time may be a little longer than with Fair-
Fair scheduling.

• When considering workload waiting time,
completion time, turnaround time, and C.P.U. use in a
multi-queue system, Fair-FIFO is the best option.
Only if resource utilization is critical is it preferable
to be fair.

• In a mixed multi-queue system, When it comes to
resource usage and task execution performance,
Fair-DRF is the most appropriate option.

4.2Apart from Built-In Scheduler which is provide by
Hadoop, Researchers have developed Improved
Scheduling Algorithm to contribute it for Load
Balancing[6,12]

It is insufficient to distinguish modest tasks. What matters is
identifying the task that will have the greatest impact on
response time and doing it as quickly as feasible.

Distinguishing an activity as a slow poke when it continues to
run for more than two standard deviations outside the mean

isn't helpful for reducing reaction time: at this point, the
activity might have just ran 3x longer than it should have! As
a result, LATE is based on the estimated time remaining and
can identify the moderate job at an appropriate moment. A
number of factors, such as a high grade on theoretical tasks,
ensure responsible behaviour. By inferring heterogeneity
from appropriated applications. There are four exercises:

1. Make judgments as soon as feasible rather than
relying on base decisions for mean and variance measures.

2. Rather than utilizing progress time, utilize
completion time to prioritize activities for speculation.

3. Not all of the nodes are the same. Refrain from
assigning theoretical tasks to sluggish nodes.

4. Resources are priceless. Tops should be used to
prevent the structure from being overburdened.

This research is also linked to multiprocessor task
scheduling with processor heterogeneity [8] and errand
duplication when using dependency diagrams [11].
Multiprocessor errand booking is concerned with
situations in which processor speeds, while diverse, are
known ahead of time and tasks are intimately linked owing
to entomb task correlation. This means that, in a
multiprocessor environment, it is both possible and
necessary to plan task allocations ahead of time, but with
MapReduce, the scheduler must adapt gradually to
changing conditions on the ground.

Speculative execution in MapReduce has several
similarities to “speculative execution” in DFS,
configuration management, and data collecting. Strong
scheduling algorithm: whereas LATE focuses on
approximation that running a job can be overtaken to
reduce the response time of a distributed computation,
LATE focuses on approximation that running a task can be
overtaken to reduce the response time of a distributed
computation.

• LATE, which uses projected finish timings to
speculatively execute the activities that have the greatest
impact on response time.

 • On Amazon's Elastic Computing Cloud, LATE outperforms
Hadoop's de-fault speculative execution algorithms in actual
workloads.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3322

4.3 Tree Based Load Balancing

Figure-4.3: Load Balancing Generic Model

To the matrix, the network and offer adaptability to internal
failure. The leaf of a tree is regarded as a site's figure
component. A lattice is made up of various groups, and
bunches are made up of various locations, or we might say
that various destinations are gathered to form a group, and
various figure components are gathered to form a site. The
status of the registration components is saved in a place. The
registering components administrator is a program that runs
in the background. Each bundle has information on the heap
of its locales buried beneath it. The group's programming is
referred to as the destinations chief since it manages all of
the group's programming, the heap of the destinations that
are under the group, and in the event that any site under it
fails, it circulates its heap to a less crowded site, preventing
the entire group from being disappointed as a result of the
site's failure, and thus providing adaptation to non-critical
failure to the group. S/G/M refers to the number of bunches
that make up a network, G to the number of locations in each
bunch, and M to the number of figuring components in each
locale. Depending on the upsides of S and G, this model may
be transformed into three explicit models: S/G/M, 1/G/M,
and 1/1/M.

4.4 Load Balancing Based on Disk Latency and Disk Space
Utilization

When the disc latencies of the data nodes are similar,
balancing the blocks uniformly may be the best option.
Furthermore, disc latencies will grow with time due to
mechanical difficulties and hazardous sectors. Furthermore,
crashed and non-functional discs are replaced with newer
discs, which may be of a newer generation and have a higher
rate. This causes disc non-uniformity inside the cluster, which
is otherwise unvarying, therefore balancing evenly in line
with disc utilization may not provide the best task execution
time.

To address this issue, a disc latency aware balancer was
developed, which balances the cluster while considering both
space consumption and disc delay. This disc balancing

method ensures that a low latency disc receives a greater
diversity of blocks than a high latency disc.

The authors evaluated their unique block placement
technique on a heterogeneous cluster and found that it
improved the job's running time by up to 20%.

4.5 Hadoop tool for load balancing:

Using a block placement policy that is unique to you Hadoop
[12] is a tool for load balancing that takes into account the
node's hardware generation. The TSNSGAII multiobject
selection method is coupled with a PMKELM prediction
model and an adaptive strategy. The PMKELM can help with
task execution time prediction, while the TSNSGAII was
created to help with picking an appropriate number of
reducers. Both models perform well in the experiment,
according to the data. During tests, about 47–55 seconds
were saved. In terms of storage efficiency, just 1.254 percent
of changes in hard disc occupation were created among all
planned reducers, which reaches 26.6 percent improvement
than the original scheme.

4.6 Load Balancing through Block Rearrangement policy
for Hadoop Heterogenous clusters

During block placement, the custom block placement policy
limits the CPU's processing capabilities. In MapReduce, this
method will assist to reduce inter-node and inter-rack
transmission. This demonstrates that only data blocks from a
single file are assigned to specified nodes. As a consequence,
because the remainder of the files are unaffected, this
technique will have no effect on the cluster's overall load
balancing. The results of the experiments show that this
technique may be applied to both homogeneous and
heterogeneous clusters.

5. RESULTS

Fig-5.1: The above image describes the UI for user to
enter the job count and machine count.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3323

Fig-5.2:This image shows the graph of load balancing for
load balancer. The graph is plotted for Number of jobs v/s

Avg. Maxline of each jobs.

Fig-5.3:The above image describes the prediction score of
load balancing

Fig-5.4:This image shows the graph of load balancing for
Random routing. The graph is plotted for Number of jobs

v/s Avg. Maxline of each jobs.

6. CONCLUSIONS

In Hadoop, there are a variety of load equalization
techniques. The conclusions made here are frequently
application dependent, and future researchers will examine
constants with a variety of application types. The majority of
the load equalization analysis work focuses primarily on load
equalization during planning [8, 9] or load equalization
during MapReduce [11,12]. These methods produce better
outcomes, especially in the case of heterogeneous clusters.

REFERENCES

[1] Dharanipragada, Padala.S, Kammili.B and Kumar.V
(2017 IEEE) "Tula: A disk latency aware balancing
and block placement strategy for
Hadoop".International Conference on Big Data
(BigData).

[2] Vavilapalli, Seth.S, Saha.B, Curino.C, O'Malley.O,
Radia.S, Reed.B, Baldeschwieler.E, Murthy.A,
Douglas.C, Agarwal.S, Konar.M, Evans.R, Graves.T,
Lowe.J and Shah.H (2013) "Apache Hadoop YARN",
Proceedings of the 4th annual Symposium on
Cloud Computing SOCC '13.

[3] "HDFS Balancers | 5.7.x | Cloudera Documentation",
Cloudera.com, 2018. [Online] Available
https://www.cloudera.com/documentation/en
terprise/57x/topics/admin_hdfs_balancer.html.
[Accessed: 07- Jul- 2018]

[4] ”Hadoop Fair Scheduler”.
https://hadoop.apache.org/docs/r2.7.2/hadoopyarn
/had oop-yarn-site/FairScheduler.html. Accessed 20
May 2017.

[5] Pike.R, Dorward.S, Griesemer.R and Quinlan.S (Oct.
2005) “Interpreting the Data: Parallel Analysis with
Sawzall”, ScientificProgramming Journal, 13 (4):
227298.

[6] Olston.C, Reed.B, Srivastava.U, Kumar.R and
Tomkins.A(June 2008) “Pig Latin: A Not-So-Foreign
Language for Data Processing”. ACM SIGMOD 2008.

[7] Ucar.B, Aykanat.C,Kaya.K, and Ikinci.M (Jan 2006)
“Task assignment in heterogeneous computing
systems”. J. of Parallel and Distributed Computing, 66
(1): 32-46.

[8] Shanjiang Tang, Bu-Sung Lee, and Bingsheng He,
“DynamicMR: A Dynamic Slot Allocation
Optimization Framework for MapReduce Clusters," in
Ieee Transactions On Cloud Computing, Vol. 2, No. 3,
July-September 2014.

[9] Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoic,
Y. Lu, B. Saha, and E.Harris, “ Reining in the outliers in
MapReduce clusters using mantri,"In USENIX OSDI,
Vancouver, Canada, October 2010.

[10] Chen, M. Kodialam, and T. Lakshman,”Joint
scheduling of processing and shu_e phases in
MapReduce systems," In Proceedings of IEEE
Infocom, March 2012.

http://www.cloudera.com/documentation/en
https://www.cloudera.com/documentation/enterprise/5-7-
https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/FairScheduler.html.%20Accessed%2020%20May%202017
https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/FairScheduler.html.%20Accessed%2020%20May%202017
https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/FairScheduler.html.%20Accessed%2020%20May%202017
https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/FairScheduler.html.%20Accessed%2020%20May%202017
https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/FairScheduler.html.%20Accessed%2020%20May%202017
https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/FairScheduler.html.%20Accessed%2020%20May%202017
https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/FairScheduler.html.%20Accessed%2020%20May%202017
https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/FairScheduler.html.%20Accessed%2020%20May%202017
https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/FairScheduler.html.%20Accessed%2020%20May%202017
https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/FairScheduler.html.%20Accessed%2020%20May%202017

