

STATIC AND DYNAMIC ANALYSIS OF RCC STRUCTURE WITH FLAT SLAB AND X BRACING

Dheekshith K¹, Shashank H²

¹Assistant Professor, Srinivas University College of Engineering and Technology, Mangalore, Karnataka, India ²M.Tech student, Srinivas University College of Engineering and Technology, Mangalore, Karnataka, India ***

Abstract - As there is rapid development in infrastructure, structure like hotels, museums and convention hall requires more floor height as it gives good asthetic look. So floor height is to be increased it cannot be achieved with normal beam and column structure. So building with flat slab is constructed to increase the floor height. Flat slab structure with certain height of structure is also stable for dynamic analysis. But for structure with greater height is not stable for dynamic analysis as compared to rc framed structure. Bracing are adopted for the flat slab structure to make good condition for dynamic analysis. So that it can resist lateral forces. In this study, flat slab rc structure of G+12 is modelled then static and dynamic analysis is carried out by using etabs software. Equivalent static method is used for static analysis and response spectrum method is used for dynamic analysis. G+12 flat slab rc structure with a floor height of 3.5m is considered for analysis. Loads considered for analysis is according to the IS codes. Analysis is carried out for structure without bracing for zone 2 and 5. Then steel bracing are provided to structure in X type pattern and analysis is carried out for structure with *X* bracing for zone 2 and 5. The parameters considered are storey displacement, storey drift and base shear. Results obtained are compared with structure with bracing and structure without bracing.

Key Words: Flat slab, X bracing, Lateral displacement, Storey drift, Storey shear.

1. INTRODUCTION

Earthquakes cause varying shaking intensities at various location, as well as there is a differ in a damage occurred at these location. As a result, by knowing the intensity of shaking at that location a structure which to be constructed is resistant for earthquakes, and comprehend the effects from earthquake. Even when earthquakes of the same magnitude occur due to its varying intensity, resulting in differing devastating impacts in various locations. As a result, it is required to investigate changes in seismic behaviour of flat slab rc framed buildings for different magnitudes of earthquakes in terms of lateral displacements, storey drift and base shear. As a result, the earthquake behaviour of structures with identical layouts must be understood under various earthquake intensities. It is required to conduct a seismic analysis of the structure using several available technologies in order to determine seismic responses.

When rcc structures subjected to severe earthquakes then there will be possibility of failure of structure. So to reduce the failure of structure bracing are provided to the rcc structure such that the failure of structure can be reduced. Therefore, less damage of the rcc structures in earthquakes which often depends on the ability of the energy dissipation of the braces reduces the damages and increases their use. This is because the energy dissipation capacity enhances, the safety of the structures also improves. The ease of the application and effective performance of braces in rcc structures, have made them a suitable method of resisting lateral forces. Braces, as a passive control system, can play an effective role in creating structural resistance to lateral forces like earthquakes.

1.1 OBJECTIVES

- The goal of this project is to investigate and determining the various structural response of the rcc flat slab structure with bracing.
- To find the appropriate methods for dynamic analysis.
- To check the seismic response of building using etabs software.
- To study the dynamic performance of building with bracing and without bracing.
- To analyse base shear, lateral displacement, storey drift under loads.
- To analyse results between static and dynamic analysis (response spectrum method).

2. METHODOLOGY

- Study of dynamic analysis.
- Defining objective of the study.
- Literature review.
- Refering IS codes for design codes.
- Model generation using etabs.
- Model 1: G+12 structure with flat slab is modelled and prepared for seismic zone 2, then static and dynamic analysis by response spectrum method is carried out.
- Model 2: G+12 structure with flat slab is modelled and prepared for seismic zone 5, then static and dynamic analysis by response spectrum method is carried out.

Volume: 08 Issue: 07 | July 2021

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

- Model 3: G+12 structure with flat slab and X bracings are provided is modelled and prepared for seismic zone 2, then static and dynamic analysis by response spectrum method is carried out.
- Model 4: G+12 structure with flat slab is modelled • and X bracings are provided and prepared for seismic zone 5, then static and dynamic analysis by response spectrum method is carried out.
- Analysis of building models to obtain the results.
- Comparison of the results and concluding the work with conclusion.

Tuble H Debigin	uata for analysis
Particular	Details / Size
Plan dimension	30.6x45.6 m
X-Direction grid spacing	7.5m
Y-Direction grid spacing	7.5m
Number of storey	13
Column dimension	600x600 mm
Depth of slab	275 mm
Depth of drop	420 mm
Height of each storey	3.5 m
Support condition	Fixed
Total height of building	45.5 m
Thickness of wall	230 mm
Seismic zone	II & V
Soil type	II
Material used	Concrete M40 & Reinforcement Fe 415
Bracing property	ISA 200x150x12
Dead load	8 kN/m ²
Live load	4 kN/m ²
Wall load	16.1 kN/m
Earthquake load	As per IS 1893-2002
Wind load	As per IS 875-3 (1987)
Response reduction factor	5

Table -1:	Design	data for	analysis
	0		2

Damping ratio	0.05
Importance factor	1
Static analysis	Equivalent Lateral force method
Dynamic analysis	Response spectrum method
Software used	Etabs 2017

Fig -1: Plan of G+12 structure with flat slab and drop

Fig -2: 3D of the structure

Fig -3: Structure with X bracing

id Cases			Click to:
Load Case Name	Load Case Type		Add New Case
Dead	Linear Static		Add Copy of Case
Live	Linear Static		Modify/Show Case
WX	Linear Static		Delete Case
WY	Linear Static	*	
EX	Linear Static		Show Load Case Tree
EY	Linear Static	\$	
WALL LOAD	Linear Static		
RSAX	Response Spectrum		OK
RSAY	Response Spectrum		

Fig -5: Response spectrum function in etabs

3. RESULTS AND DISCUSSION

After completion of modelling and analysis part results are discussed. Results obtained are displacement, drift, base shear of the structure. Then results are compared with zone 2 and zone 5, then it is compared with structure without bracing and structure with X bracing. Then graphs are plotted.

3.1 DISPLACEMENT

It is total displacement of any storey with respect to the ground.

Table -2: Displacement values in x direction for zone 2,without bracing and with X bracing for Static and dynamicanalysis

Storey	Zone 2 (x direction) without bracing		Zon directio bracii	ne 2 (x on) with X ng (mm)
	(r Static	nm) Dvnamic	Static	Dvnamic
13	58.775	11.553	24.230	7.490
12	57.947	11.296	23.853	7.285
11	56.474	10.889	23.123	6.989
10	54.266	10.339	22.117	6.607
9	51.319	9.662	20.839	6.150
8	47.646	8.871	19.298	5.625
7	43.267	7.976	17.503	5.041
6	38.209	6.982	15.467	4.402
5	32.500	5.893	13.206	3.714
4	26.176	4.711	10.736	2.982
3	19.286	3.442	8.076	2.212
2	11.946	2.108	5.247	1.412
1	4.643	0.806	2.279	0.600

Displacement values for zone 2 in x-direction

Table -3: Displacement values in y direction for zone 2,without bracing and with X bracing for Static and dynamicanalysis

Storey	Zon dire withou	Zone 2 (yZone 2 (ylirection)direction) withtout bracingbracing (mm)		ne 2 (y on) with X ng (mm)
	1)	nm)		
	Static	Dynamic	Static	Dynamic
13	39.016	11.460	12.007	6.395
12	38.525	11.223	11.816	6.245
11	37.599	10.836	11.493	6.015
10	36.176	10.304	11.028	5.709
9	34.252	9.642	10.424	5.333
8	31.837	8.864	9.685	4.894
7	28.943	7.979	8.815	4.399
6	25.587	6.992	7.820	3.852
5	21.787	5.907	6.707	3.260
4	17.565	4.726	5.484	2.626
3	12.953	3.455	4.158	1.959
2	8.029	2.117	2.738	1.265
1	3.121	0.809	1.226	0.553

Fig -7: Displacement values for zone 2 in y-direction for static and dynamic analysis

Table -4: Displacement values in x direction for zone 5,without bracing and with X bracing for Static and dynamicanalysis

Storey	Zone 5 (x direction) without bracing (mm)		Zon directio bracii	ne 5 (x on) with X ng (mm)
	Static	Dynamic	Static	Dynamic
13	82.941	41.592	50.010	27.275
12	80.758	40.664	48.429	26.535
11	77.213	39.201	46.097	25.463
10	72.487	37.222	43.105	24.078
9	66.744	34.784	39.572	22.417
8	60.178	31.936	35.611	20.510
7	52.969	28.714	31.324	18.384
6	45.277	25.136	26.804	16.060

5	37.243	21.215	22.136	13.554
4	28.992	16.960	17.394	10.884
3	20.638	12.391	12.641	8.073
2	12.349	7.587	7.932	5.151
1	4.643	2.900	3.333	2.183

Table -5: Displacement values in y direction for zone 5,without bracing and with X bracing for Static and dynamicanalysis

Storey	Zone 5 (y direction) without bracing (mm)		Zor directio bracii	ne 5 (y on) with X ng (mm)
	Static	Dynamic	Static	Dynamic
13	75.620	41.256	41.471	23.335
12	73.701	40.404	40.281	22.791
11	70.574	39.011	38.447	21.956
10	66.324	37.095	36.044	20.842
9	61.129	34.712	33.177	19.473
8	55.169	31.910	29.938	17.874
7	48.607	28.723	26.413	16.068
6	41.591	25.171	26.804	14.074
5	34.249	21.265	22.136	11.911
4	26.693	17.014	17.394	9.598
3	19.028	12.440	12.641	7.158
2	11.403	7.621	7.932	4.618
1	4.287	2.913	3.333	2.013

L

Fig -9: Displacement values for zone 5 in y-direction for static and dynamic analysis

3.2 STOREY DRIFT

It is specified as ratio of displacement of two consecutive floors to height of that floor. Drift is a major term used in dynamic analysis.

Table -6: Drift values in x direction for zone 2, without

 bracing and with X bracing for Static and dynamic analysis

	Zone 2 (x	direction)	Zone 2 (x	direction)
Storey	without bracing (n		with X bracing (m)	
	Static	Dynamic	Static	Dynamic
13	0.000237	0.000097	0.000134	0.000066
12	0.000421	0.000154	0.000209	0.000098
11	0.000631	0.000201	0.000288	0.000126
10	0.000842	0.000238	0.000365	0.000148
9	0.001050	0.000267	0.000440	0.000166
8	0.001251	0.000291	0.000513	0.000181
7	0.001445	0.000311	0.000582	0.000194
6	0.001631	0.000331	0.000646	0.000204
5	0.001807	0.000350	0.000706	0.000214
4	0.001969	0.000369	0.000760	0.000223
3	0.002097	0.000383	0.000808	0.000229
2	0.002087	0.000372	0.000848	0.000232
1	0.001327	0.000230	0.000651	0.000171

Fig -10: Drift values for zone 2 in x-direction for static and dynamic analysis

Table -7: Drift values in y direction for zone 2, without

 bracing and with X bracing for Static and dynamic analysis

Storey	Zone 2 (y direction) without bracing (m)		Zone 2 (y with X br	direction) acing (m)
_	Static	Dynamic	Static	Dynamic
13	0.000153	0.000091	0.000094	0.000048
12	0.000265	0.000148	0.000144	0.000075
11	0.000407	0.000196	0.000188	0.000099
10	0.000549	0.000234	0.000244	0.000119
9	0.000690	0.000263	0.000253	0.000136
8	0.000827	0.000288	0.000276	0.000151
7	0.000959	0.000309	0.000292	0.000163
6	0.001087	0.000329	0.000318	0.000174
5	0.001206	0.000350	0.000350	0.000184
4	0.001318	0.000369	0.000379	0.000192
3	0.001407	0.000384	0.000406	0.000199
2	0.001402	0.000374	0.000432	0.000203
1	0.000892	0.000231	0.000350	0.000158

Table -8: Drift values in x direction for zone 5, without

 bracing and with X bracing for Static and dynamic analysis

Storey	Zone 5 (x without b	direction) racing (m)	Zone 5 (x with X br	direction) acing (m)
Ū	Static	Dynamic	Static	Dynamic
13	0.000633	0.000348	0.000452	0.000240
12	0.001006	0.000553	0.000667	0.000356
11	0.001353	0.000725	0.000856	0.000458
10	0.001644	0.000857	0.001010	0.000540
9	0.001880	0.000962	0.001133	0.000607
8	0.002064	0.001047	0.001226	0.000661
7	0.002202	0.001121	0.001292	0.000706
6	0.002300	0.001191	0.001335	0.000745
5	0.002362	0.001260	0.001356	0.000781
4	0.002391	0.001327	0.001359	0.000813
3	0.002373	0.001379	0.001347	0.000838
2	0.002209	0.001340	0.001315	0.000848
1	0.001327	0.000829	0.000952	0.000624

Volume: 08 Issue: 07 | July 2021

www.irjet.net

p-ISSN: 2395-0072

Fig -12: Drift values for zone 5 in x-direction for static and dynamic analysis

Table -9: Drift values in y direction for zone 5, without bracing and with X bracing for Static and dynamic analysis

Storey	Zone 5 (y direction) without bracing (m)		Zone 5 (y direction) with X bracing (m)	
	Static	Dynamic	Static	Dynamic
13	0.000549	0.000329	0.000340	0.000174
12	0.000895	0.000534	0.000524	0.000272
11	0.001216	0.000707	0.000687	0.000360
10	0.001486	0.000841	0.000820	0.000434
9	0.001705	0.000948	0.000926	0.000497
8	0.001877	0.001036	0.001008	0.000551
7	0.002008	0.001113	0.001068	0.000596
6	0.002101	0.001186	0.001108	0.000637
5	0.002162	0.001258	0.001130	0.000673
4	0.002193	0.001328	0.001138	0.000703
3	0.002182	0.001383	0.001134	0.000728
2	0.002036	0.001346	0.001123	0.000745
1	0.001225	0.000832	0.000852	0.000575

Fig -13: Drift values for zone 5 in y-direction for static and dynamic analysis

3.3 BASE SHEAR

Base shear is the sliding force that is generated at the base of the structure especially due to earthquake forces.

Table -10: Base shear values in x & y direction for zone 2 & 5, without bracing and with X bracing for Static and dynamic analysis

	Base shear in kN				
Zone	Static		Dynamic		
	Fx	Fy	Fx	Fy	
Zone 2					
(Without	1576.92	1583.31	1122.77	1125.73	
bracing)					
Zone 2					
(With X	2416.81	2777.25	1713.53	1971.86	
bracing)					
Zone 5					
(Without	5653.10	5683.91	4041.98	4052.64	
bracing)					
Zone 5					
(With X	8463.20	9800.75	6090.39	6981.22	
bracing)					

Fig -14: Comparison of base shear for structure without bracing for zone 2 for static and dynamic analysis

Fig -16: Comparison of base shear for structure without bracing for zone 5 for static and dynamic analysis

Fig -17: Comparison of base shear for structure with X bracing for zone 5 for static and dynamic analysis

4. CONCLUSIONS

In this present study, comparative analysis is carried out for static and dynamic loadings. The analysis is done for structure without bracing and with X bracing for zone (2 and 5). The graph clearly shows storey displacement, drift and base shear. The following conclusion are written based on investigation.

- Displacement of structure is more for equivalent static analysis as compared to response spectrum method for zone 2&5. Zone 5 will give higher displacement as compared to zone 2 for static and dynamic analysis.
- Decrease in displacement values for structure with X bracing as compared to without bracing for static and dynamic analysis.
- Drift of structure is more for equivalent static analysis as compared to response spectrum method for zone 2 and 5. Zone 5 will give higher drift as compared to zone 2 for static and dynamic analysis.
- Decrease in drift values for structure with X bracing as compared to without bracing for static and dynamic analysis.
- Response spectrum method shows lower base shear as compared to equivalent static method for zone 2&5.

• Base shear will be more in structure with X bracing as compared to structure without bracing for static and dynamic analysis.

4.1 SCOPE FOR FUTURE STUDY

Many researches where done on rc framed structure with bracing for dynamic analysis. But this project is done on dynamic analysis for rcc structure with flat slab and X bracing and this is a unique project. I have got good output from results. Further, this project can be extend for other types of bracing.

REFERENCES

- [1] IS 456-2000: Code of practice for plain and reinforced concrete.
- [2] IS 800-2007: Code of practice for general construction of steel.
- [3] IS 875(part 1)-1987: Code of practice for design loads (other than earthquake) for buildings and Structures - unit weights of buildings materials and stored material.
- [4] IS 875(part 2)-1987: Code of practice for design loads (other than earthquake) for buildings and Structures - imposed.
- [5] IS 895(part 3)-1987: Code of practice for design loads (other than earthquake) for buildings and structures – wind.
- [6] IS 1893(part 1)-2002: Criteria for earthquake design of structures.
- [7] Static and Dynamic Analysis of Multistory Building by Amresh. A. Das, G. B. Bhaskar, International Journal for Research Trends and Innovation 2017 IJRTI | Volume 2, Issue 7.
- [8] Comparative Study of Static and Dynamic Seismic Analysis of a Multistoried Building by Anirudh Gottala, Kintali Sai Nanda Kishore, Dr. Shaik Yajdhani, JSTE - International Journal of Science Technology & Engineering | Volume 2 | Issue 01 | July 2015.
- [9] Dynamic analysis of RC frame braced tube structure by Ajay Shinde, International Research Journal of Engineering and Technology (IRJET) Volume: 04 Issue: 05 | May -2017.
- [10] Dynamic Analysis of Flat Slab System in Vertical Irregular Building with & without Shear Wall by Anshuman Nimade, Niraj Soni, Mahesh Patidar and Vikas Joshi, International Journal of Research and Scientific Innovation (IJRSI) | Volume V, Issue I, January 2018.