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Abstract— We propose intelligent deployment strategies for 
heterogeneous node deployment in wireless sensor networks. 
Placing the nodes in a wireless sensor network is a difficult prob-
lem, so we use Particle Swarm Optimisation (PSO) algorithm and 
Genetic Algorithm (GA) to find the optimal location of the hetero-
geneous nodes thereby increasing the network lifetime. The rout-
ing protocols used in this implementation are direct routing pro-
tocol and multi-hop routing protocol. After performing many 
experiments, we found that the proposed methods increase the 
network lifetime on average up to 150% of the initial lifetime. 
The objective function used by the models is the inverse of a life-
time and we tracked lifetime and time taken to reach a solution 
for comparing GA and PSO.  
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 I. INTRODUCTION  

Wireless Sensor Networks have developed into a large 
study field in the last decade, introducing a wide range of 
fascinating new applications and recently becoming a vital 
part of the Internet of Things idea. A WSN is made up of a 
large number of small low-power sensor nodes that can 
detect a variety of physical phenomena (such as motion, 
light, sound, seismic activity, temperature, and so on) in 
nearly any sort of environment (military, volcanic, indus-
trial, etc.). Through multi-hop routing, these sensor devic-
es, known to simply as sensors, digest the raw sensory da-
ta and send it wirelessly to one or more data assembly 
tanks, known as sinks. For the purposes of processing and 
querying the acquired data, the sink(s) are linked to an-
other wireless or wired network.  

Nonetheless, WSN’s enormous promise in critical appli-
cations is equaled by their extremely difficult design pro-
cess. Because of the significant energy, computation, and 
networking limits of accessible sensor devices, WSNs are 
essentially distinct from traditional wired and wireless 
networks. WSNs are also very application-oriented, neces-
sitating flexible configurations and cross-layer communi-
cation protocol stack optimisations. As a result, nearly eve-
ry area of WSN architecture, such as MAC, data routing, 
and transport protocols, has been extensively researched.  

Another important design consideration is sensor de-
ployment, which is often referred to as sensor positioning, 
deployment, layout and placement in the literature. We 
shall use the phrase deployment in this survey. The de-
ployment of a WSN has an impact on practically all of its 
performance measures, including network's lifetime, sen-
sor connection and network's successful coverage. In gen-

eral, there are two types of WSN deployment techniques: 
random deployment and planned deployment.  Sensors are 
often spread (e.g., via airplanes) in random deployment, 
resulting in a stochastic dispersion of sensors, however 
their concentration can be regulated to some extent. In 
some implementations where the field of interest is un-
reachable, for example disaster zones and live conflict 
zones, random deployment may be the only viable option.  

Planned deployment, on the contrary, is described as 
selecting sensor placements to optimise one or more WSN 
design objectives within the limits of a given application. 
Optimising coverage, limiting power consumption (i.e. 
maximising network longevity), and ensuring good net-
work connections are all frequent design objectives. 
Planned deployment is compatible with a huge range of 
WSN applications, as long as the AoI is available. Border 
observation, facility access control, and architectural 
maintenance are all examples of this type of monitoring. If 
the implanted sensors are mobile, it can even be done in 
unreachable AoIs after a first random deployment.  

In this paper, we offer a new categorisation of the ap-
proaches and algorithms for planned deployment of WSNs 
which have been suggested in the research. The mathemat-
ical methodology utilised to model and solve the deploy-
ment issue is the basis for our categorisation. Genetic Algo-
rithms (GA) and Particle Swarm Optimisation (PSO) are 
two separate mathematical methodologies described.  

It's worth noting that the computational techniques in 
our categorisation are heuristics, capable of offering sub-
optimal solutions for most WSN applications. For many 
planned deployment challenges, traditional deterministic 
optimisation approaches capable of generating optimal 
solutions, such as Linear Programming, are ineffective. 
This is because a pragmatic planned deployment situation 
might have many design goals, heterogeneous WSNs, 
or/and a high percentage of sensor nodes.  Such issues are 
known as NP-hard (non-deterministic polynomial time) 
problems, since no polynomial-time methods are able to 
solve them fully. This shows that the time it takes to obtain 
optimal solutions for these issues using deterministic op-
timisation methods, without applying any approximation 
methods, grows rapidly as their size expands. 

 II.SENSING MODEL 

In general, a sensing model for a certain type of sensor 
is a statistical model that explains the sensor's likelihood 
of detecting an event or target. The probability of sensing 
an event by a sensor (si) is given by Pij, which is a function 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 08 Issue: 07 | July 2021                 www.irjet.net                                                                      p-ISSN: 2395-0072 

 

© 2021, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 3660 
 

of various factors, assuming the event occurs at a point pj 
in the Area of Interest. The Euclidean distance (dij) be-
tween them, the sensor's alignment (for example, vision 
sensors with a specific Range of Vision, and different ambi-
ent factors are the most often utilised parameters). There 
exists a variety of sensing models in research. However, 
probabilistic and binary sensing models can be widely cat-
egorised. 

 A. Binary Sensing Model 

This model implies that a sensor's detecting range (rs) 
is fixed. When an event happens at a point that is less than 
or equal to the detecting range from position of the sensor, 
the event is probabilistically recognised by the sensor. If 
the distance is greater than the detecting range, however, 
the event will not be recognised. A binary sensing model is 
mathematically given as : 

   (1) 

where Cxy (si) shows that point ρ is covered by si and 
d(si, 𝜌) rep- resents the 
Euclidean distance amid 
point ρ and sensor node si.  

Because of its simplici-
ty, this model is extensively used in research, although it is 
impractical. It's improbable that the effective sensing, or 
the signals of the observed event or target, will decline 
from max to nil in an instant. As a result, adopting a binary 
sensing model could result in sensors being under-utilised 
and, as a result, more sensors being deployed than needed, 
resulting in greater deployment costs. 

 B. Probabilistic Sensing Model 

The goal of probabilistic sensing models is to incorpo-
rate the numerous factors that influence sensor reading 
accuracy. These variables include ambient circumstances 
such as noise and obstructions, in addition to the nature of 
the observed physical phenomena and the sensor's poor 
detection potential.  

Let re represent the detection uncertainty, with 0 < re < 
rs and Eq. 2 as the mathematical representation. The ex-
pressions rs - re and rs + re define a ring in which an event 
may or may not be sensed depending on the coverage 
probability value.  

   (2) 

where, re represents the uncertainty and bounded by 

0 < re and < rs  

and 

a = d (si , p) − rs − re 

where, β and δ measure the probability of detection. 

 III. SENSOR MOBILITY 

 
WSNs are divided into two categories based on the na-

ture of sensor nodes : static WSNs (WSN) and mobile 
WSNs (MWSNs). Recent advancements in cloud technology 
and robotic technologies have sparked interest in MWSNs. 
WSNs that include sensing, communication, computing, 
and transportation capabilities are referred to as MWSNs. 
Installing static sensors on mobile carriers can provide 
transportation capabilities. The MWSN could be homoge-
neous, that is, it only comprises mobile sensors, or hetero-
geneous, that is, it includes both static & mobile sensors.  

The increased mobility can bring numerous benefits to 
the MWSNs, but it can also considerably complicate the 
layout. The capability of the network to self-deploy after a 
randomly initialised deployment is the major additional 
benefit. Due to variables like wind, vegetation, topograph-
ical imperfections, and other considerations, this self-
deployment (or, more precisely, re-deployment) capacity 
can greatly enhance the network's effective coverage from 
the original restricted coverage that is difficult to regulate. 
In heterogeneous WSNs with primarily static sensors, mo-
bile sensors may also be utilised to fill coverage gaps in an 
AoI. Another significant advantage is the network's capaci-
ty to self-reconfigure. If some of the network nodes die 
(due to power exhaustion or environmental  stress), re-
sulting in connectivity islands, reconfiguration could be 
highly advantageous. Reconfiguration will allow the net-
work to maintain adequate connection, allowing multi-
path routing to continue.  

Unfortunately, the added mobility introduces design is-
sues such as a heavy load on the generally battery-
powered sensors' limited power resources and the re-
quirement for coordination amongst the mobile sensors. 

 IV. MATHEMATICAL TECHNIQUES USED IN WSN DEPLOY-

MENT ALGORITHMS 

We present two mathematical methods widely utilised 
for constructing re-deployment and planned deployment 
algorithms for WSNs. We hope to acquaint the reader with 
the origins and fundamentals of these mathematical tech-
niques in this part. 

 A. Genetic Algorithms (GA) : 

 GAs are optimisation and search algorithms based 
on biological evolution. Since John Holland's work in the 
early 1970s, GAs have been used to solve optimisation 
challenges in a variety of disciplines, including communica-
tion networks, manufacturing engineering, and artificial 
intelligence. The GA paradigm is based on Darwin's theory 
of natural selection, which states that "species whose indi-
viduals are best adapted survive; others go extinct." In sto-
chastic & multi-objective optimisation problems, when 
deterministic optimisation approaches are ineffective, a GA 
can be very useful. A GA has three fundamental compo-
nents : 
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 A genetic description of the problem's potential so-

lutions. This is known as encoding, and it is based 
on a problem's constraints and variables.  Candidate 
solutions are encoded in a  way that they can be de-
coded into a distinct variables' array that belongs to 
the search space, allowing the constraints to be veri-
fied. Integer encoding, binary encoding, and real 
number encoding are some of the encoding methods 
used in GAs. The type of encoding method to apply 
is largely determined by the nature of the optimisa-
tion problem. The phenotypic space contains possi-
ble solutions in the problem's search space, whereas 
the genotype space contains their genetic represen-
tation through encoding.  

 For evaluating potential solutions, a fitness function 
is used. 

 During the reproductive phase of the GA, probabilis-
tic genetic operators change the constitution of the 
offspring.  

In one iteration of a standard GA, five steps are performed. 
The first step is to create a population of chromosomes or 
individuals to work with. Each chromosome represents a 
distinct possible solution to the problem, encoded in a dif-
ferent way. The problem's search space is generally uni-
formly covered by the initial population.  

Following the creation of the initial population, step two is 
completed, which involves evaluating the individuals in the 
population using a fitness function. The fitness function is a 
mathematical representation of what we wish to maximise, 
and is basically a cost function. Fitness evaluation is used 
by GAs to weed out the weakest members of the popula-
tion and identify the fittest members. As a result, a chro-
mosome is considered to be the fittest if it gets the fitness 
evaluation closest to the optimal point than the others.  

Parent selection is the third stage, which involves choosing 
chromosomes from the population to proceed through the 
GA's reproductive stage. Parent selection is frequently sto-
chastic and is generally based on computed fitness. The 
Roulette Wheel and the Tournament methods are the two 
most often utilised parent selecting procedures.  

To create an offspring or children population, the fourth 
step is to apply the two genetic operators, mutation and 
crossover, to the chosen parent chromosomes. Crossover is 
the most common genetic operator, and it works by pair-
ing every two parents (individuals) in the population at 
random to create children with parts of both their codes. 
Mutation, on the contrary, is a covert operation that gener-
ates a new entity by changing a randomly picked element 
of a chosen parent. Both operators are in charge of steering 
an offspring population into new areas of the search space 
for the problem. The same fitness criteria are used to as-
sess the offspring population.  

The selection phase is the fifth stage in a GA, and it in-
volves selecting individuals from both the parent and off-
spring populations to create a new population. The GA's 

driving force is selection, which directs the search to fa-
vourable areas of the search space. There are numerous 

stochastic and deterministic selection approaches, such 
as  fitness-based selection, age-based selection and elitism. 
Steps two through five are performed numerous times to 
generate generations, and the algorithm eventually con-
verges to the fittest individual, who should represent the 
best possible solution, but this isn't guaranteed. The pro-
cess can either end after a certain number of generations 
have been produced or after discovering an individual with 
a fitness that corresponds to a reasonable solution to the 
problem. Table I shows the overall structure of GAs in 
pseudo code. The capacity of GAs to cope with multi-
objective optimisation and combinatorial issues is one of 
its most significant advantages as an optimisation tech-
nique. GAs were used in the development of multi-
objective deployment algorithms for WSN because of this 
useful trait. 

B.  Particle Swarm Optimisation (PSO) : 

Swarm intelligence is a field of AI that studies the cohe-
sive behaviour and characteristics of complicated, self-
organised, distributed systems with a social structure, such 
as fish schools, ant colonies and bird flocks. This network 
is made up of basic interacting agents that are grouped 
into tiny societies called swarms and display intelligence 
characteristics including the capacity to react to environ-
mental challenges and make decisions.  

Swarm intelligence was included in the optimisation 
framework in the form of a collection of algorithms for 
controlling robotic swarms that were first described in 
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1989. Three key swarm intelligence optimisation methods, 
Stochastic Diffusion, Ant Colony Optimisation, and Particle 
Swarm Optimisation, were developed a few years later. 
Here, we'll solely discuss PSO in this work since it is be-
coming more widely used in the development of WSN de-
ployment algorithms.  

PSO, a randomised global optimisation mechanism 
based on social modelling techniques, was created by 
Eberhart and Kennedy in 1995. The PSO algorithm's fun-
damental concept is to utilise a population (swarm) of 
search points (particles) that move probabilistically in the 
search space of an optimisation problem. The best solution 
(i.e. the best position) ever attained by each individual in 
the population is stored in memory as experience. This 
information is then sent on to a portion or all of the colony, 
steering its motion towards the parts of the search space 
where it is most likely to discover the best answer. The 
selected communication scheme has a significant impact 
on the algorithms' convergence.  

 V.WIRELESS SENSOR NETWORKS DEPLOYMENT ALGORITHMS 

 
We now review these algorithms, including their per-

formance, assumptions, goals, using classification of the 
complex analytical approaches used in WSNs deployment 
algorithms outlined in section IV. 

 A. Genetic Algorithm  

Genetic Algorithm is based on Darwin’s theory of evolu-
tion or more importantly on the theory of survival of the 
fittest. The basic building block of any genetic algorithm is 
called a chromosome. And a chromosome is a set of varia-
bles that could potentially represent a solution to the prob-
lem. In our case, a chromosome contains a list of locations 
to which heterogeneous nodes are to be deployed. The first 
step in this algorithm is to create a population. Now each 
chromosome in a population could be a potential solution 
to our problem. The next step is to perform parent selec-
tion. Parents are selected based on their fitness values and 
the parents with the best fitness, move on to the next gen-
eration. Next step is to perform crossover. Crossover is a 
process in which we share genetic information among par-
ents so that we could generate best candidates or a best 
solution in the next generation. The last step in performing 
Genetic Algorithm is called mutation. Mutation is a process 
in which we mutate the current chromosome so that it 
could give better solution in next generation. Lastly these 
steps : selection, crossover and mutation are performed 
iteratively until a solution is reached.  

 B. Particle Swarm Optimisation  

Dr. Kennedy and Dr. Eberhart developed Particle 
Swarm Optimisation Algorithm in 1995, based on the so-
cial behaviour of fish schooling and birds flocking. PSO 
shares common routes with other similar metaheuristic 
techniques like Ant-Colony optimisation, Genetic Algo-
rithm, and Cuckoo’s Search. It is very similar to evolution-
ary computation technique such as Genetic Algorithm such 
as the system starts with a population of random solutions 

and then updates generations to look for optima. In con-
trast to GA, however, PSO lacks evolution operators such 
as crossover and mutation. Particles, which are possible 
solutions in PSO, follow the current optimal particles 
through the problem space. When compared to GA, PSO 
has the advantages of being simple to implement and hav-
ing few parameters to modify. The velocity and conver-
gence rate are all decided by the factors like inertia term, 
cognitive component and social component. The fitness 
value calculated for each individual particle is stored in the 
vector called eBest and the global best which is known as 
global optima for every particle is stored in globalBest. My 
main objective is to increase the lifetime of wireless net-
work sensors by adding heterogeneity.  

So, let’s see how PSO determines the best possible posi-
tion in 2-Dimensional space. The most optimum solution is 
found by the PSO algorithm in which considering our 
nodes as “swarms” in the 2-Dimensional space, we find the 
optimal position and if any node is placed at a correspond-
ing colony, then it’s considered the best position for adding 
the heterogeneous node by taking in the factors like energy 
conservation. If a node doesn’t exist at the coordinate pre-
scribed, then the nearest node to that node is chosen. It 
takes ‘n’ iterations to find the global optimum. For imple-
menting ‘x’ heterogeneous nodes, it takes x*n iterations to 
conclude the placement of all the heterogeneous nodes.  

 VI. EXPERIMENTAL RESULTS 

 
We tested GA and PSO on 500 X 500 terrain and 1000 X 

1000 terrain.  

1.   50% improvement in the result was observed in 
500 X 500 terrain and up to 180% increase was ob-
served in 1000 X 1000 terrain.  

2.   On a 500 X 500 terrain, both the PSO and GA have 
comparable performance, however on a 1000 X 1000 
terrain PSO has performed better.  

3.   GA has always been faster than the PSO algorithm. 
PSO works better on a larger terrain.  

4.   However, there are limitations to this approach like 
increase in terrain size, increases time complexity and 
reducing the randomness of the algorithm can lead to 
better convergence. This approach can be further im-
proved by employing different routing algorithms to 
conserve energy. Thereby, increasing the lifetime of the 
network. Since we are using evolutionary algorithms, we 
may not always find the best solution but it is guaran-
teed that there will be a good solution to the problem.  

CONCLUSION 

Because of the rapid development of smart cities, WSNs 
are playing an increasingly important part in our daily 
lives. When sensor nodes are dispersed and need to stay 
active to acquire and send data from one site to another, 
deployment challenges in WSNs become critical. In most 
cases, a large number of sensor nodes are placed in the 
operational area. As a result, attaining the lowest number 
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of sensor nodes that can  surround the whole field of inter-
est is critical for research. This study examines the present 
state of the art in the domain of node deployment in WSNs. 
Genetic Algorithms and Particle Swarm Optimisation are 
the two techniques proposed for this categorisation. In 
addition, a detailed comparison of the advantages and pit-
falls of these techniques is presented.  
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