
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4185

A GPU Parallel Implementation of Bitonic Sort using CUDA

Saurabh Rudrawar1, Dinesh Hebare2, Atharva Pophale3 and Mohit Lokhande4

--***---

Abstract - Modern GPUs (Graphics Processing Unit) have
evolved as massively parallel processors and can also be used
for general purpose computing. GPUs provide high
computational power with less cost and less power
consumption and thus is a popular computing alternative. In
this paper, we are presenting a GPU [5] parallel method of
sorting elements of a large array using Bi-tonic [12] sort
technique and comparing the serial and parallel execution
method performance. The parallel implementation yields
maximum speed-up of 192 and 99% gain in time on NVIDIA’s
single Tesla K20 GPU, for an array of four million integer
elements. We conclude from the work performed for sorting
using GPU’s that for larger datasets, sorting can be done in an
efficient manner by launching millions of parallel threads on
modern GPUs.

Key Words: Parallel processing, parallel programming,
sorting, graphics processing unit, CUDA

1.INTRODUCTION

Sorting is none other than arranging data in ascending or
descending order. Sorting is important for retrieving the
required data efficiently. There are many applications in our
real life that require searching, especially scenarios like
searching a particular record in the database, roll numbers
in the merit list, a particular contact in the mobile phone or
in a telephone directory, a particular page in the book etc. All
of these applications demand performance efficiency which
cannot be achieved if the data to be processed is unordered
and unsorted, but fortunately, the concept of sorting data
makes it easier for everyone to arrange data in an order and
making it easier to search. The importance of sorting lies in
the fact that data searching can be optimized to significant
level if data is stored in a sorted manner. Sorting is also used
to change the format of data and represent it in more
readable formats.

1.1 Classification of sorting techniques

There are a variety of different techniques available for
sorting which are differentiated by their efficiency and space
requirements. Sorting algorithm specifies the way to arrange
data in a particular order. Most common orders are in
numerical or lexicographical order. Sorting algorithms can be
classified based on multiple factors such as following-

1) Computational complexity in terms of the number of
swaps. Sorting methods perform various numbers of
swaps in order to sort a data.

2) System complexity of computation. In this case, each
method of sorting algorithm has different cases of
performance. They are the worst case, when the

integers are not in order and they have to be swapped
at least once. The term Best Case is used to describe
the way an algorithm behaves under optimal
conditions.

3) Memory usage and other computer resources is also a
factor in classifying the sorting algorithms.

4) Recursion is applied in some algorithms while others
may be non-recursive.

1.2 Categories of sorting algorithms

Some sorting algorithms require some amount of extra-
space or temporary storage for comparison of data elements
and use this storage extensively. This is termed as out-of-
place sorting. Some algorithms do not require any extra
space and perform sorting within the array itself. This is
termed as in-place sorting. Bubble sort is an example of in-
place sorting. On the other hand, in the merge sort algorithm
it is necessary to allocate extra space which is more than or
equal to the number of elements being sorted for
comparison.

In the stable sorting, after sorting the contents, the
relative order of equal elements is preserved. In the unstable
sorting, after sorting the contents the relative order is
changed. In an adaptive sorting algorithm, while performing
sorting, if the source list already contains some elements in
the desired sequence, it will take this into account and will
try not to re-order them. It takes advantage of already
'sorted' elements in the list that is to be sorted.

A non-adaptive algorithm is the one which does not
perform any operations on the elements which are already
sorted. They try to force every single element to be re-
ordered to determine whether they are sorted or not.

1.3. Sequential Execution complexities

Time complexity is a function describing the amount of time
an algorithm takes in terms of the amount of input to the
algorithm(N)[1]. Space complexity is a function describing
the amount of memory (space) an algorithm takes in terms of
the amount of input(N) to the algorithm.

Table -1: TIME AND SPACE COMPLEXITIES OF SORTING
ALGORITHMS

 Algorithm

Time Complexity Space

Complexity
Worst Best Average Worst

Quicksort
Ω(n

log(n))
Θ(n log(n)) O O(log(n))

Mergesort
Ω(n

log(n))
Θ (n log(n)) O(n log(n)) O(n)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4186

Heapsort
Ω(n

log(n))
Θ (n log(n)) O (n log(n)) O(1)

Bubble

Sort
Ω(n) Θ O O(1)

Insertion

Sort
Ω(n) Θ O O(1)

Selection

Sort
Ω Θ O O(1)

Tree Sort
Ω(n

log(n))
Θ(n log(n)) O O(n)

Shell Sort
Ω(n

log(n))

Θ

O(1)

Bucket

Sort
Ω(n+k) Θ(n+k) O O(n)

Radix

Sort
Ω(nk) Θ(nk) O(nk) O(n+k)

Counting

Sort
Ω(n+k) Θ(n+k) O(n+k) O(k)

As per table 1, the sequential time complexities for sorting
algorithms can be quadratic in worst case scenarios. For
sorting algorithms where the number of elements is more
than a million, computational power is limited and this
results in prolonged execution time.

2. GPU COMPUTING

Many applications (data parallel) executed on the CPU can be
accelerated by computing the parallelism supportive and
time-consuming portions of the code on GPU. The rest of the
application code still executes on the CPU. From the user’s
perspective, the application executes faster because it’s using
the massively parallel processing power of the GPU to boost
performance which is known as heterogeneous or hybrid
computing [5]. Nowadays NVIDIA GPUs has many core chips
developed around an array of parallel processor [7]. A kernel
performs the scalar sequential code across a set of parallel
threads. These threads are organized as thread blocks, the
kernel consists of a grid of one or more thread blocks.
Execution of these thread blocks takes place on an array of
SMs. The Hardware performs all thread management
operations like creation and scheduling.

To efficiently manage a large population of threads Tesla SM
has SIMT (Single Instruction and Multiple Threads)
architecture [7,8]. Threads are executed in groups of 32
called warps. The threads of warp are executed on separate
SP which consists on single multi-threaded instruction unit.
The warp threads can load and store any valid address,
supporting gather and scatter access to memory. When
threads access consecutive words in memory, coalesce
accesses result in high memory throughput.

2.1. CUDA Program

A CUDA program dissolves itself into one or more phases
which are executed on either CPU i.e serial or GPU i.e parallel
[4] systems. The phases that exhibit little or no data
parallelism are implemented in host code. The phases that
exhibit the very high amount of data parallelism are
implemented in the device code. A CUDA program is a unified
source code encompassing both host and device code. The
compiler (nvcc) separates the two during the compilation
process. The CPU (serial) code is straight ANSI C code; it is
further compiled with the CPU’s standard C compilers and
runs as an ordinary CPU process[8]. The device code
comprises of ANSI C code with some extended key-words for
kernels, data structures associated with it. The device code is
consistently further compiled by the nvcc compiler and
executed on a CUDA supported GPU device.

Fig -1: Architecture of CUDA Capable GPU [4]

From [6], CUDA includes such a programming model along
with hardware support that facilitates parallel
implementation. The number of times the speedup is
obtained for an application by using parallelism de-pends on
the portion of the application that can be Parallelized. CUDA
works in terms of threads (Single Instruction Multiple
Thread). Threads are the smallest unit of processing within a
program. Threads execute independently of each other unless
explicitly synchronized (or part of some warp). Each thread
has access to global memory and its shared memory (within a
block).

Fig -2: Conceptual Memory Diagram [6]

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4187

3. BI-TONIC SORT
Bitonic sort falls into group of sorting networks which means
that the sequence and direction of comparisons are known in
advanced irrespective of the input se-quence. It is based on
Bitonic sequence [9,10,11]. Bitonic sort does
O(n(〖log〗^2n)) comparisons given in “Ref. [12]”. The no. of
comparisons done by bitonic sort are more than other sorting
algorithms such as merge sort but its effective for parallel
implementation. A sequence is called Bi-tonic sequence if it is
increasing up to an element and then decreasing i.e. for an
array a[0-(n-1)] if there exists an index i such that –

X0<=X1<=X2 Xi and Xi>=X(i+1)>=X(i+2) X(n-1)

An increasing sequence with decreasing part empty as well as
a decreasing sequence with increasing part empty is
considered as bi-tonic sequence. Forming a bi-tonic sequence
for random input sizes. We consider consecutive two element
sequences and form a 4-element sequence from it i.e.
consider 4 element sequences with X0,X1,X2,X3 as its
elements then we sort X0,X1 in increasing order and X2,X3 in
decreasing order. We concatenate them to form a 4-element
bi-tonic sequence as shown in “Ref. [12]” then we take two 4
elements bi-tonic sort and sort one in increasing order while
the other in decreasing order.

Following is the bitonic sorting network for 16 elements of a
random sequence-

Fig -3: Bi-tonic sorting network for 16 elements

Here the blue area depicts the elements comparisons in
increasing order and the green area depicts the elements
comparisons in decreasing order.

In the diagram above downward moving, arrows per-form a
minimum comparison operation between the element
representing at the start of arrow and element pointed
towards the end of the arrow. For minimum comparison
operation if the element at the start of the arrow is greater
than element at end of arrow then we swap both elements
and if the element at the start of the arrow is lesser than
element at end of arrow then we keep both elements as it is.
Similarly, in the diagram above upward moving arrows
performs a maximum comparison operation between
element representing at the start of arrow and element
pointed towards the end of the arrow. For maximum
comparison operation if the element at the start of the arrow
is greater than element at end of arrow then we swap both

elements and if the element at the start of the arrow is lesser
than element at end of arrow then we keep both elements in
same order.

3.1 Bi-tonic sort implementation

For every block, input is in 2^kformat. In our Multi-Block
sorting algorithm using Bi-tonic sort, there is one thing
common for every stage that is we always get same number
of Bi-tonic sequences after every stage. Before the first stage
we have ‘n’ Bi-tonic sequences for every block where ‘n’ is
total number of elements in one block. For every stage n/(
2) threads are qualified to perform the specified operation.
After first stage we get n/2 Bi-tonic sequences for every
block. In the similar way we get n/4,n/8,(n)/n Bi-tonic
sequences after performing every stage and at the last stage
it will give us complete sorted sequence. For having every
single block sorted by the above discussed method, we have
used two decision parameters.

1) First parameter is used to determine which threads
are qualified to be used for performing specified
operations.

2) Second decision parameter is used for determining
whether to perform minimum comparison or
maximum comparison between numbers
representing qualified thread and numbers at
position (i+x)/2 where ‘i’ is Thread ID of qualified
thread and ‘x’ is size parameter which is passed to
Kernel as function as an argument. ’X ‘starts from 2
and increases exponentially in powers of 2 that is
2,4,8,16, ,n.

3.2 Algorithm

In the proposed implementation of algorithm, we make a kernel
call for the respective size and we loop it accordingly. Here ‘y’
and ‘z’ are the decision parameters i.e thread qualifier and
min/max differentiator. At any stage no. of threads qualifying will
be n/2. Additionally, we make use of shared memory for faster
memory accesses.

Below is the implementation for kernel function:

Kernel Call:

for(l=2; l<=2k; l*=2)
{
 for(x=l; x>=2; x/=2)
 { //calling bitonic kernel
 bitonic_k<<<blocks,blocksize>>>(d_input,l,x);
 }
cudaDeviceSynchronize();
}

Kernel –

y = k%p; //for thread qualification
z = k%(2*size); //for min or max condition

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4188

if(y<p/2)

{

 if(z<size)//min condition(up->down)

{

 if(d_input[k]>d_input[k+p/2])

 {

 temp = d_input[k];

 d_input[k] = d_input[k+p/2];

 d_input[k+p/2] = temp;

 }

}

else //max condition(down->up)

{

if(d_input[k] <d_input[k+p/2])

{

 temp = d_input[k+p/2];

 d_input[k+p/2]=d_input[k];

 d_input[k] = temp;

}

 }//end else

}// end if

For complete Bi-tonic sort, we removed for loop in kernel
function because of irregular data syncing and nested the
loops for calling kernel function. Here outer loop will iterate
till total size i.e. 2k starting from size 2 and after every
iteration it exponentially increases in powers of 2. Unlike
block-wise sorting method here the loop will take values till it
encompasses total number of inputs. Such that we will
receive whole array or input vector in desired sorted state.
Swapping of two numbers and obtaining Bi-tonic sequence
operations are similar to those that are explained in block-
wise sorting earlier in this paper.

3. TESTING ENVIRONMENT

All the operations are implemented on Intel Haswell E5-
2620V3 Six core/2.4 GHz/15MB Cache 2*16 GB DDR4 RAM,
NVIDIA’S Tesla K20,2496 CORES,5GB Memory with
performance of 3.52 TFLOPS(Single preci-sion) and 1.17
TFLOPS(Double precision).

4. RESULTS AND ANALYSIS

Serial and parallel implementations of-tonic sort were
executed for different vector sizes and block sizes. The
comparisons are as shown in following tables. We compute
speedup as difference between serial execution and parallel
execution divided by serial execution.

Input size Speed up %gain

2
17

139.53 99.28

2
18

 168.11 99.40

2
19

 153.28 99.34

2
20

 174.29 99.42

2
21

 183.39 99.45

2
22

 192.72 99.48

Table 2. Speed up & %gain for 128 block size.

Input size Speed up %gain

2
17

138.56 99.28

2
18

 164.38 99.39

2
19

 152.24 99.34

2
20

 171.80 99.99

2
21

 180.90 99.99

2
22

 189.96 99.47

Table 3. Speed up & %gain for 256 block size.

Chart -1: CPU plot for input size vs time required

Based on empirical analysis, we have executed the parallel
implementations for block size 64, 128, 256 and 512. The
best results were obtained for block size 128. The
performance impact of block size on code to be executed
depends on code and the hardware platform that is used. As
the block sizes are finite, the best configuration for the code
is relatively easy to find. We experimented the parallel
implementations for input data up to 4 million and achieved
greater speedup for large input vectors.

Chart -2: GPU plot for input size vs time required

5. CONCLUSION

After performing parallel computations on varied sizes of
input, we conclude that using GPUs for sorting is a viable and

0

500

1000

1500

0 1000 2000 3000 4000 5000

Ti
m

e(
in

 m
s)

Vector Size(in 1k)
Graph 3

Vector size vs Time(CPU Plot)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 07 | July 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4189

efficient alternative to conventional computation methods.
Based on the performance of serial and parallel
implementations of the Bi-tonic sort we conclude that
significant increase in speedup is obtained which increases
proportionally to N (vector size). Furthermore, we suggest
an analogous parallel implementation of merge sort
algorithm due to the parallel nature of divide and conquer
algorithm.

REFERENCES

[1] Data structures and algorithms, introduction to sorting:

https://www.cs.cmu.edu/~clo/www/CMU/DataStructu
res/Lessons/lesson8_1.htm.

[2] Data structure and algorithms and sorting techniques:
https://www.tutorialspoint.com/data_structures_algori
thms/sorting_algorihms.htm.

[3] Array sorting algorithms:
http://www.bigocheatsheet.com/.

[4] Programming massively parallel processors by David B
kirk and Wen-meiW.hwu.

[5] CUDA by Example, Jason Sanders and Edward Kandrot
(2010).

[6] Introduction to GPU Hardware and CUDA, University of
Cambridge, PhilipBlakely:
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&s
ource=web&cd=8&ved=0ahUKEwjGkLCbs63aAhUFR48
KHVw9AdsQFghxMAc&url=http%3A%2F%2Fpeople.ds.
cam.ac.uk%2Fpmb39%2FGPULectures%2FLecture_1.pd
f&usg=AOvVaw1bzMxlXsOoST_bHkjBBlpY.

[7] E. Lindholm, J. Nickolls, S. Oberman, and J.
Montrym.NVIDIA Tesla: A unified graphics and
computing architecture. IEEE Micro, 28(2):39–55,
Mar/Apr 2008.

[8] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable
parallel programming with CUDA. Queue, 6(2):40–
53,Mar/Apr 2008.

[9] Batcher KE. Sorting networks and their applications.
Proceedings of the April 30–May 2,1968, Spring Joint
Computer Conference, AFIPS ’68

[10] (Spring),ACM:NewYork,NY,USA,1968;307314,doi:10.11
45/1468075.1468121.URL
http://doi.acm.org/10.1145/1468075.1468121.

[11] Peters H, Schulz-Hildebrandt O, Luttenberger N. Fast in-
place, comparison-based sorting with CUDA: A study
with bitonic sort. Concurr. Comput. :Pract. Exper. May
2011;23(7):681–693, doi:10.1002/cpe.1686. URL
http://dx.doi.org/10.1002/cpe.1686.

[12] Peters H, Schulz-Hildebrandt O, Luttenberger N. A novel
sorting algorithm for many-core architectures based on
adaptive bitonic sort. 26th IEEE International Parallel
and Distributed Processing Symposium, IPDPS 2012,
Shanghai, China, May 21-25, 2012, 2012;227–237,
doi:10.1109/IPDPS.2012.30. URL http://dx.doi.org/
10.1109/IPDPS.2012.30

[13] Bitonic sort and sequence:
https://www.geeksforgeeks.org/bitonic-sort.

