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Abstract –In this study, an effort is made to develop a finite 

difference model to predict the movement of contaminant in 

an unconfined aquifer, considering both one- and two-

dimensional flow field conditions for movement. It includes 

advection dispersion equation for a given set of initial and 

boundary conditions because concentration of contaminants 

usually gets altered while moving with ground water due to 

the effect of mechanical dispersion, advection, adsorption and 

radioactive decay. The represented profile in all direction for 

2D is useful to understand the intensity of damage to aquifer. 
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1.INTRODUCTION 
 
Ground water, held in aquifer is reliable and safer for 
drinking in comparison with surface water. Due to increment 
in industries, availability of clean water in aquifers is under 
threat. The scarcity of drinking water already affecting many 
parts of India. For saving the life of common citizens, it is 
necessary to control and predict the movement of 
contaminant particles to reach the ground water resources. 
More than 60% of irrigated agriculture and 85% of drinking 

water supplies are dependent on groundwater (Gurganus, 

1993). This by no means says that groundwater is safe to 

contamination. It generally has a high-quality standard in 

India but today different kinds of human impacts are 

increasingly contaminating the groundwater resources. Any 

chemicals that are easily soluble and penetrate the soil are 

prime candidates for groundwater pollutants. Once it is 

contaminated, it is extremely difficult and costly to remove 

the contaminants from groundwater (Gurganus, 1993). 

Therefore, efforts are often put on protective measures 

instead. In order to know if, and to what extent 

groundwater is endangered, knowledge of the changes in 

groundwater quality is needed.  

The sources of groundwater pollution can be divided into 

four major groups: environmental, domestic, industrial and 

agricultural. All groundwater contains salts carried in 
solution, which are added to groundwater by rain water, 

irrigation water, artificial recharge, soluble rock materials, 

fertilizers etc. Accidental breaking of sewers and percolation 

from the septic tank may also increase the pollution. When 

radioactive waste is deeply buried, there is a likelihood of 

groundwater getting contaminated (Gurganus, 1993).  

There is a large amount of published material in the field of 

contaminant transport as-Guymon et al. (1970) and 

Nalluswami et al. (1972) used the finite element method 

(FEM) based on the variational principle for the solution of 

the dispersion problem in a rectilinear flow field. This 

method was found to be applicable to dispersion dominant 

transport only. Smith et al. (1973) compared the variational 

approach with the Galerkin method and concluding final 

more adaptable. 

 
1.1 Governing Equations 
For one-dimensional flow, the governing equation in a 

homogeneous, isotropic porous medium reduces to the 

familiar advection-dispersion equation  

(Bear 1972): 

 
                              (1.1) 

While for two-dimensional flow with a direction of flow 

parallel to the x-axis, the equation becomes (Bear 1972): 

                  (1.2) 

Where Dx  is the longitudinal hydrodynamic dispersion 

coefficient. 

Dy is the transverse hydrodynamic dispersion coefficient. 

vx  is the advection velocity in the x-direction. 

vy  is the advection velocity in y-direction. 

C  is the concentration of contaminants. 

  The current figure shows the discretized flow domain for 1-D 

advection-dispersion. Here i is the column number which 

represents the spatial discretization of the domain in the x- 

direction, j is the row number which represents the temporal 

discretization. Now one-dimensional advection-diffusion can 

be discretized by explicit method as – 
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(1.4)

                                                                                                               
 

                                    

(1.5)

                                                                                                  

 

 

Fig. 1.1. Space and Time discretization for one-
dimensional finite difference formulation 

 
Putting Eqs. (1.3), (1.4) and (1.5) in Eq. (1.1), we get 

      (1.6)                                         

 
Fig. 1.2. Space and time discretization for two-dimensional 

finite difference formulation 

 
              (1.7) 

 
              (1.8) 

                          (1.9) 

(2.9) 

                                                  (1.10)                                                           (2.10) 

                               (1.11)                                                           (2.11) 

Putting all above expressions in equation (1.2)- 

                                                                                (1.12)

 

                                                                                                              

 

For computational sophistication, the flow domain is 

discretized in Nx+1 and Ny+1 grid points, each of length 

and ;  

2.1 One-dimensional model  
To illustrate the capabilities of the model to predict the 

effects of advection-dispersion of contaminant transport, 

here a finite difference model is applied to contaminant 

transport problem in a saturated unconfined aquifer of finite 

length with constant velocity and dispersion field. It 

demonstrate the effect of time, advection velocity and 

dispersion. Flow dynamics is explained in current graphs.
 

  
 
Fig. 2.1. Variation of contaminant with respect to distance 

for two different time duration when the parameters of 

Eq. (1.6) are given as L = 2m, m2/day, 

 Dt = 0.0005day, Dx = 0.05m, (a) 

T = 0.5 day and (b)  day. 
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Fig. 2.2. Variation of contaminant with respect to distance 
for two different advection velocities, when the 

parameters of Eq. (1.6) are given as  m, 

m2/day,  Dt = 0.0005day, 

Dx = 0.05m, (a) and (b) 

 

 

 
 

Fig. 2.3. Variation of contaminant with respect to the 

distance for two different dispersion coefficients, when the 

parameters of Eq. (1.6) are given as 

L = 2m,  

Dx = 0.05m, (a) m2/day (b) m2/day. 

2.2 One-D model’s results and discussion 
(i) As the time of simulation increases from 0.5 day to 2-day, 
contaminant plume in direction of flow shifted from 1.2 m to 
2 m. It is observed, as time progresses the contaminant 
plume shifted from one place to another place. As 
contaminant moves it disperses, fig. (2.1) shows that the 
concentration decreases when it moves far away from the 
source of contaminant. This is the main reason; 
concentration of contaminant is different at different 
locations in the aquifer at different time. 
 

(ii) As advection velocity increases from 1 m/day to 1.5 

m/day, concentration of contaminant dominated till 0.6 m, 

plume again shifted in direction of flow beyond 2 m. It shows 

as velocity increases, plume shifted from one position to 

other position at larger scale at the same instant of time. As 

explained in fig. (2.2), when contaminant plume moves it 

disperses, present graphs show that when advection velocity 

increases, contaminant plume disperses at faster rate and 

the contaminant spreads till farther location from the source.  

(iii) As dispersion increases from 0.12 m2/day to 0.5 m2/day, 

concentration of contaminant changes with increase in 

dispersion at the same instant of time, it affects the 

spreading of contaminant plume at large scale in 

longitudinal directions as compare to advection velocity and 

time. As Fig. 2.3 (b) shows at steady state, plume is shifting 

from its position uniformly in forward and backward 

direction. If there is no dispersion, all of the contaminant will 

travel at same advection velocity. As dispersion increases, 

some contaminant travels faster and some slower. There are 

differences of velocity between particles, which causes 

spreading at larger scale. It shows, contaminant transport is 

affected more by dispersion as compare to advection. 

3.1 Two-dimensional model  

Now the idea of one-dimensional modeling is extended to 

model the two-dimensional advection-dispersion 

phenomenon in an unconfined saturated aquifer. A 

rectangular domain of length L along x-axis and width of B 

along y-axis is taken for the present study. The origin of the 

flow domain is taken at O, which can be seen in Fig. 2.2. The 

dispersion and velocity field along x and y-directions are 

taken as  ,yD  and  respectively. The present study 

deals with the different variations of velocity field and 

boundary conditions corresponding to flow diagram Fig. 2.2. 

Case 1: Constant velocity field along x and y-direction 

with different Dirichlet conditions along four faces. 

In this study, a constant velocity field is taken along both the 
directions, whereas the boundaries along 

,0x ,Lx  ,0y and By   are taken as 

,2C ,4C 3C and 1C   respectively. The mathematical 

expressions for the same are given by Eqs. (2.2), (2.3), (2.4) 
and (2.5) respectively. An explicit finite difference 
methodology is used to obtain the solution of Eq. (1.2) 
subjected to these boundary conditions. The initial condition 
of the flow domain is taken as zero. Thus 

C x, y, 0( ) = 0                        (2.1)                                                                                                                   
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Concentration of contaminants at the entire boundary is 
given by 

 

  3,0, CtxC                        (2.2)     

  1,, CtBxC                      (2.3)                            

  2,,0 CtyC                      (2.4)     

  4,, CtyLC                      (2.5)
                

Fig. 2.4. illustrates the variation of contaminants 
concentration with respect to the distance for two 
different time duration when the parameters of Eq. (1.12) 
are given as 

m, 1L m, 1B  /day,m 2 2xD /day,m 2 2yD

m/day, 1xv m/day, 1yv ,m 05.0x

m, 05.0y
  

sec,  5.0t (a) sec, 250T  (b) 

sec. 4000T  
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Case 2: Different velocity field along x and y-direction 
with different linearly varying Dirichlet conditions along 
four faces. 

 
This study deals with more general boundary conditions 
imposition as compared to case 1. The concentrations at the 

extreme edges of the flow domain are taken as ,1C ,2C 3C
 

and 4C . However, the distributions of concentrations along 

any edge line are taken as linear. 
For the boundary ,0y  the variation of concentration is 

from 2C  to 3C  varying linearly, which can be observed from 

Eq. (2.7) and for boundary By   
the variation of 

concentration C1to C4  linearly, observed from Eq. (2.8). 

Similarly, for boundary x = 0,  the variation of concentration 

is from C2  to C1varying linearly which is given by Eq. (2.9) 

and for boundary x = L,  the variation of concentration is 

from C3
 to C4  which is expressed by Eq. (2.10). The initial 

condition for the above-mention problem is taken as 

  00,, yxC                  (2.6) 

Concentration of contaminants at all the boundaries are 
given by 
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Fig. 2.5. illustrates the variation of contaminants 
concentration with respect to the distance for two different 
time duration when the parameters of Eq. (1.12) are given as 

m, 1L m, 1B  /day,m 7.2 2xD  

m/day, 2xv  

,m  05.0x
 

sec, 5.0t (a) 

 (b)  (c) 
 

 
 

Fig.2.4. (a) variation of contaminants 

concentration at T=250 sec. 

Fig.2.4. (b) variation of contaminants   concentration 

at T=4000 sec. 
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Case 3: Varying velocity field along x and y-direction 

with different Dirichlet conditions along four faces. 

The concentrations at the extreme edges are distributed 

uniformly in the flow domain. Are taken as ,1C ,2C 3C  and 

4C
 
respectively. For the boundary y = 0 , concentration is 

C3
, which can be observed from Eq. (2.12). Similarly for the 

boundary y = B , concentration is C1 , observed by Eq. 

(2.13). For boundary x = 0 , concentration is C2 , which can 

be observed by Eq. (2.14). Similarly for boundary x = L , 

concentration is C4 , observed by Eq. (2.15). 

 

The initial condition for the above-mention problem is taken 

as  

  00,, yxC       (2.11) 

Concentration of contaminants at all the boundary is given 

by following equations – 

C x, 0, t( ) =C3
 (2.12) 

C x,B, t( ) =C1
 (2.13) 

C 0, y, t( ) =C2
 (2.14) 

  4,, CtyLC   (2.15) 

Fig. 2.6. illustrates the variation of contaminants 

concentration with respect to the distance for two 

different time duration when the parameters of Eq. (1.12) 

are given as 

 /day,m 2 2xD

 

, )1)(1( yxvx 

 (a)  (b) 
 

 
 
 
 
 
 
 

Fig.2.5. (a) variation of contaminants concentration at 

T=250 sec 

Fig.2.5. (b) variation of contaminants concentration 

at T=500 sec. 

Fig.2.5. (c) variation of contaminants concentration 

at T=5000 sec. 
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3.2 Two-dimensional model results 

(i) Fig. 2.4. (a) clearly shows that maximum contamination 
occurs first somewhere close to corner of contamination. 
Advection velocity is same in both directions, so 
contaminant plume starts shifting from one place to other 
place at same rate. As distance increasing, contaminant 
concentration decreasing uniformly in both direction from 
all its initial values. It is observed that when the values of x 
and y approaches beyond 2 m then concentration of 
contaminant is minimum in this region. 

 

(ii) Figure 2.4. (b) shows the steady state of contaminants as 
the time passes beyond 4000 sec, contaminant will not 
spread more than the present concentration. Here it is 
observed that for two-dimensional domain also as time 
progresses dispersion of contaminant increases to full 
extent. 
 
(iii) Fig. 2.5. (a) clearly shows concentration of contaminants 
is varying linearly at all boundaries. Here advection velocity 
is not same in both the direction, so contaminant plume 
shifts from one place to other at different rate in both 
directions. As the distance is increasing, the contaminant 
concentration decreasing from all its initial values. Here also, 
it is observed that when the values of x and y approaches 
beyond 0.2 m then concentration of contaminant is 
minimum in this region. 
 
(iv) Fig. 2.5. (b) shows when the contaminant concentration 
increased beyond 0.4 m distance in x and y direction, region 
of minimum concentration starts beyond this distance. This 
region is smaller as compare to Fig. 2.5. (a) due to progress 
in time which causes more dispersion. As previous case 
discusses when time progresses dispersion increases due to 
the movement of contaminants by advection velocity. 
 
(v) Fig. 2.5. (c) shows the steady state condition where the 
contaminants disperse to its maximum extent for the given 
parameters. Beyond this time, the concentration of the 
contaminates will attain its peak value throughout domain; 
the system has reached to its saturation which can be 
observed from Fig.2.5. (c). 
 
(vi) For this case also Fig. 2.6. (a) clearly shows that 
maximum contamination occurs first somewhere close to 
corner of contamination. Here advection velocity is changing 
according to the position of x and y in both directions, so 
contaminant plume is shifting from one place to other place 
at different rate at different position in the region. It is 
observed that when the values of x and y approaches beyond 
0.1 m then concentration of contaminant is minimum in this 
region. Here this region is larger than previous all cases. Fig. 
2.6. (b) shows the steady state condition at 4000 sec for 
given parameters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.6. (a) variation of contaminants 

concentration at T=240 sec. 

Fig. 2.6. (b) variation of contaminants 

concentration at T=4000 sec. 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 08 Issue: 07 | July 2021                www.irjet.net                                                                      p-ISSN: 2395-0072 

 

© 2021, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 4238 
 

4. CONCLUSIONS 
 
The present study involves the modeling of one and two-
dimensional contaminant transport phenomenon in an 
unconfined aquifer by solving advection-dispersion equation 
for a given sets of initial and boundary conditions using 
finite difference formulation. The study covers the results of 
one-dimensional modeling in the first step, in which three 
sub-cases corresponding to different values of dispersion, 
advection velocity is considered for the study. For further 
step this study is extended to the two-dimensional domain, 
where the movement of contaminants is observed for three 
different cases. The study through insight to the distribution 
and transport phenomenon of the contaminants in a 
rectangular domain subjected to different combination of 
boundary conditions. With the help of these models, we can 
predict the contaminant concentration at different location 
in a flow domain at different times. This study has also 
shown the improvements in the simulation of the transport 
of contaminants arising from using a two-dimensional 
advection-dispersion equation. Contaminant transport is 
examined in unconfined aquifer according to specific 
boundary conditions along with the assumption of constant 
dispersion coefficients throughout the domain.  
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