STATISTICAL ANALYSIS ON FACTORS INFLUENCINGLIFE EXPECTANCY

Abhinaya.V^[1], Dharani.B.C^[2], Vandana.A^[3], Dr.Velvadivu.P^[4], Dr.Sathya.C.^[5]

^{4,5}Faculty, Department of Computing,

¹⁻³Student, Department of Computing, Coimbatore Institute of Technology, Coimbatore.

ABSTRACT: In this study we have analysed the various factors affecting life expectancy in order to suggest a country which area should be given importance to efficiently improve the life expectancy of its population. The main focus of our study is to determine the predicting factor which is contributing to higher value of life expectancy. The data have been collected from the WHO data repository website and its corresponding economic data was collected from United Nation website for the period 2000 - 2015 for 193 countries. The factors considered in the analysis are immunization, mortality, economic, social and other health related factors. A multiple linear regression model with twenty independent variables and life expectancy as the dependent

Further stepwise regression and cluster analysis algorithm is used in this study. The final result of the analysis would be the factors with significant influence on life expectancy indifferent countries.

KEYWORDS: Life expectancy, MLR, Stepwise regression, Cluster analysis, Significantfactors, Countries.

INTRODUCTION:

variable is used to find the relationship between the variables.

Life expectancy is the key metric for assessing population health and it refers to the number of years a person can expect to live[1]. The study of life expectancy of a population is important for the evaluation of the degree of economic and social development of a country[2]. The residents of a country with high life standards live longer, on average and have a small mortality ratio[2]. In the last decades, life expectancy has increased significantly, at global level. There have been lot of studies undertaken in the past on factors affecting life expectancy considering demographic variables, income composition and mortality rates. It was found that affect of immunization and human developmentindex was not taken into account in the past.

LITERATURE REVIEW:

Several studies have been undertaken on factors affecting life expectancy, considering demographic variables, income composition, and mortality rates. Not only by studying cross sectional data but also panel data for a period of a few decades. The research questions wanted to assess thesignificant factors contributing to the improvement of life expectancy in the years and also understand whether life expectancy is influenced by socio economic and demographic inequalities factors. Life expectancy at birth is the average number of years a newborn is expected to live if mortality patterns at the time of its birth remain constant in the future. It summarizes the overall mortality rates for a population and the model that prevails among age groups in a given year. High mortality for young age groupssignificantly lowers the life expectancy at birth. But if people survive their childhood in a country with high child mortality, they may live much longer. Therefore, in the model, a low life expectancy at birth may also be caused by high childhood mortality.

RESEARCH METHODOLOGY :

The data for the analysis was collected from the WHO[3] ,United Nations[4] and other authentic websites[5]. Data preprocessing was done using various methods. We started with the basic descriptive statistics and the count of null values in each column. The null values were filled with the mean values of their column. After computing null values ,a MLR model is built to find therelationship between the variables .We usedstepwise regression approach to fit data into a model to achieve the desired result and cluster analysis to identify the homogeneous group of countries.Finally, we found the variables which are statistically significant.

DATA ANALYSIS AND INTERPERTATIONS:

1	A	В	C	D	E	F	G	н	1	3	К	Ł	M	N	0	р	Q	R	S
1	Country	Year	Status	lifeexpecta)	Adult Morin	nfant dea A	Alcohol	percentag	Hepatitis IP	Measles	BMI	under-five Po	olio	Total expel	Diphtheria	HIV/AIDS	GDP	Population	thinness1 th
2	Afghanista	201	5 Developin	65	263	62	0.01	71.27962	65	1154	19.1	83	6	8.16	65	0.1	584.2592	33736494	17.2
3	Afghanista	201	4 Developin	59.9	271	64	0.01	73.52358	62	492	18.6	86	58	8.18	62	0.1	612.6965	327582	17.5
4	Afghanista	201	3 Developin	59.9	268	66	0.01	73.21924	64	430	18.1	89	62	8.13	64	0.1	631.745	31731688	17.7
5	Afghanista	201	2 Developin	59.5	272	69	0.01	78.18422	67	2787	17.6	93	67	8.52	67	0.1	669.959	3696958	17.9
6	Afghanista	201	1 Developin	59.2	275	71	0.01	7.097109	68	3013	17.2	97	68	7.87	68	0.1	63.53723	2978599	18.2
7	Afghanista	201	0 Developin	58.8	279	74	0.01	79.67937	66	1989	16.7	102	66	9.2	66	0.1	553.3289	2883167	18.4
8	Afghanista	200	9 Developin	58.6	281	77	0.01	56.76222	63	2861	16.2	106	63	9.42	63	0.1	445.8933	284331	18.6
9	Afghanista	200	8 Developin	58.1	287	80	0.03	25.87393	64	1599	15.7	110	64	8.33	64	0.1	373.3611	2729431	18.8
10	Afghanista	200	7 Developin	57.5	295	82	0.02	10.91016	63	1141	15.2	113	63	6.73	63	0.1	369.8358	26616792	19
11	Afghanista	200	6 Developin	57.3	295	84	0.03	17.17152	64	1990	14.7	115	58	7.43	58	0.1	272.5638	2589345	19.2
12	Afghanista	200	15 Developin	57.3	291	85	0.02	1.388648	66	1295	14.2	118	58	8.7	58	0.1	25.29413	257798	19.3
13	Afghanista	200	4 Developin	57	293	87	0.02	15.29607	67	465	13.8	120	5	8.79	5	0.1	219.1414	24118979	19.5
14	Afghanista	200	13 Developin	56.7	295	87	0.01	11.08905	65	798	13.4	122	41	8.82	41	0.1	198.7285	2364851	19.7
15	Afghanista	200	2 Developin	56.2	3	88	0.01	16.88735	64	2486	13	122	36	7.76	36	0.1	187.846	21979923	19.9
16	Afghanista	200	1 Developin	55.3	316	88	0.01	10.57473	63	8762	12.6	122	35	7.8	33	0.1	117.497	2966463	2.1
17	Afghanista	200	0 Developin	54.8	321	88	0.01	10.42496	62	6532	12.2	122	24	8.2	24	0,1	114.56	293756	2.3
18	Albania	201	5 Developin	77.8	74	0	4.6	364.9752	99	0	58	0	99	6	99	0.1	3954.228	28873	1.2
19	Albania	201	4 Developin	77.5	8	0	4.51	428.7491	98	0	57.2	1	98	5.88	98	0.1	4575.764	288914	1.2
20	Albania	201	3 Developin	77.2	84	0	4.76	430.877	99	0	56.5	1	99	5.66	99	0.1	4414.723	289592	1.3
21	Albania	201	2 Developin	76.9	85	0	5.14	412.4434	99	9	55.8	1	99	5.59	99	0.1	4247.614	2941	1.3
- 11	Albanha	101	1 Berelenia	3.36	60	0	5 33	177.0571	00	30				5.94	00	0.1	4437 430	305105	

Fig-1: Life expectancy dataset(WHO) [3] [4] [5]

The above table contains values of various factors which involves in life expectancy for different countries. It involves Mortality, infant death, Heaptitis, Total Expenditure, Schooling, etc.

Chart- 1: Scatter plot of life expectancy with total expenditure

The above plot shows that the total expenditure has a positive relationship withlife expectancy. Growth in expenditure shows an increase in life expectancy.

Scatter plot of LifeExpectancy with Hepatitis B

Chart-3 : Scatter plot of life expectancy with infant deaths ,Alcohol ,Hepatits B , Measles

The scatter diagram of the observations between infant death rate and life expectancy shows that the two variables are inversely related. The plot between alcohol consumption and life expectancy shows that the two variables are not tightly

associated. Also the plot between HepatitisB and life expectancy , Measles and life expectancy shows that they are inversely related.

This plot displays the correlation between life expectancy and gross domestic product (GDP) per capita. It shows that in general, countries with higher GDP tend to have a higher life expectancy.

Chart- 5 : Plot between years and lifeexpectancy

The above plot shows that over the year, life expectancy has been increased slightlybut it had a sudden downfall during the year 2012 and again it gradually increases in the year 2014.

[-2.99000851e-02 -3.38744739e-03 1.07570707e-02 6.55693667e-01 9.29716767e+00 5.78701250e-05 -4.77933546e-02 4.47764798e-02 2.28107566e-01]

 $Fig-\ 1: Estimation\ of\ regression\ coefficient\ -\ Multiple\ linear\ regression\$

From this Multiple Linear Regression Model we infer that the independent variables like adult mortality has the negative value of -2.99000081e-02. As this value of adult mortality decreases the life expectancy rate increases. Similarly all the independent variables which has negative values is inversely related to the life expectancy. And the independent variable like Schooling which has a positive value of 6.55693667e-01, the life expectancy rate increases, that is they are directly related.

	Country	lifeexpectancy
84	Japan	82.53750
165	Sweden	82.51875
75	Iceland	82.44375
166	Switzerland	82.33125
60	France	82.21875
82	Italy	82.18750
160	Spain	82.06875
7	Australia	81.81250
125	Norway	81.79375
30	Canada	81.68750

TABLE-1: The above table represents thetop 10 country with the highest life

		OLS R	egress	ion Results					
Dep. Variable:	lifeexpect	ancy	R-sq	uared (unce	ntered):	0.974			
Model:		OLS	Adj.	R-squared	(uncentered):	0.973			
Method:	Least Squ	ares	F-sta	atistic:		1.347e+04			
Date:	Mon, 12 Apr	2021	Prob	(F-statist	ic):	0.00			
Time:	08:4	1:44	Log-I	Likelihood:		-11305.			
No. Observations:		2938	AIC:			2.263e+04			
Df Residuals:		2930	BIC:				2.267e+04		
Df Model:		8							
Covariance Type:	nonro	bust							
		1	coef	std err	t	P> t	[0.025		
Adult Mortality		0.1	9217	0.002	14.168	0.000	0.019		
Alcohol		-0.1	3241	0.062	-5.221	0.000	-0.446		
percentage expenditur	e	-0.1	8883	0.000	-1.267	0.205	-0.001		
Polio		0.:	2192	0.009	24.444	0.000	0.202		
Total expenditure		1.:	1089	0.080	13.828	0.000	0.952		
GDP		2.646	e-05	3.83e-05	-0.690	0.490	-0.000	4	
Income composition of	resources	33.:	1015	1.029	32.173	0.000	31.084		
Schooling		1.	7613	0.057	31.015	0.000	1.650		
Omnibus:	9.613	Durb	in-Watson:	0.812					
Prob(Omnibus):	6	9.000	Jarqu	ue-Bera (JB):	6883.00	65		
Skew:	-6	9.038	Prob	(JB):		0.00			
Kurtosis:	16	9.498	Cond	. No.		7.34e+6	84		

Fig-8 :Step down regression - OLSregression results

From the above statistical summary we infer that finally there are eight variables left namely Adult Mortality, Alocohol, Percentage expenditure, Polio, Total expenditure, GDP, Income composition of resources, Schooling and all of these variables are significant.

Evidence of negative correlation between Life expectancy and Diseases can be seen in the above heatmap. Whereas, Income and Schooling has a strong positive correlation with Life expectancy. Life expectancy has a positive correlation withvaccines of Hepatitis B, Polio, and Diphtheria which explains a higher life span for those who are vaccinated. Both infant and adult mortality have a negative correlation with Life expectancy which is also very intuitive.

```
RMSE: 5.27
R_squared: 0.736
```

Fig- 10 : Statistical data of the Regression model fitted with the selected features.

From the above statistical data we infer that the Root Mean Squared Error indicates the absolute fit of the model to the data and the R squared value,0.736 illustrates the regression model explain almost all the variances of the variable and therefore there is very close relation between life expectancy and all other dependent variables.

Chart-11 : Cluster analysis – plot

The elbow method is used to find the optimal number of clusters. The clusters give us the relationship between the life expectancy and adult mortality in each year.

CONCLUSION:

In conclusion we can say that the factors with significant influence on life expectancy in different countries are AdultMortality, Population, Percentage expenditure, Polio, Total expenditure, GDP, Income composition of resources and Schooling.So a country should give importance to these areas to efficiently improve the life expectancy of itspopulation.

INFERENCES:

- Over the year, life expectancy hasbeen increased slightly.
- Life expectancy decreases withincrease in infant's death.
- Countries having chronic diseaseshas lower life expectancies.
- GDP and Life expectancy has astrong linear relationship.
- Countries with high population hasslightly low life expectancy.
- As total income composition of a country increases, life expectancyalso increases.
- Schooling impacts the lifeexpectancy as expected.

REFERENCES:

[1] Max Roser, Esteben Ortiz-Ospina, Hannah Ritche, 2019, Life Expectancy, ourworldindata.org.

[2] Christiana balan, Elisabeta jaba, 2011,Statistical Analysis of the Determinants of Life Expectancy in Romania,RJRS Vol 5 No 2 Winter 2011

- [3] World Health Organization data repository https://www.who.int/data/gho
- [4] United Nations website https://data.un.org/

[5] Authentic website https://www.kaggle.com/kumarajarshi/life-expectancy-who.