
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 08 | Aug 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1392

A New Proposal of Smart Time Quantum for Round Robin Algorithm

and Comparison with Existing Round Robin Variants

Edula Vinay Kumar Reddy1, Kotha v v s Aakash2

1B.Tech Student, Computer Science Engineering, VIT University, Vellore, Tamil Nadu, India
2B.Tech Student, Computer Science Engineering, VIT University, Vellore, Tamil Nadu, India

---***---
Abstract – CPU Scheduling is the prime concept of
Operating Systems. A scheduling algorithm solves the difficulty
of deciding which of the outstanding processes is to be
allocated to the processor. Round Robin is one of the superior
scheduling algorithms among many CPU scheduling
algorithms where every process in the queue executes for a
given time quantum. But logically, every distinct case has a
particular Time quantum at which the execution of Round
Robin algorithm will be at its peak. Thus, the Performance and
CPU efficiency are primarily dependent on the value of Time
quantum we provide. Since, the value of Time quantum in
Traditional Round Robin is independent of the data of
processes, the CPU performance may not be best in all the
cases. So, in this paper a modified Round Robin algorithm is
proposed, which uses the approach of Smart Time quantum to
make the traditional Round Robin Algorithm more efficient.
The proposed algorithm improves the efficiency of the
traditional Round Robin algorithm where the smart Time
quantum is generated by taking the burst times of the
processes into consideration. As a consequence, waiting time,
turn-around time, and the number of context switches are
reduced effectively. This paper also presents a detailed
comparative study of different Existing Round Robin variants
with our proposed algorithm.

Key Words: Round Robin, Arrival Time, Burst Time, Waiting
Time, Turn Around Time, Response Time, Completion Time,
Smart Time Quantum, etc.

1.INTRODUCTION

As a matter of fact, in a Single-Processor system, only one
process can run at a particular point of time, and any other
processes must wait until the CPU becomes free and can be
rescheduled accordingly. In order to start execution, most of
the processes must wait, typically for the completion of some
I/O request. So, in a Single-Processor computer system, the
CPU just sits idle for completion of such I/O requests. All this
waiting time is wasted; i.e., no useful work is carried out in
the meantime.

So, with the introduction of Multiprogramming, we try to use
this time in a productive manner. In general, numerous
processes are kept in the memory at one time. When one
process has to wait for some kind of I/O request (or any
other), the Operating system takes the CPU away from that
particular process and allocates another process to the CPU

and this pattern continues. With this kind of switching the
CPU among various processes, the Operating system (OS)
can make the computer to work in a more efficient manner.
The prime focus of Multiprogramming is to have some
process running at all the times; i.e., to amplify the CPU
utilization.

CPU scheduling is the core of any Multiprogramming based
Operating systems. One of the major reasons for using
Multiprogramming is that the Operating system itself is
implemented as one or more process(es), so there must be a
way for the application processes and operating system to
share the CPU effectively. Another main reason is that the
processes which require to perform any kind of I/O requests
in the normal course of computation, generally require more
time to complete than to perform the CPU instructions,
Multiprogramming systems allocate the CPU to another
process whenever any process invokes a I/O operation or
any other kind of interrupt.

Every time the CPU becomes idle, the Operating system must
pick one of the processes among the processes present in the
ready queue for the execution at that point of time. This
selection procedure is carried out by the Short-term
scheduler (The CPU scheduler). This Scheduler picks one of
the processes present in the memory that are ready to get
executed, and allocates it to the CPU.

Another component involved in this entire scheduling
procedure is the Dispatcher. The Dispatcher is the
component that allocates the process selected by the short-
term scheduler to the CPU. The functions of Dispatcher
involve:

• Context switching.

• To Restart the process from where it left last time, by
remembering the proper locations.

The Dispatcher module should be as fast as possible,
considering that it is invoked during every Process switch.
The Time consumed by the dispatcher module to end one
process and begin another process is known as the Dispatch
Latency. Low Dispatch Latency directly implies high
utilization of the CPU, since the wastage of time in the
context of Dispatch Latency is low. Typically, in a drastic case
of Dispatch Latency being high, there is no meaning for
Multiprogramming.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 08 | Aug 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1393

2. SCHEDULING

Scheduling refers to the technique in which the processes are
assigned to run on the available CPUs, because there are
typically higher number of processes willing to run at a same
time than the available number of CPUs. In other way,
Scheduling can also be defined as the process of deciding of
which particular process should occupy which particular
resource (CPU, disk, etc.). This indicates that CPU scheduling
is a method which allows one of the processes to utilize the
CPU, while the execution of the another process is kept on
hold state (in Waiting state) due to unavailability of any
resource(s) like I/O (or any other), thereby maximizing the
CPU utilization. The objective of CPU scheduling is to make
the system fair, fast and proficient.

CPU scheduling decisions takes place under the following
instances:

1. Once a Process switches from the Running phase to the
Waiting phase (For any I/O request (or) any other).

2. Once a Process switches from the Running phase to the
Ready phase (When any interrupt occurs).

3. Once a Process switches from the Waiting phase to the
Ready phase (After the completion of any I/O request).

4. Once a Process terminates.

Whenever Scheduling takes place only under instances 1 & 4
shown above, we say the scheduling scheme is a called as a
non-Preemptive one; Else, the scheduling scheme is called as
a Preemptive one.

Under the policy of non-Preemptive scheduling, once the CPU
has been allocated with any of the processes, that particular
process is kept in the CPU until it gets terminated (or)
switches to the Waiting phase. Whereas under the policy of
Preemptive scheduling, the tasks are usually assigned with
respective priorities. At times it is necessary to run a certain
process that has a higher priority before another process
although it is already in Running phase. So, the currently
running process is interrupted for some amount of time and
resumed later when the high prioritized process has finished
its entire Execution.

When we think of Scheduling, various questions would be
raised in our mind like:

 Which process should be given Higher priority?

 If suddenly any running process gets terminated, which
other process is allocated to CPU by the Operating
system?

 which process is allocated to CPU by the Operating
system, If suddenly any running process invokes any I/O
request?

 What is the order of priority of all the processes available
in ready queue?

So, all these questions can be answered based on the type of
CPU scheduling algorithm we employ. Different types of

Scheduling algorithms give different order of Priorities
among the available processes. There are variable types of
CPU scheduling algorithms available to perform
Multiprogramming like First Come First Serve (FCFS),
Shortest Job First (SJF), Priority Scheduling (PS), Shortest
Remaining Time First (SRTF), Multilevel feedback Queue and
Round Robin (RR). Performance of these different scheduling
algorithms can be measured and compared among
themselves using different criteria like Waiting time,
Turnaround time, Throughput, etc.

2.1 Scheduling Criteria

Different CPU scheduling algorithms have completely
different set of execution phases and the selection of any
particular algorithm favors one particular class of processes
over the another. In making a choice of which algorithm to be
used in a particular situation, we must consider the various
parameters of algorithms.

 CPU utilization: The prime focus of any algorithm is to
keep the CPU busy to a maximum extent.

 Throughput: If the processor is busy executing
processes, then useful work is being done. One of the
important measures of the useful work done is the
number of processes that are completely executed per
time unit, which is defined as throughput.

 Turnaround time: At the context of a particular process,
the significant criteria is how long it takes to execute that
particular process completely. Precisely, the interval
between the time its arrival and time of its termination is
termed to be turnaround time.

 Waiting time: Any scheduling algorithm does not affect
the amount of time during which a process executes or
performs some kind of I/O request; they majorly affect
the amount of time that a process spends idlily waiting in
the ready queue.

 Response time: In a general system, turnaround time
may not be the best measure. Thus, another measure i.e.,
the interval between the time of arrival of a process and
the time at which it gets first response (allocated to CPU)
is introduced, which is termed to be response time.

2.2 Scheduling Main Objectives

 Minimizing the Turnaround Time.

 Minimizing the Waiting Time.

 Maximizing Throughput.

 Maximizing CPU utilization.

 Minimizing the Response time.

 Providing fairness to all the Processes.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 08 | Aug 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1394

3. DIFFERENT VARIANTS OF ROUND ROBIN
ALGORITHM’S

3.1 Traditional Round Robin Scheduling Algorithm

 The Round Robin (RR) scheduling algorithm is designed
especially for time-sharing systems (A time sharing system
allows many users to share the computer resources
parallelly.). It is updated version of FCFS Algorithm, in which
pre-emption is added to switch between the processes. So, a
small instance of time, called a Time quantum, is defined.
The ready queue is treated as a circular queue in the case of
Round Robin.

3.1.1 Implementation of Round Robin Scheduling

 We consider the Ready queue as a FIFO (First In First
Out) queue of processes.

 If any new process enters, then it is added to the tail of
the ready queue.

 The Dispatcher (Short-term scheduler) selects the very
first process from the ready queue of processes and sets
a timer to interrupt the process immediately after 1-
time quantum, and dispatches the process.

 If there arises a case of the process having a CPU burst of
less than 1-time quantum, the process itself will release
the processor voluntarily.

 And then the scheduler picks the next process from the
ready queue.

 Otherwise, In the case of CPU burst of the current
process under execution being longer than 1-Time
quantum, the timer will go off exactly after 1 Time
quantum and it will cause an interrupt to the OS.
Subsequently a context switch will be performed, and
the process will be put at the tail of the Ready queue.

 Then the scheduler selects the next process available in
the ready queue.

 This recursive process goes on until all the available
processes gets executed completely.

3.1.2 Advantages of Round Robin CPU Scheduling
Algorithm

 Round Robin Scheduling Algorithm doesn't suffer from

the problem of Starvation.
 All the Processes get a fair allocation of Processor.
 Average Response time would be very less, compared to

any other scheduling algorithms.

3.1.3 Disadvantages of Round Robin Scheduling
Algorithm

 Very Important jobs may wait in Queue, as priority of

processes doesn’t matter in Round Robin.

 Setting the time quantum too short causes too many
context switches and lowers the efficiency of CPU,
especially if the dispatcher latency is considerably large.

 Setting the time quantum too large may lead to poor
response time and, RR indirectly runs in the form of
FCFS in that case.

3.2 Improved Round Robin CPU Scheduling
Algorithm (IRR)

 We know that, Round Robin algorithm is used for
executing the processes on CPU with a small unit of time
slice. IRR Scheduling Algorithm is more or less similar to RR
algorithm using time slice but little different in the execution
of processes on the CPU. IRR scheduling algorithm picks the
first process in the Ready queue and execute it till the
allocated time slice then we check the remaining burst time
of the current running process. If the remaining burst time is
less than the allocated time quantum then the running
process is executed again till it finishes its execution. But, if
the remaining burst time of the running process is more than
the allocated time slice then the next process in the ready
queue is executed. And we remove the currently running
process from the Ready queue and put it at the end of the
ready queue [1].

3.2.1 Implementation of IRR CPU Scheduling
Algorithm

 Step-1: START

 Step-2: Consider a Ready queue of the Processes.

 Step-3: Repeat steps 4, 5 and 6 Till the Ready queue
becomes empty.

 Step-4: Select the very first process from the ready
queue and allocate it to the CPU for the given Time slice.

 Step-5: If the left-over burst time of the currently
running process is less than that of the allocated time
slice, then allocate CPU again to the currently running
process for execution of remaining CPU burst time. After
complete execution of current process, we remove it
from the ready queue and go to step 3.

 Step-6: Detach the currently running process from the
Ready queue and put it at the tail of the ready queue.

 Step-7: END

3.3 An Additional Improvement Round Robin CPU
Scheduling Algorithm (AAIRR)

 The AAIRR CPU scheduling algorithm picks the very first
process that arrives in the Ready queue and allocates it to
the CPU for its execution for a time period of 1-Time
quantum (TQ). After allocating it for 1-time quantum, the
remaining CPU burst time of the currently running process is
checked. If it is observed to be less than or equal to 1-Time

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 08 | Aug 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1395

quantum (TQ), then the CPU is again allocated to the
currently executing process for the execution for remaining
burst time of the process and after execution it removed
from the ready queue, then it selects the next shortest
process from the ready queue. Otherwise, the process will be
added at the end of the ready queue and the next process in
the ready queue will be selected and allocated to the CPU [2].

3.3.1 Implementation of AAIRR CPU Scheduling
Algorithm

 Step-1: START

 Step-2: Consider a Ready queue of the Processes.

 Step-3: Pick the 1st process that arrives to the Ready
queue and allocate the CPU to it for a time interval of 1-
Time quantum.

 Step-4: If the left-over burst time of the currently
executing process is less or equal to 1-Time quantum.
We reallocate CPU again to the currently running
process for the remaining CPU burst time. After
completion of the execution, then we remove it from the
Ready queue.

 Step-5: Otherwise, remove the currently running
process from the ready queue and put it at the end of the
Ready queue.

 Step-6: If the Ready Queue is non-empty, pick the next
process with shortest Burst time from the Ready queue
and assign the CPU to it for a time span of 1-time
quantum then go to step 4.

 Step-7: If the Ready Queue is Empty, then Calculate
Number of Context Switches, Average Waiting Time and
Average Turnaround Time.

 Step-8: END

3.4 An Enhanced Round Robin CPU Scheduling
Algorithm (Enhanced RR)

 This algorithm is an improved version of IRR algorithm.
ERR selects the 1st process from the ready queue and
allocate it to the CPU for a time interval of 1-Time quantum.
Thereafter it checks the left-over burst time of the currently
running process, if it is found to be less than or equal to 1-
Time quantum, the current process is again allocated to the
CPU for the execution of remaining burst time of the process.
After completion of the execution, this process is removed
from the Ready queue. If the remaining burst time of the
currently running process is greater than that of 1-Time
quantum, then the process will be added at the end of the
ready queue [3].

3.4.1 Implementation of Enhanced RR CPU
Scheduling Algorithm

 Step-1: START

 Step-2: Consider a Ready queue of the processes.

 Step-3: Assign the CPU to the 1st process of the ready
queue for a time span of 1-Time quantum.

 Step-4: In the case of the left-over Burst time of the
process under execution being equal to or less than 1-
Time quantum then we allocate the CPU again to the
currently executing process for the execution of
remaining burst time. After completion of execution
detach it from the ready queue and go to step 3.

 Step-5: Pull out the currently running process from the
ready queue and put it at the end of the ready queue.

 Step-6: Go to Step-3 if the ready queue is not Empty.

 Step-7: END

3.5 Round Robin Remaining Time Algorithm
(RRRT)

 This algorithm is improved version of Adaptive Round
Robin Scheduling algorithm. It assumes that all processes
arrive simultaneously in the Ready queue, then they are
arranged in an ascending order according to their burst
times. TQ is calculated by using the formula Σ pi / 2n. If the
left-over CPU burst time of the currently executing process is
less than the TQ, the CPU is again allocated to the currently
running process for the execution of remaining CPU burst
time. Otherwise, the process will be added to the end of the
ready queue [4].

3.5.1 Implementation of RRRT CPU Scheduling
Algorithm

 Step-1: START

 Step-2: Consider a Ready queue of the processes.

 Step-3: Rearrange all the process in the increasing order
of their CPU burst times.

 Step-4: Calculate TQ as time quantum = Σ (BT(Pi) / 2*n)

 Step-5: Allocate the 1st Process in Ready Queue for 1-
Time Quantum, if (remaining burst time < time
quantum), reallocate CPU to the current running process
for remaining burst time’s execution, Else remove the
current running process from the ready queue and put it
at the end of the ready queue.

 Step-6: If Number of processes > 0, then Goto Step-5

 Step-7: Calculate Number of Context Switches, Average
Waiting Time and Average Turnaround Time.

 Step-8: END

3.6 Enriched Round Robin Algorithm (Enriched RR)

 This algorithm is the improved version of Adaptive Round
Robin Scheduling algorithm. This algorithm assumes that all
the processes arrive simultaneously in the Ready queue,
then they are arranged in an ascending order according to
their burst times. TQ is calculated by 0.75*(Σ pi / N). If the
left-over CPU burst time of the currently executing process is

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 08 | Aug 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1396

less than the TQ, the CPU is again allocated to the currently
running process for the execution of remaining CPU burst
time. Otherwise, the process will be added to the end of the
ready queue [5].

3.6.1 Implementation of Enriched RR CPU
Scheduling Algorithm

 Step-1: START

 Step-2: Consider a Ready queue of the processes.

 Step-3: Rearrange all the process in the increasing order
of their CPU burst times.

 Step-4: Calculate TQ as time quantum = 0.75*(Σ pi / N).

 Step-5: Allocate the 1st Process in Ready Queue for 1-
Time Quantum, if (remaining burst time < time
quantum), reallocate CPU to the current running process
for remaining burst time’s execution, Else remove the
current running process from the ready queue and put it
at the end of the ready queue.

 Step-6: If Number of processes > 0, then Goto Step-5

 Step-7: Calculate Number of Context Switches, Average
Waiting Time and Average Turnaround Time.

 Step-8: END

4. PROPOSED ALGORITHM

The Proposed algorithm primarily focuses on the drawbacks
of Traditional Round Robin algorithm i.e., every different
case has a particular Time quantum at which the execution
of Round Robin algorithm will be at its best. Thus, the CPU
efficiency and performance are primarily dependent on the
value of Time quantum provided. As the value of Time
quantum in Traditional Round Robin is independent of
provided data of processes like their Burst times and Arrival
times, the CPU performance may not be best in all the cases.
So, in this Paper a modified Round Robin algorithm is
proposed, which uses the approach of Smart Time quantum
to make the traditional Round Robin Algorithm more
efficient. The proposed algorithm improves the efficiency of
the traditional Round Robin algorithm where the Smart
Time quantum is generated by taking the Burst times of the
processes into consideration. As a consequence, Waiting
time, Turn-around time, and the Number of Context switches
are reduced effectively.

4.1 Assumptions

 While execution of the Proposed algorithm, it has been
assumed that the system where the proposed algorithm is
executing is a Single processor system and all the processes
have equal priority. It is also assumed that the Number of
processes, Burst times and Arrival times are well-known
even before submitting the processes to the processor. All
processes are only CPU bound.

 In the proposed algorithm, the smart time quantum will
be calculated based on the Burst times of all the processes
using the formula:

 STQ = int (| | +1)

 If the above STQ results as 1 unit time in any drastic case,
in order to reduce the Number of Context switches due to
less TQ (1 unit time), the STQ would be re- calculated from
the formula (in above formula MIN(BT’s) is ignored to obtain the
below STQ since Min(BT’s) is too small in most of the cases and

hence can be neglected to get better results in the context of
Number of Context switches):

STQ = int (+1)

4.2 Terminologies

 STQ-Smart Time Quantum

 MAX(BT)-Maximum Burst Time among the available
Processes

 MIN(BT)-Minimum Burst Time among the available
Processes

 MEAN(BT’s)-Mean of the Burst times of all the available
Processes

4.3 Implementation of the Proposed Algorithm

 Step-1: START

 Step-2: Arrange the processes in the expanding request
of CPU burst times in the ready queue.

 Step-3: Calculate the Mean of the Burst times of all the
Processes present in Ready Queue.

Mean (BT’s) = (BT1+BT2+BT3+. . . +BTn)/n

 Step-4: Set the Smart time quantum (STQ) using the
formula specified below:

STQ = int (| | +1)

 Step-5: In case of the above formula resulting in 1 unit
time; then consider and recalculate the STQ using the
formula specified below:

 STQ = int (+1)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 08 | Aug 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1397

 Step-6: Allocate the CPU to the First process in the
Ready Queue for the span of 1 Smart Time Quantum.

 Step-7: If the left-over CPU burst time of the currently
executing process is less than or equivalent to that of 1
Smart time quantum, then Reallocate the CPU to same
process for the execution of rest of the burst time; After
the total execution, expel it from the Ready queue; Next
Update the Ready queue if any new process arrives
meanwhile. Otherwise expel the currently executing
process from the CPU and put it at the tail of the Ready
queue, once after updating the Ready queue with the
newly arrived processes, for further execution.

 Step-8: If the Ready Queue is not empty, then revert
back to Step-6.

 Step-9: Calculate the Average Waiting time, Average
Turnaround time, and Average Response time of all
processes.

 Step-10: END

Note: Initially, if we arrive with a case of 2 or more processes
having same arrival time, then we implement SJF i.e., the
process with least Burst Time is executed first among the
conflicting processes.

Fig -1: The Flowchart of Proposed Algorithm

5. EXPERIMENTAL ANALYSIS

5.1 Comparison of the Proposed algorithm with the
Traditional Round Robin Algorithm

5.1.1 Assumptions

 It has been assumed that the system where all these
experiments are performed is Single processor system and
all the processes have equal priority. It is also assumed that
the Number of processes, Burst times and Arrival times are
well-known even before submitting the processes to the
processor. It is also assumed that the processes are only CPU
bound.

5.1.2 Experiments Performed

 Two different Cases have been taken for the performance
evaluation of the Proposed algorithm.

 In Case-1, CPU burst times are taken in random order
and processes arrival times are assumed to be zero.

 In Case-2, CPU burst times are taken in random order
and processes arrival times are assumed to be non-zero.

5.1.3 Dataset Description

 Test cases are adopted from the paper published by
Manish Kumar Mishra and Dr. Faiur Rashid [6].

5.1.4 Case-1: Zero Arrival Times

 In this case, CPU burst times are taken in random order
and processes arrival times are assumed to be zero. A Ready
queue with 5 processes P1, P2, P3, P4 and P5 has been
considered as shown in table-1.

Table-1: Processes with their respective Arrival and Burst

times (Case-1)

Process Arrival Time Burst Time

P1 0 15

P2 0 32

P3 0 10

P4 0 26

P5 0 20

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 08 | Aug 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1398

5.1.5 Comparison Between Proposed Modified
Round Robin & Traditional RR at Different Time
Quantum’s: (Case-1)

Table-2: Tabular Comparison Between Proposed Modified

Round Robin & Traditional RR at Different Time
Quantum’s (Case-1)

Chart-1: Graphical Comparison Between Proposed

Modified Round Robin & Traditional RR at Different Time
Quantum’s (Case-1)

5.1.6 Case-2: Non-Zero Arrival Times

 In this case, CPU burst times are taken in random order
and processes arrival times are assumed to be non-zero. A
Ready queue with 5 processes P1, P2, P3, P4 and P5 has been
considered as shown in table-3.

Table-3: Processes with their respective Arrival and Burst
times (Case-2)

5.1.7 Comparison Between Proposed Modified
Round Robin & Traditional RR at Different Time
Quantum’s: (Case-2)

Table -4: Tabular Comparison Between Proposed
Modified Round Robin & Traditional RR at Different Time

Quantum’s (Case-2)

Chart-2: Graphical Comparison Between Proposed

Modified Round Robin & Traditional RR at Different Time
Quantum’s (Case-2)

Algorithm

employed

Time

Quantum

Avg. TAT Avg. WT Avg. RT

RR 1 82.00 61.40 2.00

Proposed

RR

Calculated

(STQ=2)

73.60 53.00 4.00

RR 2 82.40 61.80 4.00

RR 3 82.00 61.40 6.00

RR 4 81.20 60.60 8.00

RR 5 85.80 65.20 10.00

Process Arrival Time Burst Time

P1 0 7

P2 4 25

P3 10 5

P4 15 36

P5 17 18

Algorithm

employed

Time

Quantum

Avg. TAT Avg. WT Avg. RT

RR 5 47.80 29.60 4.00

Proposed

RR

6 45.60 27.40 5.40

RR 7 43.80 25.60 6.80

RR Calculated

(STQ=7)

38.20 20.00 6.80

RR 8 45.60 27.40 6.40

RR 9 43.80 25.60 7.40

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 08 | Aug 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1399

5.2 Comparison of the Proposed algorithm with IRR,
AAIRR, ENHANCED RR, RRRT and ENRICHED RR
Algorithm’s

5.2.1 Assumptions

 It has been assumed that the system where all these
experiments are performed is Single processor system and
all the processes have equal priority. It is also assumed that
the Number of processes, Burst times and Arrival times are
well-known even before submitting the processes to the
processor. It is also assumed that the processes are only CPU
bound.

5.2.2 Experiments Performed

 Three different cases have been taken for performance
evaluation of our proposed algorithm.

 In Case-1, CPU burst times are taken in random order
and processes arrival times are assumed to be zero.

 In Case-2, CPU burst times are taken in increasing order
and processes arrival times are assumed to be zero.

 In Case-3, CPU burst times are taken in decreasing order
and processes arrival times are assumed to be zero.

5.2.3 Dataset Description

 Test cases are adopted from the paper published by Afaf
Abd Elkader and Kamal Eldahshan [7].

5.2.4 Case-1: Random Burst Times

 In this case, CPU burst times are taken in Random order
and processes arrival times are assumed to be zero. A Ready
queue with 5 processes P1, P2, P3, P4 and P5 has been
considered as shown in table-5.

Table-5: Processes with their respective Arrival and Burst

times (Case-1)

Process Arrival Time Burst Time

P1 0 24

P2 0 40

P3 0 5

P4 0 12

P5 0 34

5.2.5 Comparison Between Proposed Modified
Round Robin and Various Modified RR’s (Case-1)

Table-6: Tabular Comparison Between Proposed Modified

Round Robin and Various Modified RR’s (Case-1)

Chart-3: Graphical Comparison Between Proposed
Modified Round Robin & Various Modified RR’s (Case-1)

5.2.6 Case-2: Increasing Burst Times

 In this case, CPU burst times are taken in Increasing order
and processes arrival times are assumed to be zero. A Ready
queue with 5 processes P1, P2, P3, P4 and P5 has been
considered as shown in table-7.

Algorithm

employed

Time

Quantum

Avg. TAT Avg.

WT

Avg. RT

Proposed

Modified RR

Calculated

(STQ=7)

60.40 37.40 15.40

IRR 7 67.40 44.40 14.20

AAIRR 7 63.20 40.20 14.80

ENHANCED

RR

6 66.20 43.20 12.80

RRRT Calculated

(TQ=11)

59.40 36.40 17.80

ENRICHED

RR

Calculated

(TQ=17)

54.00 31.00 24.20

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 08 | Aug 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1400

Table-7: Processes with their respective Arrival and Burst
times (Case-2)

Process Arrival Time Burst Time

P1 0 7

P2 0 10

P3 0 20

P4 0 26

P5 0 30

5.2.7 Comparison Between Proposed Modified
Round Robin and Various Modified RR’s (Case-2)

Table-8: Tabular Comparison Between Proposed Modified

Round Robin and Various Modified RRs (Case-2)

Chart-4: Graphical Comparison Between Proposed

Modified Round Robin & Various Modified RR’s (Case-2)

5.2.8 Case-3: Decreasing Burst Times

 In this case, CPU burst times are taken in Decreasing order
and processes arrival times are assumed to be zero. A Ready
queue with 5 processes P1, P2, P3, P4 and P5 has been
considered as shown in table-9.

Table-9: Processes with their respective Arrival and Burst

times (Case-3)

Process Arrival Time Burst Time

P1 0 45

P2 0 36

P3 0 30

P4 0 18

P5 0 10

5.2.9 Comparison Between Proposed Modified
Round Robin and Various Modified RR’s (Case-3)

Table-10: Tabular Comparison Between Proposed
Modified Round Robin and Various Modified RR’s (Case-3)

Algorithm

employed

Time

Quantum

Avg. TAT Avg.

WT

Avg. RT

Proposed

Modified RR

Calculated

(STQ=3)

59.60 41.00 06.00

IRR 3 59.60 41.00 06.00

AAIRR 3 59.60 41.00 06.00

ENHANCED

RR

2 61.00 42.40 04.00

RRRT Calculated

(TQ=9)

48.80 30.20 17.00

ENRICHED

RR

Calculated

(TQ=13)

46.00 27.40 22.20

Algorithm

employed

Time

Quantum

Avg. TAT Avg.

WT

Avg. RT

Proposed

Modified RR

Calculated

(STQ=5)

85.80 58.00 14.00

IRR 5 101.80 74.00 10.00

AAIRR 5 89.80 62.00 13.00

ENHANCED

RR

4 99.40 71.60 8.00

RRRT Calculated

(TQ=13)

73.60 45.80 26.60

ENRICHED

RR

Calculated

(TQ=20)

65.80 38.00 38.00

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 08 | Aug 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1401

Chart-5: Graphical Comparison Between Proposed
Modified Round Robin & Various Modified RR’s (Case-3)

6. RESULT AND ANALYSIS

One of the prime tasks of the operating system is the
allocation of CPU to the processes which are waiting for
execution. Many CPU scheduling algorithms have been
introduced, which have both advantages and disadvantages.
The proposed modification in Round robin scheduling
algorithm with calculation of smart time quantum is giving
better performance than conventional Round Robin
algorithm which is shown by taking 2 different cases to
ensure a fair comparison between the Proposed approach
and Traditional Round Robin approach, we even adopted the
Test cases for these cases from a valid source of journal [6].
In both the cases, average waiting time, average turnaround
time and average response time have been reduced greatly
in the proposed approach and hence the system
performance has been improved. Even the proposed
modification in the Round robin algorithm with calculation
of smart time quantum is giving better performance than
existing modified versions of Round Robin algorithm which
is shown by taking 3 different cases to ensure a fair
comparison between the proposed approach and existing
modified versions of Round Robin algorithm, we even
adopted the Test cases for these cases from a valid source of
journal [7].

In Case-1, where burst times of all the processes are taken in
random order, we find that the proposed approach is
executing better than IRR, AAIRR, and ENHANCED RR in
terms of Average Waiting Time, Average Turn Around Time,
and Average Response Time; although both RRRT and
ENRICHED RR are better than the proposed approach in
terms of both Average Waiting Time and Average Turn
Around Time, but the proposed approach is far better than
the both RRRT and ENRICHED RR in terms of Average
Response Time. Here, even Average Response Time is also an
important factor of measuring efficiency because
conventional Round Robin finds its specialty and uniqueness

among other conventional scheduling algorithms mainly
because of its minimum Average Response Time.

In Case-2, where burst times of all the processes are taken in
increasing order, we find that the proposed approach is
executing equally efficient to IRR and AAIRR, and executing
better than ENHANCED RR in terms of Average Waiting
Time, Average Turn Around Time, and Average Response
Time; although both RRRT and ENRICHED RR are better
than the proposed approach in terms of both Average
Waiting Time and Average Turn Around Time, but the
proposed approach is far better than both RRRT and
ENRICHED RR in terms of Average Response Time.

In Case-3, where burst times of all the processes are taken in
decreasing order, we find that the proposed approach is
executing better than IRR, AAIRR, and ENHANCED RR in
terms of Average Waiting Time, Average Turn Around Time,
and Average Response Time; although both RRRT and
ENRICHED RR are better than the proposed approach in
terms of both Average Waiting Time and Average Turn
Around Time, the proposed approach is far better than both
RRRT and ENRICHED RR in terms of Average Response
Time.

7. FUTURE SCOPE

Cloud computing is one of the prime technologies we are
using in recent times, it allows users (individuals or
organizations) to access computational resources like:
Software and Hardware as services remotely through the
Internet. As cloud computing is serving millions of users
parallelly, it must have the ability to meet all user requests
with high efficiency and guarantee of Quality of service
(QOS). Thus, we need to implement an appropriate CPU
scheduling algorithm to efficiently and fairly meet all these
requests of users simultaneously. As the most well-known
Conventional Round Robin algorithm is executing less
efficiently when compared to the proposed approach, the
proposed approach can be implemented in this field with
making little modifications related to Cloud computing
domain.

8. CONCLUSIONS

Many algorithms are proposed to improve the efficiency of
Traditional Round Robin algorithm to minimize the average
waiting time, average turnaround time and average response
time. Time Quantum is the most important parameter in the
performance of these proposed algorithms.

We can conclude from the above experiments that the
proposed algorithm performs better than the previously
developed approaches in terms of performance parameters
such as average waiting time, average turnaround time and
average response time.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 08 | Aug 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1402

But we can’t generalize and say that a particular algorithm is
best, even a best algorithm gives worst results in some
drastic cases. But as per our experimental analysis the
proposed approach is performing very well when compared
to Traditional round robin in almost all the cases we
performed. Also, our approach is performing better than
atleast four out of the five modified versions of Round Robin
algorithm: IRR, AAIRR, ENHANCED RR, RRRT and ENRICHED
RR in each and every different case we have performed.

REFERENCES

[1] Neha and A. Jiyani, "An Improved Round Robin CPU
Scheduling Algorithm," IRE Journals, vol. 1, no. 9, pp. 82-
86, 2018.

[2] S. Aliyu, S. E. Abdullahi, A. M. Mustapha and S. E.
Abdullahi, "An Additional Improvement in Round Robin
(AAAIRR) CPU Scheduling Algoritm," International
Journal of Advanced Research in Computer Science and
Software Engineering , vol. 4, no. 2, pp. 601-610, 2014.

[3] J. Khatri, "An Enhanced Round Robin CPU Scheduling
Algorithm," IOSR Journal of Computer Engineering
(IOSR-JCE) , vol. 18, no. 4, pp. 20-24, 2016.

[4] A. Sharma and G. Kakhani, "Analysis of Adaptive Round
Robin Algorithm and Proposed Round Robin Remaining
Time Algorithm," International Journal of Computer
Science and Mobile Computing, vol. 4, no. 12, pp. 139-
147, 2015.

[5] K. ElDahshan, A. A. Elkader and N. Ghazy, "Achieving
Stability in the Round Robin Algorithm," International
Journal of Computer Applications, vol. 172, pp. 15-20,
2017.

[6] D. F. Rashid and M. Kumar, "An Improved Round Robin
CPU Scheduling Algorithm with Varying Time Quantum,"
International Journal of Computer Science, Engineering
and Applications (IJCSEA) , vol. 4, no. 4, pp. 1-8, 2014.

[7] K. Eldahshan and A. A. Elkader, "Round Robin based
Scheduling Algorithms, A Comparative Study,"
Automatic Control and System Engineering Journal, vol.
17, no. 2, pp. 29-42, 2017.

BIOGRAPHIES

Mr. Edula Vinay Kumar Reddy is
pursuing B.Tech (CSE) from
Vellore institute of Technology,
Vellore and presently is in 3rd
Year. His research interests are
Operating Systems, Data Science
and Artificial Intelligence.

Mr. Kotha V V S Aakash is
pursuing B.Tech (CSE) from
Vellore institute of Technology,
Vellore and presently is in 3rd Year.
His research interests are Software
Development, Machine Learning
and Operating Systems.

