
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 08 | Aug 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1577

An Overview of Structural UML Diagrams

Bhavik Bhatt1, Muskaan Nandu2

1Bhavik Bhatt, Dept. of Information Technology, KJ Somaiya College of Engineering, Maharashtra, India
2Muskaan Nandu, Dept. of Information Technology, KJ Somaiya College of Engineering, Maharashtra, India

---***--
Abstract - UML stands for Unified Modeling Language. UML
diagrams are used to graphically visualize an abstract model
of a system. The paper includes a brief introduction of UML
diagrams and explains the two types of UML diagrams -
Structural UML Diagrams and Behavioral UML Diagrams. This
paper is an overview of Structural UML diagrams. We have
discussed 5 Structural diagrams namely: Class diagram, Object
Diagram, Component Diagram, Deployment diagram and
Package Diagram. We have also presented the results of a
survey which explains how the Class Diagram is the most
important and most used Structural Diagram.

Key Words: UML, Unified Modeling Language, Structural
diagrams, Class Diagrams, Component Diagrams,
Deployment Diagrams, Object Diagrams, Diagrams.

1. INTRODUCTION

UML in software engineering stands for Unified Modelling
Language. It is a specification language which is used for
visualizing and creating an abstract model of the final
product. These diagrams are a very important part of the
modeling and design process step of any project. A study was
offered in a paper which showed how different data tables,
diagrams, graphical representations, maps and drawings
help in visualizing and analyzing a subject better. The
primary purpose of the study mentioned is to understand
the use of visual inscriptions in science, by providing various
analysis results [1].
Mainly, Unified Modeling Language has been used as a
specification language or a general-purpose modeling
language. Since, software development is a long process
including several phases, it may get complex and hence
representing each phase with different UML diagrams plays
a vital role in easing the complexity of the implementation
process. As we represent each phase with different
diagrams, certain basic rules should be followed while
drawing such diagrams to maintain the consistency between
different UML diagrams. Certain rules have been proposed
with relevant examples in Mohammad N, Alanzi’s paper to
build correct and consistent UML diagrams [2].
UML diagrams have found huge success for documentation
of workflow of different business processes. UML helps in
providing a visual representation or a blueprint of the steps
of implementation to be performed in any large scale
projects. This paper provides an overview of Structural UML
diagrams. The types of UML diagrams are discussed in this
paper followed by an in-depth overview of a few structural
diagrams. The significance of using Structural UML diagrams

is explained by presenting the results of a survey on using
some of the popular structural diagrams.

2. TYPES OF UML DIAGRAMS

To write in a standard way, The UML diagrams give us a
method to write a system's overview, defining all the phases
involved in the business process like database schemas, the
system functions, and in some cases even an overview of how
classes are written in certain programming languages. The
UML diagrams are divided into two types as shown in Fig 1.

Fig -1: Types of UML Diagrams

The two types of UML diagram as explained in [3] are:

a. Structural UML Diagrams
Structural UML diagrams show the static aspect of modeling.
These diagrams include: the composite structure diagram,
Deployment diagram, Package Diagram, Profile Diagram,
Class Diagram, Object Diagram and Component diagram.
Some of these diagrams are explained in detail in this paper.
These diagrams show us the main structure of the system
using different elements of the system like its class,
interfaces, objects, components and nodes. Thus, they show
the things of a modeled system.

b. Behavioural UML diagrams
Behavioural diagrams represent the dynamic aspect of the
system. They show how different elements of the system
interact with each other. These diagrams include: State
Machine diagrams, Communication diagrams, Usecase
diagrams, Activity diagrams, Sequence diagrams, Timing
diagram and Interaction diagrams. These diagrams mainly
depict the changing parts of the system

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 08 | Aug 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1578

This paper focuses on the Structural UML Diagrams.

3. STRUCTURAL DIAGRAMS

3.1 Class Diagrams
Class diagrams are static diagrams which help a user in
constructing the executable code of the software [3]. The
main purpose of class diagrams is to describe responsibilities
of the system, to analyze and design the view of the
application, forms a basis for component and deployment
diagrams and also plays an important role in forward and
reverse engineering. Class diagrams are primarily used to
show how different types of elements which include a class,
an interface, a data type and a component, are being modeled
within the system. Class diagrams are a boon because
developers might think the class diagram was created
specifically for them but other team members like business
analysts might find them useful too. [4]

Class diagrams can be mapped to structural coding; thus, one
should ensure that each element and their relationships are
identified in advance. The responsibilities must be well
distributed. In class diagrams the three essential elements
are: class name, attributes and operations. The classes are
defined using rectangles with their name written on the top-
center of the rectangle. This class name should be meaningful.
This rectangle is divided into half, where the upper half
contains all the attributes of the class and the lower half
contains all the operations as shown in Fig 2.

Fig -2: Structure of Class in Class Diagrams

There are different types of relationships or associations
between classes offered by the UML class diagram which
serve as a rudimentary stage for the making of several other
statements of object-oriented philosophy. Class visibility,
usage, aggregation, dependency, generalization, etc. are
included in these associations.

Class Diagrams depict the system’s elements in order to have
an idea about the main components of the system and how
they interact with each other to fulfill a common goal. In
order to extract the coding structure, Class Diagrams should
be drawn without any errors. The attributes and functions
should be defined properly as per the guidelines. A tool is
mentioned in Sadia Sadaf, Ali Athar and Farooque Azam’s
paper: “Evaluation of FED-CASE - A Tool to Convert Class
Diagram into Structural Coding”, which has two main
modules of forward and reverse engineering [5]. When
talking about converting a class diagram to structural coding,
component mapping is to be done. The entity name in class
diagram is mapped to class name in structural coding,
attributes in class diagrams are mapped to variables in
coding, operations in class diagrams to Functions in coding.

An example is shown using the figures below where the
Example Class in Fig 3 is an entity in the class diagram which
is mapped to its equivalents in structural coding in Fig 4 [6].

Fig -3: Example Class in Modeling

Fig -4: Example Class in Programming language

Thus, class diagrams are beneficial for both stakeholders and
developers as it provides a graphical semantic of an
application for its better understanding. An example of a class
diagram for the following problem statement is shown below
in Figure 5 [7].

Fig -5: Example of Class Diagram for Banking System

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 08 | Aug 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1579

3.2 Object Diagram
The Object UML diagram, also known as Object-Oriented
diagram, is used to represent the static view of a system and
portray an instance of a UML class diagram. To make objects
and their relationships as an instance, Object diagrams are
used. It represents structural and behavioural aspects of the
system with respect to an actor. Rudimentarily object
diagrams and class diagrams are similar to each other.

However, as mentioned earlier Object diagram represents an
instance at a particular point in time which is solid in nature
whereas the Class diagram represents an abstract model
including classes and their relationships. Intuitively object
diagrams are very close to the actual system behaviour.
The basic purposes of object diagrams are as follows:
- Forward and reverse engineering
- Static View of an interaction
- Object relationships of a system
- Understand from practical perspective the object behaviour
and their relationships

Shown below is an example of Object diagram of an order
management system

Fig -6: Object Diagram of Order Management System

The above diagram is an instance of the system which has
the following objects:

- Customer
- Order
- SpecialOrder
- NormalOrder

The object C (Customer) is linked to three O (order) objects
(O1,O2,O3). These O objects are linked with special and
normal order objects (S1,S2 and N1 respectively).

The customer has 3 orders with numbers 12,32 and 40 for
the particular instance considered. These numbers will
differ from time instances. The same is true with respect
to Special and Normal orders which have numbers 20,30
and 60. At a different instance of time, these numbers will
also be different. The difference between class and object
diagram is shown in Table-1 as explained in [8].

Table -1: Difference between Class Diagram and Object
Diagram

Class diagram Object diagram

Entire business process

represented in one class

diagram

Entire business process

represented in number of

object diagrams

Higher level diagram Higher level diagram

State information

implicitly present

State information explicitly

present

Implicitly gives

information for composite

structure diagram

Explicitly gives

information for composite

structure diagram

All methods correspond to

class participated

Intaglio subset of methods

participated

Visibility: private, public,

protected

Visibility: public, protected

Subclasses present once in

class diagram

Same subclasses can

present in many object

diagram

Many boundary object

classes may present

Scope to identify path

between source boundary

object class and destination

boundary object class

No scope to identify

usecase from class diagram

Scope to identify usecase

diagram

No scope to identify

usecase hierarchies

identified in object

diagram

Scope to identify usecase

hierarchies identified in

object diagram

3.3 Component Diagram
To model the physical features of a system, Component UML
diagrams are used. Physical aspects include elements like
libraries, executables, files, documents etc. which are placed
in a node. A node is defined as a physical element that exists
during runtime. Also, a component does not have its own
features. These diagrams are used to to render executable
systems and also showcase the relationships and
organization among components of a system. Component
diagrams are used to describe the components utilized to
execute a functionality and not to describe the functionality
as a whole. There are 3 elements in UML component
diagrams: components, interfaces, dependencies. A basic
component diagram is shown below in Figure-7 [9].

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 08 | Aug 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1580

Fig -7: Basic Component Diagram

There are a few different interpretations of this diagram.
Firstly, Classes in C1 utilise an instance of a class that
implements I, and I is defined in C2.
Or Secondly, A class in C1 implements I, and I is defined in
C2.
Or Lastly, Classes in C1 will use an instance of a class in C2
that implements I.
In addition to this, component diagrams include a Requires
and Provides Port which is beyond the scope of this paper.
Also, there are two ways to represent component diagrams
which are described below in figure 8 [10].

Fig -8: Different Component Representations in a

Component Diagram

● LHS figure: the class (Sales) that resides on the
component (Facts) is shown as nested inside the component
(this indicates residence and not ownership)
● RHS figure: the class is connected to the component
by a reside dependency

A sample of a Component Diagram of a Order Management
System is shown below in figure 9. The files are the artifacts
hence the figure shows the files in the application along with
their relations. Artifacts can also include libraries, folders
etc.

Fig -9: Component Diagram of an Order Management

System

3.4 Package Diagram
Package diagram is a subtype Structural UML Diagram in
which model elements are organized in various middle to
large scale projects [11]. By grouping classes into packages
complex Class diagrams can be simplified using Package
diagrams. A package in a package diagram is basically a
collection of different logically associated UML elements.
These packages are represented as file folders which we
can use in different UML diagrams.

Packages are rectangular with small tabs on the top. While
labeling these packages, the class stereotype in a package
should be considered too. The package name is either on the
top or inside the rectangle. The label on the top is to fix the
package’s type but this isn’t enough as developers are still
not able to acquire enough information about the system or
package. That’s why there is a need to take some part of the
program for displaying the content of a package. These
packages are interdependent on each other. Here we decide
that the class’s stereotype and their distribution in the
packages are similar. These classes have some design intent,
which shows the main function as well as purpose of this
package. And in this part, the description is displayed and
represented in a table.

Package diagrams have the structure of nested packages.
While using package names cannot be the same for a
system. Packages can be represented as shown in Figure
10 and Figure 11.

Fig -10: Structure of a Package

Fig -11: Generalized form of a Package Diagram

Complex systems are usually structured using package
diagrams. There two subtypes of dependencies involved
in a package diagram that is <<import>> and <<access>>.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 08 | Aug 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1581

a. Import Command
By using this command one package can import the
functionalities of another package. The imported element
gets added to the namespace. Import is a public command.
Figure 12 is a diagram of import command.

Fig -12: Import Command

b. Access Command
Access command is used when one package needs
functionalities of the other package. Access is basically a private
form of import. This is explained below in figure 13

Fig -13: Access Command

3.5 Deployment Diagram
Deployment diagram is another type of structural UML
diagram representing the hardware based upon which the
software is going to run for performing some functionality.
Deployment diagrams are made of different UML shapes. The
3D boxes (nodes) represent the basic hardware or software
components. Lines represent the relationship between nodes
and the small shapes in the boxes represent deployed
artifacts.

Deployment diagrams have a wide range of applications. We
can use it to check which hardware component has deployed
which software component. Also, we can illustrate runtime
processing for the hardware using deployment diagrams. We
can also provide hardware system’s topology view by using
deployment diagrams. Artifact is an information generated
by the software.

Deployment diagram shows the interaction between
software and hardware to complete the functionality. Let us
see an example of a deployment diagram of a web
application as shown in Figure 14.

Fig -14: Deployment Diagram Example

Artifact is basically the information generated by the
software. An artifact is a very important element in creating
a deployment diagram. An artifact is shown in Figure 15.

Fig -15: Artifacts

Node is a resource or a medium on which an artifact is
developed for execution. The size of a node in the deployment
diagram varies as the size of project. The connection of two
nodes represents the exchange of information between two
nodes in any direction. A node is shown in Figure 16.

Fig -16: Node

4. RESULTS

The Results in this paper is an analysis of the survey taken by
“Mr.Yashwant Waykar”, included in his paper [12]. Different
people working in software development projects took part
in this survey where the participants rated the class diagram,
component diagram and deployment diagram by selecting
one out of four following options. Each option were assigned
points as shown below. Choices given were:
1. Mandatory (most important) - 4 points
2. Important - 3 points
3. Less Important - 2 points
4. Optional - 1 point

Suppose if 10 participants selected option 1, i.e. Mandatory
for class diagram then 10 times 4 is equal to 40 (10*4=40)
points will be considered. Thus, diagram which receives the
maximum points will be considered the most important
diagram.
The results found are as follows:

4.1 Class Diagram
Table -2: Class Diagram Statistics from Survey

Options No. Of

Respond

- ents

No. Of

Respond-

ents (%)

Points

Mandatory 18 69% 18 x 4 = 72

Important 4 15% 4 x 3 = 12

Less Imp 4 15% 4 x 2 = 8

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 08 | Aug 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1582

Optional 0 0% 0

 Total Points = 92

Thus, from the results, 69% people found Class
diagram important and nobody found it least
important.

Chart -1: Importance of Class Diagram

4.2 Component Diagram
Table -3: Component Diagram Statistics from Survey

Options No. Of

Respond

- ents

No. Of

Respond-

ents (%)

Points

Mandatory 6 23% 6 x 4 = 24

Important 10 38% 10 x 3 = 30

Less Imp 8 31% 8 x 2 = 16

Optional 2 8% 2 x 1 = 2

 Total Points = 72

Thus, from the results, 23% people found Component
diagram important and 8% people found it least
important.

Chart -2: Importance of Component Diagram

4.3 Deployment Diagram
Table -4: Deployment Diagram Statistics from Survey

Options No. Of

Respond

- ents

No. Of

Respond-

ents (%)

Points

Mandatory 8 31% 8 x 4 = 32

Important 6 23% 6 x 3 = 18

Less Imp 8 31% 8 x 2 = 16

Optional 4 15% 4 x 1 = 4

 Total Points = 70

Thus, from the results, 31% people found Deployment

diagram important and 15% people found it least important.

Chart -3: Importance of Deployment Diagram

Thus, from the above tables and charts it is inferred that
Class diagram is the most used Diagram having 92 points.

5. CONCLUSIONS

In this paper we have introduced five of the most used and
important Structural UML diagrams. From the results
presented above, Class diagram as mentioned earlier is a
static diagram and it is used to model the unchanging view of
a system and is the most used or the most important
Structural UML diagram. It is also considered as the
foundation for Component and Deployment diagrams.
Modeling the deployment aspects of software applications
can reduce the complexities of software development, thus
deployment diagrams are used. Component diagrams
explain the components necessary to execute software
functionalities. As explained earlier, an object diagram shows
an instance of the system at a particular moment in time,
thus it is solid in nature. Package diagrams are used to group
classes into packages and also to detangle complex class
diagrams. Throughout the software development process,
the UML model developing is an essential element and
demands that the diagrams are correct and consistent to
each other, to ensure a smooth software development
process.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 08 | Aug 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1583

REFERENCES

[1] L.P. Fanjoy, A.L.MacNeill, and L.A. Best: “The Use of

Diagrams in Science” in Conference: Proceedings of the
7th international conference on Diagrammatic
Representation and Inference, July 2012.

[2] Mohammad N, Alanzi: “Basic Rules to Build Correct UML
Diagrams”, in International Conference on New Trends
in Information and Service Science, 2009

[3] Er.D.Singh and Dr.J.S.Sidhu: “A SCRUTINY STUDY OF
VARIOUS UNIFIED MODELING LANGUAGE (UML)
DIAGRAMS, SOFTWARE METRICS TOOL AND PROGRAM
SLICING TECHNIQUE”, in JETIR June 2018, Volume 5,
Issue 6

[4] D. Bell, IT Architect, IBM Corporation: “UML basics: The
class diagram”, 15 September 2004.

[5] Sadia Sadaf, Ali Athar and Farooque Azam “Evaluation of
FED-CASE - A Tool to Convert Class Diagram into
Structural Coding” In Islamabad Pakistan.

[6] Oskana Nikiforova and Janice Sejans “Role of UML Class
Diagram in Object-Oriented Software Development”,
January 2011.

[7] Salma, Medium, “UML Class Diagrams Tutorial, Step by
Step”, September 2017. [Accessed 15th July,2021].

[8] S.M. Handigund, S. Sajjanar; Arunakumari B. N,
“Resuscitation of syllogism within unified modeling
language levels through the renovation of object
diagram”,In Proc. International Conference on Advances
in Computing, Communications and Informatics
(ICACCI), 2015.

[9] D.S.Rosenblum and C.Ler, “UML Component Diagrams
and Software Architecture - Experiences from the Wren
Project”,Workshop at the 23rd International Conference
on Software Engineering, Toronto, Canada, 2001

[10] S.Lujan-Mora and J.Tujillo, “Physical Modeling of Data
Warehouses Using UML Component and Deployment
Diagrams: Design and Implementation Issues”, In
Proc.IEEE conference, 2005.

[11] Li Jiang, Xiaobing Sun, Yun L and, Xiangyue Liu
“Automatic Generation of Package Diagram to
Understand Java Packages” June4-6 2014.

[12] Mr.Yashwant Waykar, “A Study of Importance of UML
diagrams: With Special Reference to Very Large-sized
Projects”, in International Conference on Reinventing
Thinking beyond boundaries to ExcelAt: FARIDABAD,
INDIA, March 2013.

BIOGRAPHIES

Bhavik Bhatt

Muskaan Nandu

