COMPARATIVE STUDY ON THE DESIGN OF ELEVATED CIRCULAR CONCRETE WATER TANK

Anjana M V ${ }^{\mathbf{1}}$, Lakshmi Baliga ${ }^{\mathbf{2}}$
${ }^{1}$ PG Student, Department of Civil Engineering, Shree Devi Institute Of Technology, Mangaluru, Karnataka ,India. ${ }^{2}$ Assistant Professor, Department of Civil Engineering, Shree Devi Institute Of Technology, Mangaluru, Karnataka, India.

Abstract

Water is an important things for all living beings to live. In the area of scarcity of water it is very important to supply water. Water supply to that places are done by water stored in tank. This type of water tank are build publicly. Water stored in the tank are supplied through pipelines to the people. This tanks are of different shape like circular, rectangular etc.. It can be constructed at different height.In this project, elevated circular water tank are designed manually using limit state design method using codes(IS 3370-2009 (part I-IV) ,IS 456-2000) and software design also done using ETABS. Finally compare both the results obtained from manually and software. At the end of the project it is noted that there is some reduction in the steel from the design of etabs compare to manual design.

Key Words: Elevated circular water tank, limit state method, ETABS.

1.INTRODUCTION

A water tank is a structure which is used to store water Nowadays, the need of water tank are increasing. The water form the tank can be used for many purpose like house work, irrigation, fire safety etc.. The shape and size of a water tank are decided as per the capacities of tank. The cost and materials used for the water tank are decided according to the construction. Mostly, circular shape are more preferred for the water tank due to the uniform stress distribution. Design code used for the water tank design is IS 3370(Part IIV).

Circular water tank are good for store large quantities of water and are economical. For elevated storage structure generally circular water tank are commonly employed. Generally, circular water tank with flat base are preferred which are more economical. The tank are generally supported on a ring beam and are supported on a number of columns. Normally, the diameter of ring beam is kept $\frac{3}{4}$ th of diameter of water tank. The main forces acting on this water tank are uniformly distributed load which consist of self weight of slab and weight of water, upward ring beam load also is there. Circular water tank require less steel and concrete compare to rectangular water tank.

- Top Dome
- Top Ring Beam
- Cylindrical Wall
- Base Slab
- Bottom Ring Beam

1.1 OBJECTIVES

The objectives of this study are listed below:

1. To compare the design of elevated circular water tank done by Manually and ETABS software in reference to IS 3370 Part I-IV, IS 456-2000.
2. To study how much amount of steel required for the water tank.
3. To study the comparison between manual design and software design.
4. To study the design steps of different element of elevated circular water tank using limit state design method using IS codes (IS 3370 Part I-IV, IS 4562000).

2. MATERIALS AND METHODOLOGY

2.1 MATERIALS PROPERTIES

The grade of concrete is M30 and grade of steel is HYSD 415 for water tank construction.

2.2 METHODOLOGY

In this project work elevated circular water tank is considered.
Initially manual design are done using limit state design method as per code IS 3370:2009 (part I-IV) and IS 456:2000, from the manual design the dimensions and area of steel are obtained. The water tank model were done in ETABS software based on the dimensions from manual design. Analysis was carried out for various components of water tank using ETABS software. The analysis were done by applying all the loads acting on the water tank. After the analysis software design and detailing were done. Finally compare both the design results which are obtained from software and manually.

3. DESIGN OF CIRCULAR WATER TANK

The code used for the design are IS 1172(1993),IS:33702009(part II-IV) and IS 456-2000.
In this study, for the design of water tank 4.5 lakh liter capacity is assumed.

3.1 Material

M30 - Grade of Concrete
Fe 415 - Grade of HYSD Reinforcement

3.2 PRELIMINARY DIMENSIONS

Storage volume for 450000 liters $=450 \mathrm{~m}^{3}$
Volume of water tank, $V=\pi \times r^{2} \times h$
Assume height, $\mathrm{h}=4 \mathrm{~m}$
$450=\pi \mathrm{xr}^{2} \mathrm{x} 4$
$\mathrm{r}=6 \mathrm{~m}$
$\mathrm{D}=12 \mathrm{~m}$
By putting the value of h and r
Volume $=\pi \times 6^{2} \times h$

$$
\begin{aligned}
& =\pi \times 6^{2} \times 4 \\
& =450 \mathrm{~m}^{2}
\end{aligned}
$$

Free board $=0.3 \mathrm{~m}$
Height of Staging from Ground $=10 \mathrm{~m}$

3.3 PERMISSIBLE STRESSES

As per IS:3370 (part II) Table 1, Table 2 and Table 4 $\sigma \mathrm{cbc}=10 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma \mathrm{cc}=8 \mathrm{~N} / \mathrm{mm}^{2}$
σ st $=130 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma \mathrm{ct}=1.5 \mathrm{~N} / \mathrm{mm}$

3.4 DESIGN CONSTANTS

$\mathrm{m}=\frac{280}{3 \text { x } \sigma \mathrm{cbc}}=9.33$
$\mathrm{K}=\frac{1}{1+\frac{\sigma \mathrm{st}}{\mathrm{mx} \sigma \mathrm{cbc}}}=0.42$
$j=1-\left(\frac{K}{3}\right)=0.86$
$\mathrm{R}=\frac{1}{2} \mathrm{x}$ Kx $\sigma \operatorname{cbc} \mathrm{xj}=1.81$
3.5 DESIGN OF TOP DOME
(i) Meridional Force(T1)
(ii) Hoop Tension(T2)

Thickness of Dome (assuming) $=100 \mathrm{~mm}$
Central rise of dome $(\mathrm{h} 1)=\left(\frac{1}{5} \mathrm{x}\right.$ diameter $)=2.4 \mathrm{~m}$
Radius of curvature (R)

$$
\begin{aligned}
\mathrm{R}^{2} & =(2 \mathrm{r}-\text { rise }) \text { rise } \\
\mathrm{r} & =8.7 \mathrm{~m}
\end{aligned}
$$

Semi Central Angle $(\theta)=\sin ^{-}\left(\frac{\text { Radius of water tank }}{r^{r}}\right)$
$=43.60^{\circ}$

$\operatorname{Cos} \theta=0.724$

Calculation For Loads (for 1 m length of dome)

Length $=1 \mathrm{~m}$
Dead load = Width x Thickness \times Density

$$
=2.5 \mathrm{KN} / \mathrm{m}^{2}
$$

Live load $=$ Width \times Live load (assuming live load $=1.5$ $\mathrm{KN} / \mathrm{m}^{2}$)

$$
=1.5 \mathrm{KN} / \mathrm{m}^{2}
$$

Total load $(\mathrm{W})=4 \mathrm{KN} / \mathrm{m}^{2}$
Ultimate load $=1.5 \times 4=6 \mathrm{KN} / \mathrm{m} 2$

Stresses in Dome

$\mathrm{T} 1=(\mathrm{W} \times \mathrm{R}) /(1+\cos \theta)=30.27 \mathrm{KN} / \mathrm{m}$
Meridonial Stress $=\mathrm{T} 1 /(\mathrm{bxt})=0.302 \mathrm{~N} / \mathrm{mm}^{2}$
$0.302 \mathrm{~N} / \mathrm{mm}^{2}<\sigma \mathrm{cc}=8 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{T} 2=\mathrm{WxR}[\cos \theta-1 /(1+\cos \theta)]=8 \mathrm{KN} / \mathrm{m}$
Hoop Stress $=$ T2 $/(b \times t)=0.08 \mathrm{~N} / \mathrm{mm}^{2}$
$0.08 \mathrm{~N} / \mathrm{mm}^{2}<\sigma c c=8 \mathrm{~N} / \mathrm{mm}^{2}$
Stresses is within safe limits. As per IS:3370 (part 2) Table 2

Reinforcement in Dome

The stresses are within safe limit. However provide minimum reinforcement of 0.24% area in each direction
Ast $=0.24 \% \times \mathrm{bxt}=240 \mathrm{~mm}^{2}$
Using $8 \mathrm{~mm} ø$ bar, $\mathrm{A} \varnothing=50 \mathrm{~mm}^{2}$
Spacing $=1000 \times$ Aø/Ast $=208 \mathrm{~mm}$
Hence provide $8 \mathrm{~mm} ø$ bars @ $200 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ in both directions.

3.6 DESIGN OF TOP RING BEAM

It is designed for hoop tension
$\mathrm{W}=\mathrm{T} 1 \cos \theta=22 \mathrm{KN} / \mathrm{m}$
Total hoop tension in beam $=\mathrm{W} x \frac{D}{2}=132 \mathrm{KN}$

Area of Reinforcement

Ast $=\frac{\text { Hoop Tension }}{\sigma \text { st }}=1015 \mathrm{~mm}^{2}$
Provide 12 mm ø @ 110 mm
To find out Dimensions of Ring Beam
$\sigma c t=\frac{T}{A g+(m-1) A s t}$
$\mathrm{Ag}=\mathrm{b} \times \mathrm{D}$
Assume $b=250 \mathrm{~mm}$
$1.5=\frac{132 \times 10^{3}}{250 \times D+(9.33-1) \times 1028}$
$\frac{132 \times 10^{3}}{250 \times D+8563}<1.5$
$132 \times 10^{3}<375 \mathrm{D}+12844$
$318<\mathrm{D}$
Consider D $=400 \mathrm{~mm}$
Size of beam $=250 \mathrm{~mm} \times 400 \mathrm{~mm}$
Provide min. shear reinforcement
$8 \mathrm{~mm} \emptyset-2$ legged vertical stirrups
From IS:456-2000, Page No - 48
$\mathrm{Sv}=\frac{0.87 x \mathrm{fy} x \mathrm{Asv}}{0.4 x b}=362.96 \mathrm{~mm}$

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
Volume: 08 Issue: 09 | Sep 2021
www.irjet.net

Spacing limit
(i) $0.75 \times \mathrm{D}=0.75 \times 400=300 \mathrm{~mm}$
(ii) 300 mm

Adopt a ring beam of size $250 \mathrm{~mm} \times 400 \mathrm{~mm}$ with 12 mm diameter as hoop reinforcement and $8 \mathrm{~mm} ø-2$ legged vertical stirrups @300 mm c/c.

3.7 DESIGN OF TANK WALL

Thickness of wall
$\mathrm{T}=150 \mathrm{~mm}$
$\mathrm{T}=(30 \mathrm{H}+50)=170 \mathrm{~mm}$
Take the value of T. i.e, $T=170 \mathrm{~mm}$

Design of Tank Wall for Hoop Tension

$\frac{\mathrm{H}^{2}}{\mathrm{DT}}=8$
As Per IS:3370 (part IV), Page No. 35, Table 9
Coefficient $=0.575$
Hoop Tension = Coeff. x W $\mathrm{xH} \times \mathrm{R}$

$$
=0.575 \times 10 \times 4 \times 6=138 \mathrm{KN}
$$

i.e, Maximum Hoop Tension occurs at $0.6 \mathrm{H}=0.6 \times 4=2.4 \mathrm{~m}$ from the top

Area of Steel for Tank Walls

Ast(req) $=\frac{\text { Max.Hoop Tension }}{\text { Permissible Tensile Stress }}=1061 \mathrm{~mm}^{2}$
Minimum Steel, As Per IS:3370, Part II, Page No. 5
Ast $(\min)=0.24 \% \mathrm{x}$ gross area $=408 \mathrm{~mm}^{2}$
Provide 12 mm diameter bar
Spacing $=\frac{1000 \times \text { Asv }}{\text { Ast }}=\frac{1000 \times 113}{1061}=107 \mathrm{~mm}$
Provide 12 mm ø bar @ 100 mm c/c (As per IS:3370, Part II, Page No. 5)

Check for Tensile Stress in Concrete

$\operatorname{Ast}($ provided $)=2 \times \frac{1000 \times 113}{100}=2260 \mathrm{~mm}^{2}$
$\sigma c t=\frac{\mathrm{T}}{\mathrm{bxt}+(\mathrm{m}-1) \text { Ast }}=0.73 \mathrm{~N} / \mathrm{mm}^{2}$
Permissible tensile stress $=1.3 \mathrm{~N} / \mathrm{mm}^{2}$ (As per IS:3370, Part 2, Table 1)
i.e, Actual tensile stress < Permissible stress

Design is safe

Design of Tank Wall for Bending Moment

As Per IS:3370, Part 4, Table 10
Coefficient $=-0.0146$
Bending Moment $=$ Coeff. x W x H

$$
=0.0146 \times 10 \times 4^{3}=9.34 \mathrm{kNm}
$$

Maximum Bending Moment $=9.34 \mathrm{kNm}$
Check for effective depth d
d (required) $=\sqrt{\frac{\mathrm{Mmax}}{\mathrm{Rxb}}}=\sqrt{\frac{9.34 \times 10^{6}}{1.81 \times 1000}}=72 \mathrm{~mm}$
$\mathrm{d}($ provided $)=170-25-12 / 2=139 \mathrm{~mm}>\mathrm{d}($ required $)$

Hence, it is safe

Area of steel for Bending Moment

Ast(required) $=\frac{\text { Max.B.M. }}{\sigma \text { st } \times j \times d \text { (provided) }}=601 \mathrm{~mm}^{2}$
Provide $12 \mathrm{~mm} ø$ bars
Spacing $=\frac{1000 \times \text { Asv }}{\text { Ast }}=\frac{1000 \times 113}{601}=188 \mathrm{~mm}$
Provide 12 mm ø bar @ 170 mm c/c

3.8 DESIGN OF BASE SLAB

Assuming thickness of base slab as 350 mm .
Outer diameter $=12+0.34=12.34 \mathrm{~m}$
Load from Dome $=\mathrm{T} 1 \sin \theta \times 2 \pi \times \frac{D}{2}=787 \mathrm{KN}$
Load from Ring Beam $=(.25 \mathrm{X} .40) \times \pi \times 12 \times 25=94 \mathrm{KN}$
Load of wall $=0.170 \times(4-0.3) \times \pi \times 12.17 \times 25=601.22 \mathrm{KN}$
Total circumferential load on the periphery of slab $=1482$
KN
Ultimate load on periphery of slab $=1482 \times 1.5=2223 \mathrm{KN}$
Weight of water $=\left(\frac{\pi}{4} x D^{2} x H\right)=4523.90 \mathrm{KN}$
Self weight of slab $=0.35 \times 25=8.75 \mathrm{KN} / \mathrm{m}^{2}$
Total weight of slab $=\left(\frac{\pi}{4} x D^{2}\right) x s w=989.60 \mathrm{KN}$
Finishing load $=\left(\frac{\pi}{4} \times 12^{2}\right) \times 0.6=67.86 \mathrm{KN}$
Total load on slab $=5581.36 \mathrm{KN}$
Ultimate load on slab $=5581.36 \times 1.5=8372 \mathrm{KN}$
Total upward force on Ring Beam $=2223+8372=10595$ KN
For the design of slab two cases are considered.
(i) Circular slab simply supported and subjected to water pressure plus self weight of slab.
(ii) Circular slab simply supported and subjected to upward ring load.

Calculation of B.M. and S.F.

The radial and circumferential bending moments are calculated with the help of formulae given below.
(i) B.M. due to U.D.L.

$$
\mathrm{p}=8372 \mathrm{KN}
$$

Now, to convert p to U.D.L.
$\frac{8372}{\left(\frac{\pi}{4} \times 12^{2}\right)}=74 \mathrm{KN} / \mathrm{m}^{2}$
$\mathrm{a}=$ radius of slab $=\frac{12}{2}=6 \mathrm{~m}$
Normally, the diameter of supporting circle is kept $3 / 4$ times the diameter of the tank.

$$
\text { Diameter of beam }=9 \mathrm{~m}
$$

Radius of beam, $\mathrm{b}=4.5 \mathrm{~m}$
(Mr)c $=+\frac{3}{16} \mathrm{pa}^{2} ;(\mathrm{Mr}) \mathrm{e}=0$
$\mathrm{Mr}=\frac{3}{16} \mathrm{p}\left(\mathrm{a}^{2}-\mathrm{r}^{2}\right)$
$=\frac{3}{16} \times 74\left(6^{2}-r^{2}\right)$

$$
\begin{aligned}
& (\mathrm{M} \theta) \mathrm{c}=+\frac{3}{16} \mathrm{pa}^{2} ;(\mathrm{M} \theta) \mathrm{e}=+\frac{2}{16} \mathrm{pa}^{2} \\
& \mathrm{M} \theta=+\frac{p}{16}\left(3 \mathrm{a}^{2}-\mathrm{r}^{2}\right) \\
& \quad=\frac{74}{16} \times\left(3(6)^{2}-\mathrm{r}^{2}\right)
\end{aligned}
$$

The values of $\mathrm{M} \theta$ and Mr at various locations are tabulated below

$\mathbf{r} \mathbf{(m)}$	$\mathbf{0}$	$\mathbf{2 . 2 5}$	$\mathbf{4 . 5}$	$\mathbf{6}$
$\mathbf{M r} \mathbf{(~ K N m)}$	499.5	429.26	218.53	0
$\mathbf{M} \boldsymbol{\theta}(\mathbf{K N m})$	499.5	476.19	405.84	333

(ii) B.M. due to upward load $\mathrm{W}=10595 \mathrm{KN}$

For $r \leq b$
$\mathrm{Mr}=(\mathrm{Mr}) \mathrm{b}=\mathrm{M} \theta=(\mathrm{M} \theta) 0=-\frac{w}{8 \pi}\left[2 \log \left(\frac{a}{b}\right)+1-\left(\frac{b}{a}\right)^{2}\right]$
For $\mathrm{r}>\mathrm{b}$
$\mathrm{Mr}=-\frac{w}{8 \pi}\left[2 \log \left(\frac{a}{r}\right)-\left(\frac{b}{a}\right)^{2}+\left(\frac{b}{r}\right)^{2}\right]$
$\mathrm{M} \theta=-\frac{w}{8 \pi}\left[2 \log \left(\frac{a}{r}\right)-\left(\frac{b}{r}\right)^{2}+2-\left(\frac{b}{a}\right)^{2}\right]$
The values of $\mathrm{M} \theta$ and Mr at various locations are tabulated below

r (m)	$\mathbf{0}$	$\mathbf{2 . 2 5}$	$\mathbf{4 . 5}$	$\mathbf{6}$
$\mathbf{M r}$ (KNm)	-289.77	-289.77	-289.77	0
M日 (KNm)	-289.77	-289.77	-289.77	-369

(iii) Net Moments:

The net moments will be the algebraic sum of the two, and are tabulated below

$\mathbf{r}(\mathbf{m})$	$\mathbf{0}$	$\mathbf{2 . 2 5}$	$\mathbf{4 . 5}$	$\mathbf{6}$
$\mathbf{M r}(\mathbf{K N m})$	209.73	139.5	-71.24	0
M日 (KNm)	209.73	186.42	116.07	-36

The maximum shear force
$\mathrm{F}=\frac{p b}{2}-\frac{W}{2 \pi b}=\frac{74 \times 4.5}{2}-\frac{10595}{2 x \pi x 4.5}=-208.22 \mathrm{KN}$

3.9 DESIGN OF SLAB

The slab is to be designed for a maximum B.M. of 209.73 KNm.
From B.M. point of view, $d=\frac{\sqrt{M u, \max }}{\mathrm{Rxb}}=340 \mathrm{~mm}$
Let us keep total thickness $=380 \mathrm{~mm}$
Using $20 \mathrm{~mm} ø$ bars,
Provide d $=380-25+10=365 \mathrm{~mm}$
Effective depth d=365 mm
Area of steel $=\frac{0.5 \mathrm{fck}}{f y}\left[1-\sqrt{1-\frac{4.6 M u, \max }{f c k b d^{2}}}\right]$ bd
$=1702.06 \mathrm{~mm}^{2}$
Using 20 mm diameter bars, $A \emptyset=314 \mathrm{~mm}^{2}$
Spacing $=\frac{1000 \times 314}{1702.6}=184 \mathrm{~mm}$
Provide 20 mm ø @ 180 mm c/c

At Ring Beam (Mr)

Area of steel $=\frac{0.5 f c k}{f y}\left[1-\sqrt{1-\frac{4.6 M u, \max }{f c k b d^{2}}}\right]$ bd
$=552 \mathrm{~mm}^{2}$
Using 12 mm diameter bars, $\mathrm{A} \varnothing=113 \mathrm{~mm}^{2}$
Spacing $=\frac{1000 \approx 113}{552.42}=204 \mathrm{~mm}$
Provide 12 mm ø @ 200 mm c/c

At Ring Beam (M $\mathbf{(1)}$

Area of steel $=\frac{0.5 f c k}{f y}\left[1-\sqrt{1-\frac{4.6 M u, \max }{f c k b d^{2}}}\right]$ bd
$=913 \mathrm{~mm}^{2}$
Using 16 mm diameter bars, $\mathrm{A} \varnothing=201 \mathrm{~mm}^{2}$
Spacing $=\frac{1000 \times 201}{912.78}=220 \mathrm{~mm}$
Provide 16 mm ø @ 210 mm c/c
Provide min. steel at other remaining surface
Ast $(\min)=\frac{0.24}{100} \times 1000 \times 380=912 \mathrm{~mm}^{2}$
Spacing $=\frac{1000 \times 113}{912}=123 \mathrm{~mm}$
Povide 12 mm ø @ $115 \mathrm{c} / \mathrm{c}$

3.10 DESIGN OF BOTTOM CIRCULAR BEAM

The tank is supported on a circular beam which in turn is supported on eight equally spaced columns. The diameter of supporting circle, upto the centre of the beam $=9 \mathrm{~m}$. The total load W on the beam = 10595 KN .
For the design of Bottom Ring Beam
Super - imposed load on beam $=\frac{10595}{\pi x 9}=374.72 \mathrm{KN} / \mathrm{m}$
Assuming the beam to have a section of $1000 \mathrm{~mm} \times 500 \mathrm{~mm}$,
Self Weight of Beam $=0.1 \times 0.5 \times 25=12.5 \mathrm{KN} / \mathrm{m}$
Total Weight, $\mathrm{W}=374.72+12.5=387.5 \mathrm{KN} / \mathrm{m}$
For θ,
$2 \theta=\left(360^{\circ}\right) / n$
$\mathrm{n}=8$
$2 \theta=45^{\circ}=\pi / 4$
$\theta=22.5^{\circ}=\frac{\pi}{8}$
$\mathrm{C} 1=0.066, \mathrm{C} 2=0.030, \mathrm{C} 3=0.005, \emptyset \mathrm{~m}=9 \frac{1{ }^{\mathrm{a}}}{2}$
Radius of beam $=\frac{9}{2}=4.5 \mathrm{~m}$
$W R^{2} .2 \theta=387.5 \times 4.5^{2} \times(\pi / 4)=6163 \mathrm{KNm}$

Max. Negative Bending Moment at Support,
$\mathrm{M}_{\mathrm{n}}=\mathrm{C} 1 \times \mathrm{WR}^{2}(2 \theta)=406.75 \mathrm{KNm}$
Max. Positive Bending Moment at mid-span,
$\mathrm{M}_{\mathrm{p}}=\mathrm{C} 2 \times \mathrm{WR}^{2}(2 \theta)=184.89 \mathrm{KNm}$
Max. Torsional Moment at an angle of 9.5° from support,
$\mathrm{T}=\mathrm{C} 3 \times \mathrm{WR}^{2}(2 \theta)=30.81 \mathrm{KNm}$
Max. Shear force at support, $\mathrm{V}=\frac{w x R x 2 \theta}{2}=684.76 \mathrm{KN}$
Shear force at section of maximum torsional moment ($\varnothing \mathrm{m}=$ $9.5^{\circ}=0.1658$ radians) is given by :
$\mathrm{V}_{\mathrm{T}}=\mathrm{wR}(\theta-ø \mathrm{~m})=387.5 \times 4.5\left(\frac{\pi}{8}-0.1658\right)=395.65 \mathrm{KN}$

Design of support section

Mmax $=406.75 \mathrm{KN}, \mathrm{D}=1000 \mathrm{~mm}, \mathrm{~V}=684.76 \mathrm{KN}$
Using $20 \mathrm{~mm} ø$ bars and a clear cover 35 mm ,
$\mathrm{d}=1000-10-35=955 \mathrm{~mm}$
Min. depth required:
Mu,lim $=0.36 x \frac{X u, \max }{d}\left(1-0.42 \frac{X u, \max }{d}\right) \operatorname{bd}^{2} \mathrm{fck}$
$\mathrm{d}=443 \mathrm{~mm}$
Hence, provide $d_{\text {eff }}=955 \mathrm{~mm}$
Area of Steel required
$\mathrm{M}_{\mathrm{u}}=0.87$ fy Ast d ($1-\frac{\text { Ast fy }}{b d \text { fck }}$)
Ast $=1223 \mathrm{~mm}^{2}$
Ast $_{\text {min }}=\frac{0.85 \times b d}{f y}$
Ast $_{\text {min }}=978 \mathrm{~mm}^{2}$
No. of bars $=\frac{A s t}{A d}=\frac{1223}{\frac{\pi}{4} x(20)^{2}}=4$ Nos.
Provide 4 bars of $20 \mathrm{~mm} ø$ reinforcement
Ast $_{\text {provided }}=1256 \mathrm{~mm}^{2}$
Nominal shear strength (τv)
$\tau v=\frac{V u}{b d}$
$\tau \mathrm{V}=1.4 \mathrm{~N} / \mathrm{mm}^{2}$
Compressive shear strength (τc)
Percentage of reinforcement $(\mathrm{p} \%)=100 \frac{\text { Ast }}{b d}=0.26$
Thus, from table 19 IS 456:2000
$\tau c=0.3752 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau c<\tau v$
Thus, shear reinforcement is required
Vus $=\mathrm{Vu}-\tau \mathrm{c}$ bd
Vus $=684.76-0.3752 \times 500 \times 955$
Vus $=505.76 \mathrm{KN}$
Vus $=\frac{0.87 x \text { fy Asv d }}{S v}$
Using $10 \mathrm{~mm} ø$ stirrups (2 - legged)
Asv $=2 \times \frac{\pi}{4} \times(10)^{2}=157 \mathrm{~mm}^{2}$
$\mathrm{Sv}=\frac{0.87 \times 415 \times 157 \times 955}{505.76 \times 10^{3}}=107.03 \mathrm{~mm} \approx 107 \mathrm{~mm}$
Provide $10 \mathrm{~mm} ø 2$ - legged stirrups @ 105 mm c/c

Design of Mid- Span Section

$\mathrm{M}=184.89 \mathrm{KNm}$
$\mathrm{M}_{\mathrm{u}}=0.87$ fy Ast d $\left(1-\frac{\text { Ast } f y}{b d f c k}\right)$
Ast $=544 \mathrm{~mm}^{2}$
But min area of steel is $978 \mathrm{~mm}^{2}$
Hence, adopt Ast $=978 \mathrm{~mm}^{2}$
Using $16 \mathrm{~mm} \emptyset$ bars ($\mathrm{A} \emptyset=201 \mathrm{~mm}^{2}$)
No. of bars $=\frac{978}{201}=5$ Nos.
Provide 6 bars of $16 \mathrm{~mm} ø$ reinforcement

Design of section subjected to Max. Torsional and Shear

Equivalent Bending Moment
$\mathrm{Mel}=\mathrm{Mu}+\mathrm{Mt}$
$\mathrm{Mu}=0$
$\mathrm{Mt}=\mathrm{Tu} \frac{\left(1+\frac{D}{b}\right)}{1.7}$
$\mathrm{Mt}=30.81 \times \frac{\left(1+\frac{1000}{500}\right)}{1.7}$
$\mathrm{Mt}=54.37 \mathrm{KNm}$
$\mathrm{Mel}=54.37 \mathrm{KNm}$
Area of Reinforcement
$\mathrm{M}_{\mathrm{u}}=0.87$ fy Ast d ($1-\frac{\text { Ast } f y}{b d f f c k}$)
Ast $=158 \mathrm{~mm}^{2}$
But Ast ${ }_{\text {min }}=978 \mathrm{~mm}^{2}$
Hence, adopt Ast $=978 \mathrm{~mm}^{2}$
Using $20 \mathrm{~mm} \emptyset$ bars ($\mathrm{A} \varnothing=314 \mathrm{~mm}^{2}$)
No. of bars $=\frac{978}{314}=3$ Nos.
Provide 3 bars of $20 \mathrm{~mm} ø$ reinforcement

Transverse reinforcement

Shear reinforcement
Equivalent Shear
$\mathrm{Ve}=\mathrm{Vu}+1.6 \frac{T u}{b}$
$\mathrm{Ve}=395+1.6 \times \frac{30.81}{0.5}$
$\mathrm{Ve}=493.6 \mathrm{KN}$
$\tau \mathrm{v}=\frac{\mathrm{Vu}}{b d}$
$\tau \mathrm{v}=1 \mathrm{~N} / \mathrm{mm}^{2}$
Percentage of reinforcement $=100 \frac{\mathrm{Ast}}{b d}=0.205$
Thus, from table 19 IS 456:2000
$\tau \mathrm{c}=0.334 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau v>\tau c$
Shear reinforcement is required
Using $10 \mathrm{~mm} ø 2$ - legged stirrups (Ast $=157 \mathrm{~mm}^{2}$)
$\mathrm{b}_{1}=500-35-35=430 \mathrm{~mm}$
$\mathrm{d}_{1}=1000-35-35=930 \mathrm{~mm}$
Asv $=\frac{T u S v}{b_{1} d_{1}(0.87 f y)}+\frac{V u S v}{2.5 d_{1}(0.87 f y)}$
$157=\left[\frac{30.81 \times 10^{6}}{430 \times 930 \times(0.87 \times 415)}+\frac{395 \times 10^{3}}{2.5 \times 930 \times(0.87 \times 415)}\right] \mathrm{S}_{\mathrm{V}}$
$\mathrm{Sv}=229 \mathrm{~mm}$
Check for spacing
(i) $\mathrm{x}_{1}=430 \mathrm{~mm}$
(ii) $\frac{x 1+y^{1}}{4}=\frac{430+930}{4}=340 \mathrm{~mm}$
(iii) 300 mm

Provide $10 \mathrm{~mm} ø 2$ - legged stirrups @ 220 mm c/c
Side face reinforcement (As per IS 456-2000)
As $=\frac{0.10}{100} \times 500 \times 955=477 \mathrm{~mm}^{2}$
$12 \mathrm{~mm} \varnothing$ bars having , $\mathrm{A} \varnothing=113 \mathrm{~mm}^{2}$.
No. of bars $=\frac{477}{113}=4.2$
Provide 3-12 ø bars on each vertical face

3.11 MANUAL DESIGN RESULT DETAILS

Table - 1: Manual Design Result

SL. NO.	COMPONENTS OF WATER TANK	MANUAL DESIGN
		Ast in mm² (Required)
1	Top Dome	$240 \mathrm{~mm}^{2}$
2	Top Ring Beam	$1015 \mathrm{~mm}^{2}$
3	Tank Wall	
a	Hoop Reinforcement	$1061 \mathrm{~mm}^{2}$
b	Bending Reinforcement	$601 \mathrm{~mm}^{2}$
4	Base Slab	
a	Reinforcement For Max. Bending Moment	$1702 \mathrm{~mm}^{2}$
b	Reinforcement Of Radial Moment At Ring Beam	$552 \mathrm{~mm}^{2}$
c	Reinforcement Of Circumferential Moment At Ring Beam	$913 \mathrm{~mm}^{2}$
5	Bottom Ring Beam	
a	Support Section	$1223 \mathrm{~mm}^{2}$
b	Mid-Span Section	$978 \mathrm{~mm}^{2}$
c	Maximum Torsion	$978 \mathrm{~mm}^{2}$
d	Transverse Reinforcement	$685 \mathrm{~mm}^{2}$

4. MODEL DETAILS

For the design of water tank we have to create a model first. The modeling was done in ETABS software. Once the modeling was completed with desired material and section properties the model were subjected to analysis based on
the load acting on the tank and after that design were done. The project work is focused on the Comparative Study of circular overhead water tanks by manually and software. In both cases the dimensions of tank are same. The location considered for this project is Kannur, Kerala.

Table - 2: Water Tank Model Details

Sl.No	Description	Circular Elevated Water Tank
1	Diameter of Column	800 mm
2	No. of Column	8
3	Bottom Ring Beam	$500 \mathrm{~mm} \times 1000 \mathrm{~mm}$
4	Bracing	800 mm x 500 mm
5	Height of Staging (m)	10 m
6	Thickness of Slab	380 mm
7	Diameter of Tank (m)	12 m
8	Height of Tank Wall (m)	4 m
9	Thickness of Tank Wall	170 mm
10	Top Ring Beam	250 mm x 400 mm
11	Roof Slab Thickness (Dome Shape)	100 mm
12	Center Height of Dome (m)	2.4 m
13	Type of Soil	Moderate Soil
14	Unit Weights	Concrete $=25 \mathrm{KN} / \mathrm{m}^{3}$
15	Material	M30 Grade Concrete and Fe415

Fig-1: 3D Rendered Model

4.1 LOADS ACTING ON THE WATER TANK

1. Dead load:

Dead load means the load due to the materials of the construction. i.e, unit weight of material x dimension or diameter of a section. Unit weight of concrete is $25 \mathrm{Kn} / \mathrm{m}^{3}$.
2. Live load:

Load exerted by the living beings. In water tank load of water also consider as live load.
3. Wind load:

Wind load details as per IS: 875 (part I-III),for the design
Basic wind speed (Vb) $=39 \mathrm{~m} / \mathrm{sec}$
Terrain factor $=3$
windward coefficient $=0.8$
Leeward coefficient $=0.5$
risk coefficient k1=1.06
topography k3=1
importance factor $=1$
4. Earth quake load:

Earth quake load as per IS:1893(part I-II), for the design
Seismic Zone = III
Zone factor = 0.16
Importance factor $=1.5$
Response reduction factor $=1.8$

4.2 STRESS DIAGRAM AFTER ANALYSIS

Fig-2: Absolute Maximum Stress Diagram
Maximum absolute stress is $15.15 \mathrm{~N} / \mathrm{mm} 2$.

4.3 SOFTWARE DESIGN RESULT DETAILS

Table-3: Software Design Result

SL.	COMPONENTS OF	
NO.	WATER TANK	SOFTWARE DESIGN
		Ast in mm (Required)
1	Top Dome	$200 \mathrm{~mm}^{2}$
2	Top Ring Beam	$983 \mathrm{~mm}^{2}$
3	Tank Wall	
a	Hoop Reinforcement	$942 \mathrm{~mm}^{2}$
b	Bending Reinforcement	$495 \mathrm{~mm}^{2}$
4	Base Slab	
a	Reinforcement For Max. Bending Moment	$1653 \mathrm{~mm}^{2}$
b	Reinforcement Of Radial Moment At Ring Beam	$526 \mathrm{~mm}^{2}$
c	Reinforcement Of Circumferential Moment At Ring Beam	$874 \mathrm{~mm}^{2}$
5	Bottom Ring Beam	
a	Support Section	$1163 \mathrm{~mm}^{2}$
b	Mid-Span Section	$935 \mathrm{~mm}^{2}$
c	Maximum Torsion	$935 \mathrm{~mm}^{2}$
d	Transverse Reinforcement	$628 \mathrm{~mm}^{2}$

5. RESULT AND DISCUSSION

In this study, elevated circular water tank was first designed by manually using limit state design method as per IS 4562000 and IS 3370-2009 (part I-IV) and then compare that results with ETABS software design results.

Comparative result of elevated circular water tank

Table-4: Comparison Result

$\begin{aligned} & \text { SL. } \\ & \text { NO. } \end{aligned}$	COMPONENTS OF WATER TANK	MANUAL DESIGN	SOFTWARE DESIGN
		Ast in mm ${ }^{2}$ (Required)	Ast in mm ${ }^{2}$ (Required)
1	Top Dome	$240 \mathrm{~mm}^{2}$	$200 \mathrm{~mm}^{2}$
2	Top Ring Beam	$1015 \mathrm{~mm}^{2}$	$983 \mathrm{~mm}^{2}$
3	Tank Wall		
a	Hoop Reinforcement	1061 mm ${ }^{2}$	$942 \mathrm{~mm}^{2}$
b	Bending Reinforcement	$601 \mathrm{~mm}^{2}$	$495 \mathrm{~mm}^{2}$
4	Base Slab		
a	Reinforcement For Max. Bending Moment	$1702 \mathrm{~mm}^{2}$	$1653 \mathrm{~mm}^{2}$
b	Reinforcement Of Radial Moment At Ring Beam	552 mm ${ }^{2}$	526 mm ${ }^{2}$
c	Reinforcement Of Circumferential Moment At Ring Beam	$913 \mathrm{~mm}^{2}$	$874 \mathrm{~mm}^{2}$
5	Bottom Ring Beam		
a	Support Section	$1223 \mathrm{~mm}^{2}$	$1163 \mathrm{~mm}^{2}$
b	Mid-Span Section	$978 \mathrm{~mm}^{2}$	$935 \mathrm{~mm}^{2}$
c	Maximum Torsion	$978 \mathrm{~mm}^{2}$	$935 \mathrm{~mm}^{2}$
d	Transverse Reinforcement	$685 \mathrm{~mm}^{2}$	$628 \mathrm{~mm}^{2}$

Chart-1: Steel Distribution

6. CONCLUSIONS

In this project a study is made to compare the design of elevated circular water tank by manual method and software method. To know about the area of steel required for the water tank.
From the study it is finally conclude that.

- The amount of steel required for the whole structure is less for software design compare to manual design.
- The total steel required from software design is 9334 mm 2 and manual design is 9948 mm 2 .
- While comparing with manual design software design saves 10% of steel in whole structure.
- Manual design method require more time and complicated. Whereas the design done in etabs software require less time.

REFERENCES

[1] Code Books: IS 456-2000 and IS 3370-2009 (part I-IV).
[2] Dr. Ramakrishna Hegde, et al.,[2018]: "Comparative Study On Rectangular And Circular Water Tank Using Staad Pro Software". International Research Journal of Engineering and Technology (IRJET), Volume: 05 Issue: 11,2018, ISSN: 2395-0056, ISSN: 2395-0056,ISSN: 23950072.
[3] Himanshu Dwivedi, et al.,[2019]: "Analysis And Design Of Water Tank Employing Staad. Pro For Cost Optimization". International Journal of Scientific Research and Engineering Development,Volume 2, Issue 4, ISSN : 2581-7175.
[4] I.R. Saudagar, et al., [2019]: "Study On Comparison Analysis Of Circular And Intze Water Tank On Sloping Ground". International Research Journal of Engineering and Technology (IRJET), Oct 2019, Volume: 06 ,Issue: 10, ISSN: 2395-0056, ISSN: 2395-0072
[5] Rashadus Sadain, et al.,: "Comparative Analysis and Design of ESR by Manual and Software".IOSR Journal of Engineering.
[6] Tejaswini R, et al.,,[2020]: "Design And Analysis Of Elevated Water Tank". International Research Journal of Engineering and Technology (IRJET), Volume: 07, Issue: 08 ,ISSN: 2395-0056,ISSN: 2395-0072.
[7] Text Book: Design of R.C.C structure, by the author B.C. Punmia
[8] Urmila Ronad, Raghu K.S, et al.,[2016]: "Seismic Analysis Of Circular Elevated Tank". International Research Journal of Engineering and Technology (IRJET), , Volume: 03, Issue: 09, ISSN: 2395 -0056, ISSN: 23950072.

