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Abstract - The core component of an electronic system is a 

processor. Processors are primarily evaluated solely by their 

performance, speed, and Instruction Set Architecture (ISA). 

RISC-V is a selected architecture for the design. RISC-V is an 

open standard instruction set architecture designed to be 

scalable for a wide range of applications. Pipelining is a 

standard feature in RISC-V processors. The technique where 

multiple instructions are overlapped during execution is 

known as Pipelining. Therefore, pipelining reduces the latency 

and improves the overall throughput of the processor. 

The intended work consists of the design of functional blocks of 

32-bit RISC-V processor such as I-Cache, Instruction Issuing 

Unit, INT ALU, D-Cache and Integer Register File. These 

functional blocks are designed using Verilog HDL and 

testbench codes are written for them. For D-cache and Integer 

reg file, the functional verification is performed with the help 

of Universal Verification Methodology (UVM). The reusable 

UVM testbench architecture is built to check the functional 

correctness of these blocks. Code coverage is performed on the 

functional blocks designed. 
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1.INTRODUCTION  
 
Processors are primarily evaluated solely by their 

performance, speed, and Instruction Set Architecture (ISA) 

[1]. RISC-V is a standard free architecture and is designed to 

be scalable for a wide variety of applications. RISC-V is 

suitable for use in some specific application fields such as 

storage, edge computing, and AI applications. Pipelining is a 

standard feature in RISC-V processors. It is the process of 

accumulating instructions from the processor through a 

pipeline. It allows storing and executing instructions in an 

orderly process. Pipelining increases the overall instruction 

throughput. 

The intended work consists of the design and verification of 

functional blocks of 32-bit RISC-V processor such as I-Cache, 

Instruction Issuing Unit, INT ALU, D-Cache and Integer 

Register File. These functional blocks are designed using 

Verilog HDL and are simulated & synthesized using Xilinx 

Vivado. For D-Cache and Integer Register File UVM testbench 

has been built to check the functional correctness. Code 

coverage is performed on the functional blocks designed.  

Organization of the paper is as follows. Section 2 provides 

brief about related work. Section 3 describes the RISC-V 

processor architecture in brief. Section 4 discusses the 

design of functional blocks. Section 5 briefs about 

verification of functional blocks. In section 6 simulation 

results have been discussed, followed by conclusion in 

Section 7. 

 

2. RELATED WORK 
 
The five- stage pipelined RISC-V processor architecture is 

presented in [1]. The working of pipelined architecture is 

explained in this paper. Many sub blocks are included in the 

processor’s design. Design of all the sub blocks is explained in 

detail along with the block diagrams. The designed processor 

is implemented on Vertex-7 FPGA board. The maximum 

frequency attained is 40Mhz.  

[2] In this paper authors have discussed about a new 

processor for a SOC. The processor is based on RISC-V 

Instruction Set Architecture. Verification is performed at 

module and integration level. The pipeline is verified for 

varying configurations of instructions to ensure that all 

corner situations are covered. The processor is built on a 

Virtex-7 FPGA, and the results are illustrated in terms of 

frequency and area.  

A 16-bit RISC processor is designed in [3]. The design is done 

using the Verilog HDL. The processor includes the sub blocks, 

such as, ALU, data memory unit, controller, and register files. 

Xilinx ISE tool is used to analyse the design. 

Design of ALU which performs addition, subtraction, 

multiplication, code conversion, and shifting operations is 

presented in [7]. Different operations are selected using 

multiplexer based on the select lines or control inputs. The 

design is developed using the Hardware Description 

Language (HDL). Structural and behavioural modelling are 

used in designing the ALU.  Results of the ALU are compared 

with MIPS processor, which has shown reduction in power 
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dissipation. Simulation and synthesis of each block in the 

design is carried using Xilinx ISE to analyse the results.  

A study of UVM's characteristics is offered in [8], [9]. These 

papers outline the benefits, drawbacks, and prospects. To 

compare conventional verification with UVM-based 

verification, a SoC test case is provided. An overview of how 

to use the UVM verification methodology to create a reusable 

RTL verification environment is provided and also the usage 

of UVM in the creation of a testbench using synchronous FIFO 

as a subsystem undergoing evaluation is examined. 

3. PROCESSOR ARCHITECTURE 
 

 
Fig -1: RISC-V Pipelined Architecture [1] 

 
A five- stage superscalar pipeline architecture is shown in 

Fig -1. The five stages are: Instruction Fetch (IF), Instruction 

Decode (ID), Execute (EX), Memory (MEM), and Write-back 

(WB).  

The first stage is Instruction Fetch (IF), which generates the 

program memory address using the Program Counter (PC). 

Using the pc value, two consecutive instructions are obtained 

from the Instruction Cache and transmitted to the 

Instruction Decode (ID) stage. The ID stage includes an 

Instruction Issuing Unit, which sends one or two instructions 

to the pipeline depending on the dependencies between 

instructions. The instruction is decrypted in the decode 

stage, and select signals are created for the multiplexers in 

the EX-stage for data transmission. The ID stage provides the 

operands for the Execute-stage. There are three units in the 

Execute-stage that may execute at most two instructions in 

the same clock cycle; two of the three units are integer ALUs 

and one is a floating- point unit. Forwarding lines toggle the 

multiplexers, allowing either forwarded data or data from 

register/memory to be used in the Execute stage. The 

Execute-stage results are passed to the Memory stage, which 

performs data transactions for load, store, or atomic 

instructions. In other circumstances, the Execute-stage 

results are transferred to the Write-Back stage. In the Write- 

Back stage, distinct register files are implemented for integer 

and floating-point instructions. 

 

4. DESIGN OF FUNCTIONAL BLOCKS 
 
In this section the design of different functional blocks such 
as, I-Cache & Instruction Issuing Unit, INT ALU, D-Cache and 
Integer Register File are discussed. The design of all these 
blocks is done by using Verilog HDL. 
 

1) I-Cache & Instruction Issuing Unit 

Main memory is too slow to use every time when we want an 

instruction or a data. Therefore, Instruction Cache and Data 

Cache are used to speed up memory accesses. Separate D-

Cache and I-Cache makes it possible to fetch instructions and 

data in parallel. 

The instruction memory subsystem regulates the flow of 

instructions. The Instruction Decode stage has an instruction 

issuing unit (IIU). IIU decodes both instructions from the I-

Cache and compares the operand values in each instruction 

to determine interdependence between the instructions. 

When an interdependence occurs, the second instruction is 

placed in a hold register and a "rollback" signal is asserted to 

alter the next-PC value. The held instruction will be executed 

in the following clock cycle. The block diagram of IIU is 

shown in Fig. -2. 

 

Fig -2: Instruction Issuing Unit [1] 

2) Arithmetic Logic Unit (ALU) 

The arithmetic logic unit is a combinational circuit which is 

capable of executing arithmetic and logic operations. An ALU 

is a major component of the processor. The 32-bit ALU 

designed is capable of performing addition, subtraction, 
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increment, decrement, logical, shifting and comparison 

operations. Fig -3 shows block diagram of ALU. 

 

Fig -3: Block diagram of ALU 

The ALU designed operates on 32-bit operands. The 

particular function to be performed is controlled by 4-bit 

opcode, whose value encodes the function according to the 

Table-1. 

Table-1: ALU operations 

OPCODE OPERATION ALU OUTPUT 

4’b0000 Addition A+B 

4’b0001 Subtraction A-B 

4’b0010 Increment A+1 

4’b0011 Decrement A-1 

4’b0100 NOT ~A 

4’b0101 AND A AND B 

4’b0110 OR A OR B 

4’b0111 NAND ~ (A AND B) 

4’b1000 NOR ~ (A OR B) 

4’b1001 XOR A XOR B 

4’b1010 XNOR ~ (A XOR B) 

4’b1011 Right shift LSR 

4’b1100 Left shift LSL 

4’b1101 Greater than CMPGT 

4’b1110 Less than CMPLT 

4’b1111 Equal CMPEQ 

 

3) D-Cache 

The data memory subsystem directs the flow of data from 

the main memory to the Execute and Write-Back stages 

using the Instruction Decode and Memory stages. 

The designed D-Cache stores the 32-bit write data and gives 

back 32-bit read data from requested 8-bit address. It 

consists of 256 32-bit memory locations. At every clock 

cycle, the read operation will take place. The write operation 

takes place only when write enable signal is high. 

 

4) Integer Register File 

A register file is an array of processor registers in a central 

processing unit (CPU). Write Back (WB) stage has integer 

register file. This unit gets data and address from the 

Memory stage and stores it in its register file. It stores 32-bit 

data at 5-bit address. The register file is used as CPU 

registers for the operations defined by the given instruction.  

5. VERIFICATION OF FUNCTIONAL BLOCKS 

The process of analysing the design to determine whether it 

meets the specified requirements is known as verification. 

For the functional blocks such as I-Cache & Instruction 

Issuing Unit, ALU, D-Cache and Integer Register File 

testbench codes are written to check whether the designs 

are functionally correct. For D-cache and Integer Register 

File UVM testbench has been built using System Verilog.  

The Universal Verification Methodology (UVM) is a 

standardised approach for verifying integrated circuits, 

ASICs, and SoC architectures. The UVM method was 

developed by the Accellera Systems Initiative, with the 

support of several companies including Cadence, Mentor 

Graphics and Synopsys. 

Some benefits of UVM are (1) Modularity and Reusability, (2) 

Separating test from testbenches, (3) Simulator independent, 

(4) Sequence methodology, (5) Configuration mechanisms, 

(6) Factory mechanisms  

A typical UVM testbench architecture contains many 

components. Fig 4 shows a simple UVM testbench diagram. 
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Fig -4: UVM testbench architecture 

A typical UVM testbench architecture has the following 

components: 

 Testbench- Testbench instantiates unit under test 

and the UVM test class and set-up the connection 

between them.  

 Test- It is the top-level class responsible for 

configuring the testbench, start the testbench parts 

development measure by building a higher level 

down in the chain of hierarchy, and it starts the 

stimulus by initiating sequence.  

 Environment- groups interrelated verification 

components such as Agents and Scoreboards. 

 Scoreboard- contains checkers and verifies the 

functionality of the design. 

 Agent- groups the verification components which 

deals with specific interfaces. 

 Monitor- Samples the unit under test and reference 

model interfaces, captures and compares the data 

included in transactions. 

 Driver- Receives data items from the sequencer and 

sends it to the interfaces for unit under test and 

reference model.  

 Sequencer- The sequencer is in charge of directing 

transactions (sequence items) generated in 

sequence to driver or vice-versa.  

 Sequence-contains a behavior for generating 

stimulus. 

 Sequence item- consists of data fields required to 

generate the stimulus. 

 

 

 

 

6. RESULTS 

The functional blocks that are discussed in section 4 are 

designed using Verilog HDL and are simulated using Xilinx 

Vivado.  Code coverage analysis is performed on the 

functional blocks  using ModelSim SE. The simulation results 

and code coverage analysis report are shown below. 

 

 
Fig -5: Simulation result of Instruction Issuing Unit 

 

Here instructions are manually fed. When Control = 00, 

B_Out =78aa5495 and when Control = 01, B_Out = 00aa5495. 

For other Control values B_out = 0. A_out will get values from 

I-Cache unit. 

 

 
Fig -6: Simulation result of Arithmetic operations 

 

In the above simulation, addition, subtraction, increment and 

decrement operations are performed. 

 

 
Fig -7: Simulation result of Logic operations 

 

In the above simulation, logical operations such as NOT, 

AND, OR, NAND, NOR, XOR and XNOR are performed.  
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Fig -8: Simulation result of Shift operations 

 

In Fig-8 right shift and left shift operations are performed. 

 

 
Fig -9: Simulation result of Comparison operations 

 

In the above simulation comparison operation are 

performed 

 

 
Fig -10: Simulation result of D-cache 

 

Above figure shows simulation result of D-cache. The data is 

stored at particular address and it is read out from that 

address. 

 

 
Fig -11: Simulation result of Integer Register File 

 

In the above figure simulation results are shown for Integer 

Register File. Output is based on data and address. 

 
Fig -12: UVM simulation result of D-Cache without error 

Fig-12 shows the simulation result of D-Cache without 

error and Fig-13 shows an example of D-Cache output 

without error. 

 

 
Fig -13: An example of D-Cache output without error 

 
Fig -14: UVM simulation result of D-Cache with error 

 
Fig -15: An example of D-Cache output with error 
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Fig-14 shows the simulation result of D-Cache with error and 

Fig-15 shows an example of D-Cache output with error. 

 

 
Fig -16: UVM simulation result of Integer Register File 

without error 

 
Fig -17: An example of Integer Register File output 

without error 

 

Fig-16 shows the simulation result of Integer Register File 

without error and Fig-17 shows an example of Integer 

Register File output without error. 

 

 
Fig -18: UVM simulation result of Integer Register File 

with error 

 
Fig -19: An example of Integer Register File output with 

error 

 

Fig-18 shows the simulation result of Integer Register File 

with error and Fig-19 shows an example of Integer Register 

File output with error. 

 

 
Fig -20: Code coverage report of ALU without fault 

 

 
Fig -21: Code coverage report of ALU with fault 

 

Fig-20 and Fig-21 shows code coverage report of ALU 

without fault and with fault respectively. 
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Fig -22: Code coverage report of IIU without fault 

 

 
Fig -23: Code coverage report of IIU with fault 

 

Fig-22 and Fig-23 shows code coverage report of IIU without 

fault and with fault respectively. 

 

 
Fig -24: Code coverage report of D-Cache without fault 

 
Fig -25: Code coverage report of D-Cache with fault 

Fig-24and Fig-25 shows code coverage report of D-Cache 

without fault and with fault respectively. 

 

 
Fig -26: Code coverage report of Integer Register File 

without fault 

 

 
Fig -27: Code coverage report of Integer Register File with 

fault 

 

Fig-26and Fig-27 shows code coverage report of Integer 

Register File without fault and with fault respectively. 

7. CONCLUSION 
 
This paper contains the brief discussion of RISC-V 

superscalar processor architecture. The work includes 

design of functional blocks of the architecture such as I-

Cache & Instruction Issuing Unit, INT ALU, D-Cache and 

Integer Register File. They are designed using Verilog HDL. 

UVM testbench architecture has been discussed briefly and 

UVM testbench has been built D-Cache and Integer Register 

File. Functional blocks are simulated using Xilinx Vivado. 

Code coverage analysis is performed on the functional blocks 

using ModelSim SE. 
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