
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1884

Design and Verification of Functional Blocks of 32-Bit Microprocessor

Asha G1, Dr. Jamuna S2

1PG Student (M.Tech in VLSI Design & Embedded Systems), Dept. of ECE, DSCE, Bengaluru, Karnataka
2Professor, Dept. of ECE, DSCE, Bengaluru, Karnataka

---***--

Abstract - The core component of an electronic system is a

processor. Processors are primarily evaluated solely by their

performance, speed, and Instruction Set Architecture (ISA).

RISC-V is a selected architecture for the design. RISC-V is an

open standard instruction set architecture designed to be

scalable for a wide range of applications. Pipelining is a

standard feature in RISC-V processors. The technique where

multiple instructions are overlapped during execution is

known as Pipelining. Therefore, pipelining reduces the latency

and improves the overall throughput of the processor.

The intended work consists of the design of functional blocks of

32-bit RISC-V processor such as I-Cache, Instruction Issuing

Unit, INT ALU, D-Cache and Integer Register File. These

functional blocks are designed using Verilog HDL and

testbench codes are written for them. For D-cache and Integer

reg file, the functional verification is performed with the help

of Universal Verification Methodology (UVM). The reusable

UVM testbench architecture is built to check the functional

correctness of these blocks. Code coverage is performed on the

functional blocks designed.

Key Words: RISC-V ISA (Instruction Set Architecture),

Pipelining, I-Cache, Instruction Issuing Unit, INT ALU, D-

Cache, Integer Register File, Verilog HDL, Universal

Verification Methodology (UVM).

1.INTRODUCTION

Processors are primarily evaluated solely by their

performance, speed, and Instruction Set Architecture (ISA)

[1]. RISC-V is a standard free architecture and is designed to

be scalable for a wide variety of applications. RISC-V is

suitable for use in some specific application fields such as

storage, edge computing, and AI applications. Pipelining is a

standard feature in RISC-V processors. It is the process of

accumulating instructions from the processor through a

pipeline. It allows storing and executing instructions in an

orderly process. Pipelining increases the overall instruction

throughput.

The intended work consists of the design and verification of

functional blocks of 32-bit RISC-V processor such as I-Cache,

Instruction Issuing Unit, INT ALU, D-Cache and Integer

Register File. These functional blocks are designed using

Verilog HDL and are simulated & synthesized using Xilinx

Vivado. For D-Cache and Integer Register File UVM testbench

has been built to check the functional correctness. Code

coverage is performed on the functional blocks designed.

Organization of the paper is as follows. Section 2 provides

brief about related work. Section 3 describes the RISC-V

processor architecture in brief. Section 4 discusses the

design of functional blocks. Section 5 briefs about

verification of functional blocks. In section 6 simulation

results have been discussed, followed by conclusion in

Section 7.

2. RELATED WORK

The five- stage pipelined RISC-V processor architecture is

presented in [1]. The working of pipelined architecture is

explained in this paper. Many sub blocks are included in the

processor’s design. Design of all the sub blocks is explained in

detail along with the block diagrams. The designed processor

is implemented on Vertex-7 FPGA board. The maximum

frequency attained is 40Mhz.

[2] In this paper authors have discussed about a new

processor for a SOC. The processor is based on RISC-V

Instruction Set Architecture. Verification is performed at

module and integration level. The pipeline is verified for

varying configurations of instructions to ensure that all

corner situations are covered. The processor is built on a

Virtex-7 FPGA, and the results are illustrated in terms of

frequency and area.

A 16-bit RISC processor is designed in [3]. The design is done

using the Verilog HDL. The processor includes the sub blocks,

such as, ALU, data memory unit, controller, and register files.

Xilinx ISE tool is used to analyse the design.

Design of ALU which performs addition, subtraction,

multiplication, code conversion, and shifting operations is

presented in [7]. Different operations are selected using

multiplexer based on the select lines or control inputs. The

design is developed using the Hardware Description

Language (HDL). Structural and behavioural modelling are

used in designing the ALU. Results of the ALU are compared

with MIPS processor, which has shown reduction in power

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1885

dissipation. Simulation and synthesis of each block in the

design is carried using Xilinx ISE to analyse the results.

A study of UVM's characteristics is offered in [8], [9]. These

papers outline the benefits, drawbacks, and prospects. To

compare conventional verification with UVM-based

verification, a SoC test case is provided. An overview of how

to use the UVM verification methodology to create a reusable

RTL verification environment is provided and also the usage

of UVM in the creation of a testbench using synchronous FIFO

as a subsystem undergoing evaluation is examined.

3. PROCESSOR ARCHITECTURE

Fig -1: RISC-V Pipelined Architecture [1]

A five- stage superscalar pipeline architecture is shown in

Fig -1. The five stages are: Instruction Fetch (IF), Instruction

Decode (ID), Execute (EX), Memory (MEM), and Write-back

(WB).

The first stage is Instruction Fetch (IF), which generates the

program memory address using the Program Counter (PC).

Using the pc value, two consecutive instructions are obtained

from the Instruction Cache and transmitted to the

Instruction Decode (ID) stage. The ID stage includes an

Instruction Issuing Unit, which sends one or two instructions

to the pipeline depending on the dependencies between

instructions. The instruction is decrypted in the decode

stage, and select signals are created for the multiplexers in

the EX-stage for data transmission. The ID stage provides the

operands for the Execute-stage. There are three units in the

Execute-stage that may execute at most two instructions in

the same clock cycle; two of the three units are integer ALUs

and one is a floating- point unit. Forwarding lines toggle the

multiplexers, allowing either forwarded data or data from

register/memory to be used in the Execute stage. The

Execute-stage results are passed to the Memory stage, which

performs data transactions for load, store, or atomic

instructions. In other circumstances, the Execute-stage

results are transferred to the Write-Back stage. In the Write-

Back stage, distinct register files are implemented for integer

and floating-point instructions.

4. DESIGN OF FUNCTIONAL BLOCKS

In this section the design of different functional blocks such
as, I-Cache & Instruction Issuing Unit, INT ALU, D-Cache and
Integer Register File are discussed. The design of all these
blocks is done by using Verilog HDL.

1) I-Cache & Instruction Issuing Unit

Main memory is too slow to use every time when we want an

instruction or a data. Therefore, Instruction Cache and Data

Cache are used to speed up memory accesses. Separate D-

Cache and I-Cache makes it possible to fetch instructions and

data in parallel.

The instruction memory subsystem regulates the flow of

instructions. The Instruction Decode stage has an instruction

issuing unit (IIU). IIU decodes both instructions from the I-

Cache and compares the operand values in each instruction

to determine interdependence between the instructions.

When an interdependence occurs, the second instruction is

placed in a hold register and a "rollback" signal is asserted to

alter the next-PC value. The held instruction will be executed

in the following clock cycle. The block diagram of IIU is

shown in Fig. -2.

Fig -2: Instruction Issuing Unit [1]

2) Arithmetic Logic Unit (ALU)

The arithmetic logic unit is a combinational circuit which is

capable of executing arithmetic and logic operations. An ALU

is a major component of the processor. The 32-bit ALU

designed is capable of performing addition, subtraction,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1886

increment, decrement, logical, shifting and comparison

operations. Fig -3 shows block diagram of ALU.

Fig -3: Block diagram of ALU

The ALU designed operates on 32-bit operands. The

particular function to be performed is controlled by 4-bit

opcode, whose value encodes the function according to the

Table-1.

Table-1: ALU operations

OPCODE OPERATION ALU OUTPUT

4’b0000 Addition A+B

4’b0001 Subtraction A-B

4’b0010 Increment A+1

4’b0011 Decrement A-1

4’b0100 NOT ~A

4’b0101 AND A AND B

4’b0110 OR A OR B

4’b0111 NAND ~ (A AND B)

4’b1000 NOR ~ (A OR B)

4’b1001 XOR A XOR B

4’b1010 XNOR ~ (A XOR B)

4’b1011 Right shift LSR

4’b1100 Left shift LSL

4’b1101 Greater than CMPGT

4’b1110 Less than CMPLT

4’b1111 Equal CMPEQ

3) D-Cache

The data memory subsystem directs the flow of data from

the main memory to the Execute and Write-Back stages

using the Instruction Decode and Memory stages.

The designed D-Cache stores the 32-bit write data and gives

back 32-bit read data from requested 8-bit address. It

consists of 256 32-bit memory locations. At every clock

cycle, the read operation will take place. The write operation

takes place only when write enable signal is high.

4) Integer Register File

A register file is an array of processor registers in a central

processing unit (CPU). Write Back (WB) stage has integer

register file. This unit gets data and address from the

Memory stage and stores it in its register file. It stores 32-bit

data at 5-bit address. The register file is used as CPU

registers for the operations defined by the given instruction.

5. VERIFICATION OF FUNCTIONAL BLOCKS

The process of analysing the design to determine whether it

meets the specified requirements is known as verification.

For the functional blocks such as I-Cache & Instruction

Issuing Unit, ALU, D-Cache and Integer Register File

testbench codes are written to check whether the designs

are functionally correct. For D-cache and Integer Register

File UVM testbench has been built using System Verilog.

The Universal Verification Methodology (UVM) is a

standardised approach for verifying integrated circuits,

ASICs, and SoC architectures. The UVM method was

developed by the Accellera Systems Initiative, with the

support of several companies including Cadence, Mentor

Graphics and Synopsys.

Some benefits of UVM are (1) Modularity and Reusability, (2)

Separating test from testbenches, (3) Simulator independent,

(4) Sequence methodology, (5) Configuration mechanisms,

(6) Factory mechanisms

A typical UVM testbench architecture contains many

components. Fig 4 shows a simple UVM testbench diagram.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1887

Fig -4: UVM testbench architecture

A typical UVM testbench architecture has the following

components:

 Testbench- Testbench instantiates unit under test

and the UVM test class and set-up the connection

between them.

 Test- It is the top-level class responsible for

configuring the testbench, start the testbench parts

development measure by building a higher level

down in the chain of hierarchy, and it starts the

stimulus by initiating sequence.

 Environment- groups interrelated verification

components such as Agents and Scoreboards.

 Scoreboard- contains checkers and verifies the

functionality of the design.

 Agent- groups the verification components which

deals with specific interfaces.

 Monitor- Samples the unit under test and reference

model interfaces, captures and compares the data

included in transactions.

 Driver- Receives data items from the sequencer and

sends it to the interfaces for unit under test and

reference model.

 Sequencer- The sequencer is in charge of directing

transactions (sequence items) generated in

sequence to driver or vice-versa.

 Sequence-contains a behavior for generating

stimulus.

 Sequence item- consists of data fields required to

generate the stimulus.

6. RESULTS

The functional blocks that are discussed in section 4 are

designed using Verilog HDL and are simulated using Xilinx

Vivado. Code coverage analysis is performed on the

functional blocks using ModelSim SE. The simulation results

and code coverage analysis report are shown below.

Fig -5: Simulation result of Instruction Issuing Unit

Here instructions are manually fed. When Control = 00,

B_Out =78aa5495 and when Control = 01, B_Out = 00aa5495.

For other Control values B_out = 0. A_out will get values from

I-Cache unit.

Fig -6: Simulation result of Arithmetic operations

In the above simulation, addition, subtraction, increment and

decrement operations are performed.

Fig -7: Simulation result of Logic operations

In the above simulation, logical operations such as NOT,

AND, OR, NAND, NOR, XOR and XNOR are performed.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1888

Fig -8: Simulation result of Shift operations

In Fig-8 right shift and left shift operations are performed.

Fig -9: Simulation result of Comparison operations

In the above simulation comparison operation are

performed

Fig -10: Simulation result of D-cache

Above figure shows simulation result of D-cache. The data is

stored at particular address and it is read out from that

address.

Fig -11: Simulation result of Integer Register File

In the above figure simulation results are shown for Integer

Register File. Output is based on data and address.

Fig -12: UVM simulation result of D-Cache without error

Fig-12 shows the simulation result of D-Cache without

error and Fig-13 shows an example of D-Cache output

without error.

Fig -13: An example of D-Cache output without error

Fig -14: UVM simulation result of D-Cache with error

Fig -15: An example of D-Cache output with error

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1889

Fig-14 shows the simulation result of D-Cache with error and

Fig-15 shows an example of D-Cache output with error.

Fig -16: UVM simulation result of Integer Register File

without error

Fig -17: An example of Integer Register File output

without error

Fig-16 shows the simulation result of Integer Register File

without error and Fig-17 shows an example of Integer

Register File output without error.

Fig -18: UVM simulation result of Integer Register File

with error

Fig -19: An example of Integer Register File output with

error

Fig-18 shows the simulation result of Integer Register File

with error and Fig-19 shows an example of Integer Register

File output with error.

Fig -20: Code coverage report of ALU without fault

Fig -21: Code coverage report of ALU with fault

Fig-20 and Fig-21 shows code coverage report of ALU

without fault and with fault respectively.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1890

Fig -22: Code coverage report of IIU without fault

Fig -23: Code coverage report of IIU with fault

Fig-22 and Fig-23 shows code coverage report of IIU without

fault and with fault respectively.

Fig -24: Code coverage report of D-Cache without fault

Fig -25: Code coverage report of D-Cache with fault

Fig-24and Fig-25 shows code coverage report of D-Cache

without fault and with fault respectively.

Fig -26: Code coverage report of Integer Register File

without fault

Fig -27: Code coverage report of Integer Register File with

fault

Fig-26and Fig-27 shows code coverage report of Integer

Register File without fault and with fault respectively.

7. CONCLUSION

This paper contains the brief discussion of RISC-V

superscalar processor architecture. The work includes

design of functional blocks of the architecture such as I-

Cache & Instruction Issuing Unit, INT ALU, D-Cache and

Integer Register File. They are designed using Verilog HDL.

UVM testbench architecture has been discussed briefly and

UVM testbench has been built D-Cache and Integer Register

File. Functional blocks are simulated using Xilinx Vivado.

Code coverage analysis is performed on the functional blocks

using ModelSim SE.

REFERENCES

[1] T. Gokulan, A. Muraleedharan and K. Varghese, "Design

of a 32-bit, dual pipeline superscalar RISC-V processor

on FPGA," 2020 23rd Euromicro Conference on Digital

System Design (DSD), Kranj, Slovenia, 2020.

[2] Suseela Budi, Pradeep Gupta, Kuruvilla Varghese, and

Amrutur Bharadwaj, “A RISC-V ISA Compatible

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 09 | Sep 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1891

Processor IP for SoC”, International Symposium on

Devices, Circuits and Systems (ISDCS) 2018.

[3] Shraddha M. Bhagat, Sheetal U. Bhandari, “Design and

Analysis of 16-bit RISC Processor”, Fourth International

Conference on Computing Communication Control and

Automation (ICCUBEA), 2018.

[4] Don Kurian Dennis, Ayushi Priyam, Sukhpreet Singh

Virk, Sajal Agrawal, Tanuj Sharma, Arijit Mondal, and

Kailash Chandra Ray, “Single Cycle RISC-V Micro

Architecture Processor and its FPGA Prototype”, 7th

International Symposium on Embedded Computing and

System Design (ISED), 2017.

[5] Andrew Waterman, “Design of the RISC-V Instruction

Set Architecture”, PhD thesis, EECS Department,

University of California, Berkeley, Jan 2016.

[6] A. Raveendran, V. B. Patil, D. Selvakumar and V.

Desalphine, "A RISC-V instruction set processor-micro-

architecture design and analysis," 2016 International

Conference on VLSI Systems, Architectures, Technology

and Applications (VLSI-SATA), Bangalore, 2016.

[7] R. Samanth, A. Amin and S. G. Nayak, "Design and

Implementation of 32-bit Functional Unit for RISC

architecture applications," 2020 5th International

Conference on Devices, Circuits and Systems (ICDCS),

Coimbatore, India, 2020.

[8] K. Salah, "A UVM-based smart functional verification

platform: Concepts, pros, cons, and opportunities," 2014

9th International Design and Test Symposium (IDT),

Algiers, 2014.

[9] T. M. Pavithran and R. Bhakthavatchalu, "UVM based

testbench architecture for logic sub-system verification,"

2017 International Conference on Technological

Advancements in Power and Energy (TAP Energy),

Kollam, 2017.

