
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 01 | Jan 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1242

Understanding Migration Mechanisms of Containers using CRIU

Avijit Kumar Dash

Student, Dept. Of Computer Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai,
Maharashtra 400076

---***--
Abstract - Operating system-level virtualization has grown
in popularity due to isolating multiple user-space
environments. The container is one of the most popular
virtualization environments. Containers are lightweight
virtualization technology compared to Virtual Machines and
have seen widespread adoption in recent years. Container-
type virtualization can run many isolated processes,
identified as containers, under a single kernel instance. Such
isolation presents the opportunity to save the whole state
and restart it later. Checkpointing itself can be used for
various migration techniques. This report presents the
survey reports of different checkpointing and restarts
components for containers.

Key Words: Virtualization, Container, Live Migration,
Cold Migration, CRIU,

1.INTRODUCTION

Virtualization techniques are now extensively applied in
today’s data centers. Virtualization is a technology that
enables one to build multiple virtualized environments or
reserved resources from a particular physical hardware
system. It refers to running concurrent operating systems
in a single environment. Virtualization has allowed the
commoditization of cloud computing. The hardware
resources have become possible to run various
environments and share computing resources amongst
multiple enterprises. Two standard technology types are
used in virtualization: hypervisor-based virtualization and
container-based virtualization.

1.1 Why Virtualization is needed

1.1.1 Resource Distribution

Sometimes, there is a need to limit the set of resources a
group of processes can access to execute without any
problem. Limiting resources include the size of memory,
the number of CPU cores, set of network interfaces and
devices, or other similar resources.

1.1.2 Migration

 Virtualized machines are distributed among clusters of
several physical machines within data centers and other
related approaches. These Virtualized machines must be
distributed among the devices to ensure optimal use of
resources and avoid bottlenecks. Sometimes, the present
device needs to shut down for maintenance work, so
moving the ongoing execution to another device is

beneficial. Because Virtualized machines run on
abstracted hardware and do not directly communicate
with the host OS, so it is possible to migrate them to
another machine transparently.

2. BACKGRAOUND

Containers are a lightweight virtualization
technology. The container is a standard package of
software that contains all of the necessary components to
run in any environment. A container is illustrated in Figure
1.

The significant difference between VMs and
containers is that when VM needs the complete copy of the
operating system (OS), containers do not need an entire OS
to be installed within the container to operate; instead,
they share the host OS kernel. Containers can run with a
minimum number of resources to perform the task.

Two mechanisms are necessary to build a container. Those
are:

(1) Namespaces

(2) Cgroups

Fig-1: Container

2.1 Namespaces

Namespaces [1] are one of the principal
characteristics of the Linux kernel; they carry out the
separation between kernel resources. It makes sure that a
process can only see the particularized collection of
resources. Namespaces are global system resources that
create an illusion that they have their isolated instance of
the global resource within the namespace. Six namespaces
are out there. Namely:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 01 | Jan 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1243

1. Mount namespace

2. PID namespace

3. Network namespace

4. UTS namespace

5. User namespace

6. IPC namespace

2.2 Cgroups

Cgroups are a way by which it is possible to set
resource limits on a group of processes. By taking help
from Cgroups, it is possible to divide processes into groups
and subgroups hierarchically and assign resource limits
for each group/subgroup.

Figure 1: Cgroup resource allocation

2.3 Container in practice

Several tools have been developed over the years
for container creation, deployment, and management.
Linux Containers (LXC) [3] is a method to build privileged
and unprivileged containers using the command line. LXD
is a project that uses LXC for a more user-friendly and
advanced container experience. Docker [4] is a container
engine with its own build and packaging systems. It is
provided towards the creation of application containers.
Docker previously used LXC for its backend, but then it
shifted to its implementation called libcontainer [5].
Docker uses a union mount filesystem where the storage is
created from a stack of image files.

2.4 Container migration using CRIU

CRIU [6] is a Checkpoint-Restore tool in
Userspace. Using the CRIU tool, migrating a running
container or a process from one node to another is
possible. It is possible to dump a container using CRIU and
use it later, on the same machine or any other machine
and can be resumed where it left off.

CRIU needs to freeze the application or group of
processes to be migrated before they can be checkpointed.
In the meantime, the application or the group of processes
should not be aware of the checkpointing and restoring
procedure; it must be migrated transparently. The cgroup

freezer [7] subsystem uses to make the freezing system
transparent. The cgroup freezer uses the kernel’s group of
freezer functions to pause the cgroup resources
temporarily.

Once the application freezes, it begins extracting
its state and memory and dumping them to image files.
The state is read from the /proc file system. This set of
procedures is completed iteratively for the whole process
group by obtaining the process’s threads in
/proc/PID/tasks and their children in their child
directories.

 CRIU injects a parasite code into the process to
collect memory contents. A memory mapping procedure is
used to map areas and dump pages into a pipe using
vmsplice and then written to an image file using splice.
The CRIU restorer process shares parameters with the
parasite code by opening the shared memory area
allocated by the mmap.

The restore process is straightforward. The
restorer process forks the entire process hierarchy by
reading all dumped image files and finding out which
processes share which resources. Then, the namespaces
are restored, besides sockets are also opened. It recreates
all processes in the tree by calling fork (). Memory
contents are written into a separate address space from
the images. Memory data map into its correct position by
restorer code before the checkpoint. Lastly, timers and
threads are restored.

FIg-2: CRIU checkpoint/restore process flowchart

Migration with CRIU has some limitations:

1. One common limitation is that CRIU can only
checkpoint and restore processes using inter-
process communication (IPC).

2. Existing parent-child connections in process trees
must be kept intact.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 01 | Jan 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1244

3. CONTAINER MIGRATION

3.1 Checkpointing and Restore procedure

The checkpointing and restore method is started
from the user level, but it is implemented at the kernel
level. Thus, it provides transparency of the checkpointing
and restoring process. Checkpoint and restore consist of
three major stages (i) Pre-dump (Mostly used in Live
migration) (ii) Dump. (iii) Restore.

I. Pre-Dump: Pre-dumps only contain the memory
images. At this phase, criu sends memory pages to
the destination node, but it does not stop the
container while doing this stage. Pre-dump can be
performed many times.

II. Dump: The dump phase stopped the application
and saved the application's state to restart later.

III. Restore: At this stage container or process can be
restored that is already checkpointed.

Pre-dump vs. Dump

I. It is possible to perform more than one Pre-dump
for a container or process, but dump can be
achieved only once.

II. Pre-dump only contain memory contents on the
other hand dump save the entire state of the
container or process.

 The checkpointing and restoring procedure consists of the
following stages [9]:

3.1.1 Checkpointing Procedure

I. Freeze processes: Freeze all the processes of the
container and lock the network.

II. Dump the container: Gather and preserve the
entire state of the container’s processes and dump
the container into an image file.

III. Stop the container: Suspend executing the
container processes.

 3.1.2 Restore procedure

I. Settle shared resources: At first, CRIU reads all
the img files and determines which processes
share which resources. Then map those files again
for the next step.

II. Fork the process tree: At this step, CRIU fork ()
all the processes tree before restoring.

III. Restore the container: Restore the container
with the same state as earlier saved in a dump file.

IV. Restore all processes: Restore all the processes
inside the frozen container.

V. Resume the container: Finally, resume execution
of the container and unlock the network. After
that, the container continues its normal execution.

 All the container’s processes should be saved to a
consistent state. All process dependencies should be saved
and restored during restore. Dependencies include the
process hierarchy (Figure), identifiers (PGID, SID, etc.),
and shared resources. During the restore, all such
resources and identifiers must be set accurately.

Fig-3: Process Hierarchy

3.1.1 Live Migration

The live migration refers to Checkpoint, a running
container in one node and transfer to another node and
restart without rebooting on the source node. The main
concern of live migration is minimizing downtime. Live
migration [9,10,11,12,13] is nothing more than
checkpointing the container process or the group of
processes, transferring it to a destination system,
restoring the process, and resuming it when it is on active
mode. There are several types of live migration proposed
over the years. This is also known as iterative live
migration [14]. The most common types of them are:

I. Pre-Copy Migration: Pre-copy migration [10,15]
is begun by copying the memory state to the goal
side. Pre-copy migration transfers most of the
state before freezing the container for the last
dump. It is also identified as iterative migration
since it may execute the pre-copy phase through
many iterations. As the pre-dump phase is
conducted in many iterations, some pages might
be modified during this phase. The changed
memory pages are called dirty pages. The pre-
copy step usually terminates when a destined
number of iterations has arrived. After that, the
container is discontinued on the origin node to
capture the last dirty pages and copy them at the
goal node without the container changing the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 01 | Jan 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1245

state again. After transferring all the pages, the
container started to run on the goal node.

Fig-4: Pre-copy Migration procedure

II. Post-copy: Post-copy migration is the reverse
process of pre-copy migration. Post-copy
migration [10,15] begins by suspending the
migrating container at the origin side and then
copies the minimal processor state to the target
side, resumes the container, and brings memory
pages over the network from the origin. Each
memory page is copied only once in post-copy
migration.

III.

Fig-4: Post-copy Migration procedure

3.1.2 Cold Migration

In this technique [9], the source node freezes the
container or group of processes and dumps it. Then all the
dump files need to transfer to the destination node. This
transfer is done using scp or rsync. After completing the
transfer procedure, the container or the group of
processes is restored and resumes on the destination side.
This migration technique is known as the cold migration
technique because it:

I. First, freeze the container and make sure that
modification is not possible after freezing the
state.

II. Now dumps the entire state and transfers it.

III. Finally, restore the container at destination and
resume all its states.

Fig-6: Cold Migration Procedure

3.1.3 Image Cache/Proxy

Two auxiliary processes are run in this procedure,
one on either side of the migration process, namely,
Image-proxy (at source) and Image-cache (at the
destination) [10]. These processes perform over a TCP
connection.

I. Image-proxy: This presents an in-memory cache
where the entire process snapshot dump from the
CRIU process is stored instead of being stored as
image files on the disk. This process is responsible
for pushing the snapshots to the destination over
the network.

II. Image-cache: It gets the snapshots and stores
them in memory until the CRIU restore process is
ready to fetch them to recreate the process group
at the target. Another advantage of these
components, apart from avoiding disk read/write
it provide for concurrent transferring snapshots
to the destination with the snapshot creation
process. It is also thus possible to start the
restoration process at the target before the
snapshot process has even concluded at the
source.

Fig-7: Image Cache/Proxy Migration Procedure

Table -1: Migration techniques and their procedure.

Migration
Techniques

Procedure Followed

Live Migration I. Pre-copy
II. Post-Copy

Cold Migration Stop and Copy

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 01 | Jan 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1246

Image Cache/Proxy No persistent Storage
needed

4. CONCLUSIONS

Container migration is necessary in many cases,
such as if the host machine started to work abnormally or
needs to be upgraded. CRIU was developed to migrate the
running form of a container or a process. It checkpointed a
container and stored it checkpointed files as collection
image files to persistent storage. Then transfer those files
to the destination for restoring the container. Various
container migration techniques can be performed with
CRIU, such as Live migration, Image-cache/Image-proxy.
Though live migration disadvantages, image files must be
reserved and regained multiple times from persistent
storage. This disadvantage can be eliminated by leveraging
the image-cache/image-proxy migration technique.
Though image-cache/image-proxy migration technique
still needs to be improved to get better performance.
When the container migration is performed with higher
workloads, it is slower than a container with smaller
workloads. The number of CPU cores affects the CPU usage
of the checkpoint and restore. If the number of cores is
more, CPU usage will be lower. Lastly, Pre-copy and post-
copy migrations can be the best choices under different
cases.

REFERENCES

1. Overview of Linux namespaces
https://man7.org/linux/man-
pages/man7/namespaces.7.html

2. Introduce io. latency io controller for cgroups.
https://lwn.net/Articles/758697/.

3. Linux Containers. https://linuxcontainers.org/
4. Docker. https://www.docker.com/
5. libcontainer.

https://github.com/opencontainers/runc/tree/m
aster/libcontainer

6. Checkpoint/restore in userspace.
https://criu.org/Main_Page.

7. Cgroup freezer subsystem.
https://www.kernel.org/doc/Documentation/cgr
oup-v1/freezer-subsystem.txt

8. Chen, Yang. (2015). Checkpoint and Restore of
Micro-service in Docker Containers.
10.2991/icmii-15.2015.160

9. Live migration. https://criu.org/Live_migration
10. Radostin Stoyanov & Martin Kollingbaum.

(2018). Efficient Live Migration of Linux
Containers. Conference: 13th Workshop on
Virtualization in High -Performance Cloud
Computing VHPC ‘18At: Frankfurt, Germany

11. Simon Pickartz, Niklas Eiling, Stefan Lankes,
Lukas Razik, Antonello Monti. Migrating LinuX
Containers Using CRIU. International Conference

on High Performance Computing, ISC High
Performance 2016: High Performance Computing
pp 674-684.

12. Andrey Mirkin, Alexey Kuznetsov, Kir Kolyshkin
(2010). Containers checkpointing and live
migration. In Ottawa Linux Symposium

13. Adityas Widjajarto, Deden Witarsyah Jacob,
Muharman Lubis. Live migration using checkpoint
and restore in userspace (CRIU): Usage analysis of
network, memory and CPU. Bulletin of Electrical
Engineering and Informatics, Vol. 10, No. 2, April
2021, pp. 837~847ISSN: 2302-9285, DOI:
10.11591/eei. v10i2.2742

14. Iterative Migration.
https://criu.org/Iterative_migration

15. Adrian Reber.
https://lisas.de/~adrian/posts/2016-Oct-14-
combining-pre-copy-and-post-copy-
migration.html

16. Puliafito, C.; Vallati, C.; Mingozzi, E.; Merlino, G.;
Longo, F.; Puliafito, A. Container Migration in the
Fog: A Performance Evaluation. Sensors 2019,19,
1488. https://doi.org/10.3390/s19071488

17. Image cache/proxy. https://criu.org/CLI/opt/--
remote

https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://lwn.net/Articles/758697/
https://linuxcontainers.org/
https://www.docker.com/
https://github.com/opencontainers/runc/tree/master/libcontainer
https://github.com/opencontainers/runc/tree/master/libcontainer
https://criu.org/Main_Page
https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://criu.org/Live_migration
https://criu.org/Iterative_migration
https://lisas.de/~adrian/posts/2016-Oct-14-combining-pre-copy-and-post-copy-migration.html
https://lisas.de/~adrian/posts/2016-Oct-14-combining-pre-copy-and-post-copy-migration.html
https://lisas.de/~adrian/posts/2016-Oct-14-combining-pre-copy-and-post-copy-migration.html
https://doi.org/10.3390/s19071488
https://criu.org/CLI/opt/--remote
https://criu.org/CLI/opt/--remote

