
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 01 | Jan 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1247

Performance Enhancement using Appropriate File Formats in Big Data

Hadoop Ecosystem

Vishal Naidu

Department of Electronics and Telecommunication, Ramrao Adik Institute of Technology, Mumbai, India
---***--
Abstract - Data drives the 21st century and many more
generations to come. There are vast amounts of data being
generated and collected every minute from various devices,
software, emails, transactional data, organizational data, and
user data collected by various big tech giants on the scale of
zettabytes. As the data increases, the physical storage space
also increases to cater to such humungous data. Storing them
and preserving them becomes a significant challenge when
data grows exponentially. The main challenge is storing this
data and accessing it in real-time. This is where storage
formats come into the picture. Different types of data formats
are being used to store big data. This paper will compare five
Data formats like Avro, orc, parquet, and textfile and their
pros and cons and their usage.

Key Words: Big Data, Hive, Hadoop, ORC, Parquet, Avro,
Performance Evaluation

1.INTRODUCTION

The amount of data captured by enterprise organizations,
social media, advertising companies, and various
applications increases exponentially. Hadoop is one of the
popular open-source Big Data frameworks in the industry
today, capable of carrying out common Big Data related
Tasks [3]. The file format that Hadoop supports is called the
Hadoop distributed file system (HDFS). HDFS is a traditional
way to store big data in Terabyte and petabyte-scale because
of its reliability, scalability, and its fault-tolerant nature.
HDFS contains the number of server machines/nodes on the
scale of hundreds to thousands where the data is distributed
and stored in parts. Traditional solutions are only efficient
for specific file sizes or file formats [2]. HDFS provides high
throughput access to application data and is suitable for
applications that have large data sets [1]. The main
advantage of HDFS is that it is highly fault-tolerant, and it can
be deployed with low-cost commodity hardware. Handling
and Understanding a Huge amount of data is a big challenge.
HDFS supports many file formats but choosing a specific
format depends on the use case, and many factors must be
considered.

Raw data is generally stored in text format such as CSV, Text
file, JSON, XML. These are also known as human-readable
formats, i.e., they can be read and edited by humans.
However, the issue with raw data formats is, it takes a
tremendous amount of storage space. Storing Raw data in
HDFS is again a more significant issue and in HDFS, each data
is replicated three times. So, the amount of data taken by
HDFS would be replicated three times, thus increasing the

size by three times the original file size. Therefore, it
becomes crucial to compress and store the files in HDFS.
HDFS storage space utilization in a more efficient manner
according to the task defined, and several binary data
storage formats exist inside HDFS [4]. Some of them are
RCFile, ORC, Avro, Parquet [4]. These formats are designed
for systems that use MapReduce kinds of framework, and it
is a structure that is a systematic combination of multiple
components, including data storage format, data
compression, and optimization techniques for data reading
[4].

2. BACKGROUND

Big Data projects are frequently managed with Hadoop
Technology. Hadoop is currently the basic standard and is
used for analyzing large amounts of unstructured data, as
well as certain structured data [7]. The Hadoop Distributed
File System (HDFS) is intended to store very large data sets
consistently and to transmit such data sets to user
applications at high bandwidth [8]. As a result, offering SQL
analytic capabilities to huge data stored in HDFS is becoming
increasingly critical. Although alternative SQL-on-Hadoop
systems exist, such as HortonWorks Stinger and Cloudera
Impala, Hive is a pioneer system that provides SQL-like
analysis of HDFS data. We have used hive for our
experimentation presented.

The data storage formats mentioned in Introduction section
(Text/CSV [9], JSON [10], Avro [11], SequenceFile [12],
RCFile [13], ORC file [14], Parquet [15]) have some
advantages and disadvantages. Only Avro, SequenceFile,
RCFile, ORC file, and Parquet offer compression storage
capacity. Furthermore, the Avro and Parquet data formats
offer schema evolution. This is the primary reason Avro and
Parquet were selected for the studies.

Avro is a row-based cross-language file format in Hadoop, a
schema-based serialization technique. Avro was created with
a primary goal of Schema Evolution, and the schema is
segregated from the data, unlike many other traditional file
formats. Data can be written with no prior knowledge of
schema, and the resulting serialized data is lesser in size as
compared to the source. Avro stores schema in JSON format,
making it easy to read and interpret by any programming
language. Avro creates a binary structured format that is
both compressible and splittable. As a result, it can be
efficiently used to input Hadoop MapReduce jobs. Avro can
capture transactions such as Updates, Inserts, and Delete
logs, so it is widely used for OLTP (on-line transaction

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 01 | Jan 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1248

processing) and has noteworthy performance in Updating,
Deleting, Inserting, and querying all columns of rows or rows
of the table [4]. Avro can easily handle changes in schema
such as addition or changes in existing fields; thus, new
programs can scan old data, and old programs can scan new
data. Avro is extremely useful in systems where we see data
is written continuously.

Fig -1: Avro File Format Structure

Parquet is an open-source storage format designed to bring
an efficient columnar storage layout in Hadoop. Parquet has
a nested structure, and data is populated sparsely. The idea
behind columnar format is straightforward: instead of
storing the records in row by row, store the record using the
column, which is beneficial for analytical processing.
Multiple types of data can be converted and stored into
Parquet format. Parquet supports well-organized
compression and encoding schemes. Parquet supports
efficient columnar data representation available to any
project in the Hadoop ecosystem, regardless of the choice of
data processing framework, data model, or programming
language [5]. The main advantage of Parquet is that A query
can read and perform on all values for a column while
reading only a small fraction of the data from a data file or
table.

Fig -2 : Parquet File Format Structure

ORC, Optimized Row Columnar is the most widely used file
format in Hadoop. It can store data in an optimized way than
the other file formats. Original data can be reduced by about
75% due to this; there is an increase in data processing
speed and shows better performance than other file formats
discussed. An ORC file contains rows of data organized into
Stripes and a file footer. When Hive is processing data, the
ORC format enhances speed. We are unable to load data into

ORCFILE directly. We must first load data into another table
then replace it in our freshly formed ORCFILE. It has various
advantages over other file formats. It involves storing
columns separately, storing statistics (Min, Max, Sum,
Count), having a lightweight index, skips blocks of the row
that are not part of the query.

Fig -3: ORC File Format Structure

The fundamental question is what are the performance
differences between Parquet and Avro in terms of query
execution time.

3. GOALS AND OBJECTIVES

From the Introduction and Background section of the article,
we see how important it becomes to select the right file
format to process our jobs, and also see that it will in turn
help in processing in terms of speed in the Hadoop
ecosystem like Hive. We come up with the task to perform
experiments to answer these questions:

Question 1: What are the differences in performance
(query execution time) between Avro, Parquet and ORC?

Question 2: Which data format (Avro, Parquet and ORC)
is more compact?

The experiment has been chosen as a research method to
address the research questions. There are five steps to the
experimenting process. The scope is the first step, followed
by planning, execution, analysis, interpretation, and finally
reporting. Independent variables have been defined in order
to formulate the scope of the experiments. The data format
type (Avro / Parquet) has been designated as an
independent variable, while performance and compactness
have been designated as dependent variables. As a result, the
experiment's scope has been defined as follows: Analyze the
data formats Avro and Parquet with the purpose of
comparing performance and compactness from a

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 01 | Jan 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1249

researcher's perspective in the context of a Big Data storage
format.

The experiments chose Avro and Parquet based on the
assumption that Avro supported row-oriented data access
should provide better performance on scan queries, e.g.
when all columns are of interest, but Parquet format should
provide a better performance on column-oriented queries,
e.g. when only a subset of those are selected.

After scoping and planning, the operation stage has been
performed. Organizing the experiments includes
preparation, execution, and data validation tasks that are
described in the next section.

4. RESEARCH METHODOLOGY

Numerous extensive data management systems are
available today, including Oracle's Big Data Appliance, IBM's
Apache Hadoop, Cloudera's CDH, Hortonwork's HDP, Apache
Spark, etc. These systems are primarily focused on massive
data storage and processing, but their techniques may differ.
For example, MapReduce's processing method differs from
Spark's DAG approach. The HDP Hadoop distribution from
Hortonworks is being chosen for this paper. The key reason
for this is the platform's widespread popularity due to its
openness. More open-source Hadoop ecosystem projects
have been merged into Cloudera than any other platform. As
a result, it enjoys greater acceptance among businesses
because it does not result in vendor lock-in.

4.1 Cluster Specifications

These experiments were performed in a Hadoop cluster
based on a Horton Works setup. The Horton works version
we are using for performing this test is the 2.6 version. This
is one of the most stable versions released by Horton. The
cluster is being set up in such a way that it can seamlessly
support large/text processing. Two nodes name nodes are
running in a high-available manner. This is an advisable
amount of master nodes recommended by Horton. The
remaining 10 data nodes run the worker roles for the
Hadoop services. This is an empirically chosen amount of
data nodes.

4.2 Data used for experiments

Various data formats and data from different databases are
being used for this experiment. The data being used was this
was scaled for 30 times, this is estimated around to be 300
GB. All the data for this has been sent to the HDFS directory
of the Hadoop cluster. As a plan, we have first sent all the
data in plain text format and then those data have been
converted to different formats. Different tables have
different rows of data in them, this experiment will then
compare on all the formats presented. Data is being loaded
into the hive table using different methods for different file
formats. Plain text format creation has been done using the
CREATE TABLE method with “stored as TEXTFILE”, the

parquet file has been stored using the “stored as PARQUET”,
the files in AVRO format have been stored using “stored as
AVRO” and finally the files in ORC have been stored using
“stored as ORC”.

4.3 Queries Performed

The queries were performed on all the file formats, the
various queries written were pickup from git repo [29] with
has the necessary combinations for it. The change is
connected to the clause "l shipdate = date '1998-12-01' -
interval '[DELTA]' day (3)" in the 'where' clause. Because
data load into Hive without a workaround approach of at
least four steps (create temp table, load data, create a table
with correct data types, and insert data therefrom temp
table) only supports string type date values, the date interval
has been replaced with the exact date and function to date()
has been added to return the date from a string type date
value stored in Hive table.

5. EXPERIMENTAL RESULTS

This section presents the results of the experiments and
answers to the research questions.

Loading data into Hadoop and converting it from plain text
to Avro and Parquet formats saves a lot of storage space. The
same data needs 2 times less storage space in Avro format,
and 3 times less in Parquet format, as seen in Fig. 8. This is a
response to RQ.2, the second research question: Which data
format is more compact (Avro or Parquet)? As a result,
Parquet has a smaller footprint than Avro. Despite the fact
that Avro and Parquet both use the Snappy compression
algorithm, the difference between the two demonstrates that
Parquet is roughly 1.5 times more compact than Avro.

Chart -1: File Compression across File Formats

Now we look into the aspect of how data is being stored into
tables of different data formats, we have inserted a different
number of records into all the tables and have seen that ORC
file format performs better in terms of data insertion. The
operational time taken is quite less as compared to the rest
file formats that we have discussed.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 01 | Jan 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1250

TABLE -1: File Loading in Different Across File Formats

No. of
records Parquet (sec) Avro (sec) ORC (sec)

50000 5.51 10.09 1.7

100000 7.02 15.98 2.34

200000 12.84 26.75 5.73

Performance Comparison Results of the file sizes across
different formats. Notice the vast variation in file sizes for
500 million rows. JSON has the largest footprint whereas
Parquet has the lowest.

Chart -2: Size comparison of File Formats

The outcomes of the grouping process and determining the
maximum value across several formats are shown below. It's
important to note that this is merely a mathematical process.
It's very similar to a Data Analytics use case. I'm pleased to
report that all binary formats (AVRO, Parquet, and ORC)
performed admirably. Parquet and ORC were nearly
identical in terms of performance, although ORC had a
smaller file footprint. It comes as no surprise that ORC
adoption has plummeted in recent years. I barely ever come
across projects in ORC format these days.

Chart -3: Performance comparison on querying

TABLE -2: Query execution time (seconds) across file
formats

Query

Data Format

Textfile Avro Parquet ORC

Query 0 132 200 34 28

Query 1 306 320 142 122

Query 2 Failed Failed Failed Failed

Query 3 430 500 277 230

Query 4 350 390 200 170

Query 5 500 550 320 280

Query 6 145 230 64 44

Query 7 633 640 436 380

Query 8 Failed Failed Failed Failed

Query 9 Failed Failed Failed Failed

Query 10 403 460 230 180

Query 11 325 310 270 213

Query 12 325 360 180 167

Query 13 216 244 200 162

Query 14 275 315 150 118

Query 15 608 675 325 299

Query 16 280 300 238 198

Query 17 600 700 344 312

Query 18 680 800 428 409

Query 19 Failed Failed Failed Failed

Query 20 540 645 390 365

Query 21 1000 1266 670 634

Query 22 210 300 150 134

Query 23 28 55 25 18

6. CONCLUSIONS

To avoid repeat and to owe to space limits, some of the final
conclusions are offered in this part, which is far from a full
review. The studies in this article were based on a thorough
examination of SQL-on-Hadoop using small data formats [6].
In order to answer the research concerns about Parquet and
Avro format, a gap and the need for additional experiments
and investigations have been identified as a consequence of a
comprehensive literature assessment. Because of both
design specifics, none of the 17 studies reviewed at the end
of the systematic literature review have a direct focus on
comparing three binary data storage formats – Parquet,
Avro, and ORC.

The experiments reveal that using Avro is only beneficial in
terms of saving storage space. Even queries from Textfile
format tables are slower than queries from Avro tables. GIT
queries from ORC format tables, on the other hand, provide a

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 01 | Jan 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1251

significant performance improvement over Textfile, Parquet
and Avro queries. When compared to others, ORC can deliver
a 2x faster execution time on average. There isn't much of a
difference between the scan and aggregation queries offered.

Experiments with GIT datasets have gotten a lot of attention.
GIT decision support benchmarks are frequently utilised in
relational database system performance evaluation
nowadays. Because DBGEN allows for datasets with scale
factors greater than 1TB, GIT datasets can be used to
evaluate the performance of Big Data management systems.
In the future, query performance could be measured using
the TPC-DS standard benchmark, which is more appropriate
for Big Data systems. Other query engines and frameworks
such as Impala, HAWQ, IBM Big SQL, Drill, Tajo, Pig, Presto,
and Spark, Cascading, Crunch could also be investigated for
additional experiments to obtain more detailed experience
with tiny data formats.

REFERENCES

[1] https://hadoop.apache.org/docs/r1.2.1/hdfs_design.ht
ml

[2] Shuo Zhang, Li Miao, Dafang Zhang, “A Strategy to Deal
with Mass Small Files in HDFS” 2014 Sixth International
Conference on Intelligent Human-Machine Systems and
Cybernetics.

[3] Daiga Plase, Laila Niedrite, Romans Taranovs,
“Accelerating Data Queries on Hadoop Framework by
Using Compact Data Formats”. 2016 IEEE 4th Workshop
on Advances in Information, Electronic and Electrical
Engineering (AIEEE)

[4] M. Sharma, N. Hasteer, A. Tuli and A. Bansal,
"Investigating the inclinations of research and practices
in hadoop: A systematic review," Confluence the Next
Generation Information Technology Summit
(Confluence), in Proc. of 5th International Conference -
IEEE, 2014, pp. 227-231.

[5] Gartner Says Smartphone Sales Surpassed One Billion
Units in 2014. [Online]. Available:
http://www.gartner.com/newsroom/id/2996817.

[6] D. Plase, "A systematic review of SQL-on-Hadoop by
using compact data formats," Preprint. [Online].
Available:
https://dspace.lu.lv/dspace/handle/7/34452.
[Accessed: 2-Nov-2016].

[7] Y. Chen, X. Qin, H. Bian, J. Chen, Z. Dong, X. Du and H.
Zhang, "A study of sql-on-hadoop systems," in Proc. of
Workshop on Big Data Benchmarks, Performance
Optimization, and Emerging Hardware, Springer
International Publishing, 2014, pp. 154-166.

[8] K. Shvachko, H. Kuang, S. Radia and R. Chansler, "The
hadoop distributed file system," in Proc. of IEEE 26th

Symposium on Mass Storage Systems and Technologies
(MSST), 2010, pp. 1-10.

[9] CSV files. [Online]. Available:
https://tools.ietf.org/html/rfc4180.

[10] JSON specification. [Online].
https://tools.ietf.org/html/rfc7159. [Accessed: 1-Nov-
2016].

[11] Avro specification. [Online].
http://avro.apache.org/docs/current/spec.html
[Accessed: 1-Nov-2016].

[12] Sequence File documentation. [Online]. Available:
https://wiki.apache.org/hadoop/SequenceFile
[Accessed: 1-Nov-2016].

[13] Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang and Z. Xu,
"RCFile: A fast and space-efficient data placement
structure in MapReduce-based warehouse systems," in
Proc. of IEEE 27th International Conference on Data
Engineering (ICDE), 2011, pp. 1199-1208.

[14] ORC Files. [Online]. Available:
https://cwiki.apache.org/confluence/display/Hive/Lan
guageManual+ORC

[15] Parquet official documentation. [Online]
https://parquet.apache.org/documentation/latest

[16] ApacheThrift.[Online].Available: http://thrift.apache.org

[17] N. Palmer, E. Miron, R. Kemp, T. Kielmann and H. Bal,
“Towards collaborative editing of structured data on
mobile devices,” in Proc. of 12th IEEE International
Conference on Mobile Data Management (MDM), vol.1,
2011 (June), pp. 194-199.

[18] S. Zhang, L. Miao, D. Zhang and Y. Wang, "A strategy to
deal with mass small files in HDFS," in Proc. of IEEE
Sixth International Conference In Intelligent Human-
Machine Systems and Cybernetics (IHMSC), vol. 1, 2014
(August), pp. 331-334.

[19] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M.
Cherniack, M. Ferreira and P. O'Neil, “C-store: a column-
oriented DBMS,” in Proc. of the 31st international
conference on Very large data bases, VLDB Endowment,
2005, pp. 553-564.

