Analysis, Design, and Estimation of Multi-Storied Institutional Building by using ETABS

Ananda G ${ }^{1}$, Dr.M.S. Shobha ${ }^{2}$
${ }^{1}$ PG Student, Department of Civil Engineering RYM Engineering College Ballari, Karnataka, India
${ }^{2}$ Professor, Department of Civil Engineering RYM Engineering College, Ballari, Karnataka, India

Abstract

The majority of the structure has a simple geometry with horizontal beams and vertical columns. ETABS V.16.0.0 allows for any building layout, however, in most circumstances, a simple grid system characterized by horizontal floors and vertical column lines may generate building geometry with minimal effort. The building has a lot of comparable floor levels. This resemblance may be utilized to speed up modeling and design.

The design for beams, columns, and footing is derived from ETABS, which with its additional feature, outperformed its predecessors in teams of data exchange.

Our major goal is to finish a multi-story building and verify that it's safe and cost-effective under gravity loading circumstances while still performing the purpose for which it was designed. The dead and live are taken into account while designing the structure. The structure was analyzed and designed using the ETABS software tool. We used the limit state approach of analysis in this assignment. The design meets the requirement IS 456-2000

The finding of the analysis has been used to confirm the structure's suitability for usage. For a complicated structural system, computer software is also utilized to calculate forces, bending moment, stress, strain, and deformation or deflection. The main goal of this project is to compared ETABS design and analysis of a multi-story structure

Key Words: dead load, live load, ETABS, multi-storeyed building,

1. INTRODUCTION

Our project's major goal is to learn about many design components such as modelling, analysis, and design. We intend to construct a multi-story building with a $\mathrm{G}+3$ floor. ETABS software is the most popular design program in the market today. This program is used by a lot of design firms for project design. As a result, the major focus of this article is on a comparison of the findings produced from manual and ETABS software analyses of a multi-story building structure.

2. OBJECTIVES

-Generating structural frame of the ground plan, floor plan, and column position drawing of the PG building by using AutoCAD
-Creating structural frame-like column, slab, staircase, model by using ETABS 2018.
-Design and Analysis of structure by using ETABS 2018 software.
-Design of structure manually as per IS codes provision.
-Calculate the Estimation and Cost of the structure.

3. METHODOLOGY

Fig -1: Methodology of the project

4. PLAN OF THE BUILDING

Fig -2: Ground floor plan; typical floor plan

5. ANALYSIS RESULTS

Fig -3: 3-D shear force diagram

Fig -4: 3-D Bending moment diagram

6. DESIGN DETAILS

6.1. Slab design

$\mathrm{L}_{\mathrm{x}}=4.23 \mathrm{~m}$
$\mathrm{L}_{\mathrm{y}}=5.23 \mathrm{~m}$

$$
L_{y} / L_{x}=1.24<2
$$

Because the long to short span ratio is less than 2, should be designed as a two-way slab.
Assume slab thickness $=150 \mathrm{~mm}$
Cover $=25 \mathrm{~mm}$

LOAD CALCULATION:

Dead load

$$
\begin{aligned}
& =0.151 \mathrm{X} 251 \\
& =3.751 \mathrm{KN} / \mathrm{m}^{2} \\
& =3 \mathrm{KN} / \mathrm{m}^{2} \\
& =1 \mathrm{KN} / \mathrm{m}^{2} \\
& =1 \mathrm{KN} / \mathrm{m}^{2} \\
& =8.75 \mathrm{KN} / \mathrm{m}^{2} \\
& =1.5 \times 8.75 \\
& =13.125 \mathrm{KN} / \mathrm{m}^{2}
\end{aligned}
$$

ULTIMATE DESIGN MOMENT:

support condition: - Two adjacent edges discontinuous.
From table 26 of IS 456:2000 bending moment coefficients for long to short span ratio is

Coefficients	Continuous edge	Midspan
$\alpha \mathrm{x}$	0.062	0.0466
αy	0.047	0.035

SHORT SPAN MOMENT:

At continuous edge:
$\mathrm{M}_{\mathrm{ux}} \quad=\alpha \mathrm{xWulx}{ }^{2}$

$$
\begin{aligned}
& =0.062 \mathrm{X} 13.125 \mathrm{X} 4.232 \\
& =14.56 \mathrm{KN}-\mathrm{m}
\end{aligned}
$$

At mid span:
$\mathrm{M}_{\mathrm{ux}} \quad=\alpha \mathrm{XWulx}{ }^{2}$

$$
\begin{aligned}
& =0.0466 \mathrm{X} 13.125 \mathrm{X} 4.232 \\
& =10.93 \mathrm{KN}-\mathrm{m}
\end{aligned}
$$

LONG SPAN MOMENT:

At continuous edge:
$\mathrm{M}_{\mathrm{uy}} \quad=\alpha y \mathrm{Wulx}^{2}$

$$
\text { =0.062X 13.125 X } 5.232
$$

$$
=22.25 \mathrm{KN}-\mathrm{m}
$$

At mid span:

$$
\begin{aligned}
\mathrm{M}_{\mathrm{uy}} & =\alpha y \mathrm{Wu} \mathrm{~lx} 2 \\
& =0.0466 \mathrm{X} 13.125 \mathrm{X} 3.352 \\
& =17.50 \mathrm{KN}-\mathrm{m}
\end{aligned}
$$

CHECK FOR DEPTH:

For balanced ($\mathrm{M}_{\text {ulim }}$)section,

$$
\begin{aligned}
\mathrm{M}_{\mathrm{ulim}} & =0.138 \mathrm{f}_{\mathrm{ck}}{ }^{*} \mathrm{~b}^{*} \mathrm{~d}^{2} \\
& \mathrm{~B} \\
& =1000 \mathrm{~mm}
\end{aligned}
$$

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
www.irjet.net
p-ISSN: 2395-0072

Hence slab is safe in depth.

STEEL REINFORCEMENT:

LONG SPAN:

At continuous edge:

$\mathrm{M}_{\text {ux }}$	$=22.25 \mathrm{KN}-\mathrm{m}$
M_{u}	$=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\text {st }}$ *d [1-(Ast Xf_y)/(bd f_ck)
14.46 X106	$\neg=0.87 \mathrm{X} 415 \mathrm{XA} \mathrm{sta}_{\text {st }} 150\left[1-\left(\mathrm{A}_{\text {st }} \mathrm{X} 415\right) /(1000\right.$
x150x 25)]	
$\mathrm{A}_{\text {st }}$	$=431.43 \mathrm{~mm}^{2}$
$\mathrm{A}_{\text {st min }}$	$=0.12 \%$ of the cross-sectional area
	$=0.0012 \mathrm{X} 1000 \mathrm{X} 150=180 \mathrm{~mm}^{2}$

Spacing $\quad=a_{\text {_st }} / \mathrm{A}_{\text {_st }} \times 1000$

$$
\begin{aligned}
& =50.26 / 431.43 \times 1000 \\
& =115.25 \mathrm{~mm}
\end{aligned}
$$

Hence $8 \mathrm{~mm} \phi$ bar @ 110 mm c/c
At mid span:

M_{ux}	$=17.50 \mathrm{KN}-\mathrm{m}$
M_{u}	$=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\text {st }} \mathrm{d}\left[1-\left(\mathrm{A}_{\mathrm{st}} \mathrm{X} \mathrm{f}_{\mathrm{y}}\right) /(\mathrm{bd} \mathrm{f}\right.$
$\left.\left.\mathrm{A}_{\mathrm{ck}}\right)\right]$	

$\mathrm{A}_{\text {st }} \quad=335.59 \mathrm{~mm}^{2}$
Using $8 \mathrm{~mm} \phi$ bar
Spacing $\quad=50.265 / 335.59 \times 1000=149.76 \mathrm{~mm}$ Hence $8 \mathrm{~mm} \phi$ bar @ $140 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

SHORTER SPAN:

Continues edges:
$\mathrm{M}_{\mathrm{u}} \quad=14.56 \mathrm{KN}-\mathrm{m}$
$\mathrm{M}_{\mathrm{u}} \quad=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\text {_st }} \mathrm{d}\left[1-\left(\mathrm{A}_{\mathrm{st}} \mathrm{X} \mathrm{f}_{\mathrm{y}}\right) /\left(\mathrm{bd} \mathrm{f}_{\mathrm{ck}}\right)\right]$
Ast $\quad=227.35 \mathrm{~mm}^{2}$
Using 8mm ϕ bar
Spacing $\quad=50.26 / 227.35 \times 1000=221.06 \mathrm{~mm}$
Provide $8 \mathrm{~mm} \phi$ bar @ 220 mm c/c
Mid span:
$\mathrm{M}_{\mathrm{uy}} \quad=10.93 \mathrm{KN}-\mathrm{m}$
$\mathrm{M}_{\mathrm{u}} \quad=0.87$ fy A_std [1-(Ast X fy $\left.) /\left(\mathrm{bd} \mathrm{f} \mathrm{f}_{\mathrm{ck}}\right)\right]$
$\mathrm{A}_{\mathrm{st}} \quad=198.80 \mathrm{~mm}^{2}$
Use $8 \mathrm{~mm} \phi$ bar
Spacing $=50.26 / 198.80 \times 1000=252.81 \mathrm{~mm}$
Provided $8 \mathrm{~mm} \phi$ bar @ 250 mm c/c

CHECK SHEAR STRESS:

Considering the short span and unit width of slab
$\mathrm{V}_{\mathrm{u}}=0.5 \mathrm{~W}_{\mathrm{u}} \mathrm{L}_{\mathrm{x}} \quad=0.5 \mathrm{X} \mathrm{13.125X4.23=27.76KN}$
$\tau_{v}=V_{-u} /(b d)=\left(27.76 \times 10^{\wedge} 3\right) /(1000 \times 125)$

$$
=0.222 \mathrm{~N} / \mathrm{mm} 2
$$

$\mathrm{P}_{\mathrm{t}} \quad=\left(100 \mathrm{~A}_{\mathrm{st}}\right) /(\mathrm{b} \mathrm{d})=(100 \mathrm{X} \mathrm{180}) /(1000 \mathrm{X}$
125) $=0.144$

From table 19 of IS 456:2000, for M20 concrete and $\mathrm{Pt}=$ 0.144

$$
\tau_{\mathrm{c}}=0.28 \mathrm{~N} / \mathrm{mm} 2>\tau_{\mathrm{v}}
$$

slab is safe in shear stress.

CHECK FOR DEFLECTION:

Considering the unit width of the slab in the short span direction L_{x}

$$
(\mathrm{L} / \mathrm{d})_{\text {basic }} \quad=20
$$

From fig. 4 of IS 456:2000, for $\mathrm{Pt}=0.144$; kt $=1.7$

$$
\begin{array}{ll}
(\mathrm{L} / \mathrm{d})_{\max } & =20 \times 1.7=34 \mathrm{~mm} \\
(\mathrm{~L} / \mathrm{d})_{\text {actual }} & =423 / 125=33.84 \mathrm{~mm} \\
\text { For } \quad \mathrm{P}_{\mathrm{t}} & =0.144
\end{array}
$$

$(\mathrm{L} / \mathrm{d})_{\text {actual }}<(\mathrm{L} / \mathrm{d})_{\text {max }}$
Therefor slab is safe in deflection

Fig -4: Reinforcement details along a long span

Fig -5: Reinforcement details along the shorter span

6.2. Beam

Dimension of beam	$=230 \times 450 \mathrm{~mm}$
Max support moment	$=95 \mathrm{kN}-\mathrm{m}$
Middel span moment	$=45 \mathrm{kN}-\mathrm{m}$
Mulim	$=0.138 \mathrm{f}_{\mathrm{ck}} \mathrm{bd}{ }^{2}$
	$=0.138 \times 200 \times 230 \times 425^{2}$
	$=114.660 \mathrm{kN}-\mathrm{m}$

AT SUPPORT SECTION:

$\mathrm{Mu} \quad=95 \mathrm{kN}-\mathrm{m}<$ Mulim
Hence design singly reinforced beam
$M_{u} / \mathrm{bD}^{2}=\left(95 \times 10^{6} / 30 \times 450^{6}\right)=2.03$
From table 2 of SP 16 code book
$\mathrm{P}_{\mathrm{t}} \quad=0.655$
Tensile steel; $\mathrm{A}_{\text {st }}=\mathrm{P}_{\mathrm{t}}(\mathrm{b}$ d) $/ 100=(0.655 \mathrm{x} 230 \times 425) / 100$
Ast $\quad=640.26 \mathrm{~mm}^{2}$
provide $16 \mathrm{~mm} \phi$ bar
No. of bars $\quad=A_{\text {st }} / a_{\text {st }}=640.26 / 314.16 \approx 2$
bars

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056

AT MID SECTION:

$\mathrm{M}_{\mathrm{u}} \quad=45 \mathrm{kN}-\mathrm{m}<\mathrm{M}_{\mathrm{ulim}}$
Hence design singly reinforced beam
$\mathrm{M}_{\mathrm{u}} / \mathrm{b} \mathrm{D}^{\wedge} 2=(45 \times 10)^{\wedge} 6 /\left(230 \times 450^{\wedge} 2\right)=0.966$
From table 2 of SP 16

$$
P_{t} \quad=0.28
$$

Area of tensile steel

$$
\begin{aligned}
\mathrm{A}_{\mathrm{st}} & =\mathrm{P}_{\mathrm{t}}(\mathrm{~b} \mathrm{~d}) / 100 \\
& \\
\mathrm{~A}_{\mathrm{st}} & =(0.28 \times 230 \times 425) / 100 \\
& =273.7 \mathrm{~mm}^{2}
\end{aligned}
$$

Provide $12 \mathrm{~mm} \phi$ bar
No. of bars $\quad=\mathrm{A}_{\text {st }} / \mathrm{a}_{\text {st }}$

$$
=273.7 / 201.06 \approx 2 \text { bars }
$$

Provide 2 bars of 16ϕ.

SHEAR REINFORCEMET:

V_{u}	$=90 \mathrm{KN}$	
b	$=230 \mathrm{~mm} \quad \mathrm{~d}=425 \mathrm{~mm}$	

Nominal shear stress

$$
\begin{aligned}
\mathrm{T}_{\mathrm{v}} \quad & =\mathrm{V}_{\mathrm{u}} / \mathrm{bd} \\
& =(90 \times 1000) /(230 \times 425) \\
& =0.869 \mathrm{~N} / \mathrm{mm}^{2} \\
\mathrm{P}_{\mathrm{t}} \quad & =\left(100 \mathrm{~A}_{\mathrm{st}}\right) /(\mathrm{bd})=0.600
\end{aligned}
$$

From table 19 of IS 456:2000
тc $\quad=0.512 \mathrm{~N} / \mathrm{mm}^{2}<\tau_{v}$
therefore, provide share reinforcement
provide 2leged $8 \mathrm{~mm} \phi$ vertical stirrups
Asv $\quad=20 \times \pi / 40 \times 802=100.530 \mathrm{~mm}^{2}$
Vus $\quad=V_{u}-\tau_{c} b d=\left(0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\mathrm{sv}} \mathrm{d}\right) / \mathrm{S}_{\mathrm{v}}$ $90 \times 103-0.512 \times 230 \times 425=(0.87 \times$ $415 \times 100.53 \times 425) / S_{v}$
Spacing $\mathrm{S}_{\mathrm{v}}=195 \mathrm{~mm}$
Provide 2 Legged 8 mm ϕ vertical stirrups @ 190 c/c.

Fig -6: Reinforcement details of Beam

6.3. Column

P_{u}	$=600 \mathrm{kN}$
M_{u}	$=12.15 \mathrm{kN}-\mathrm{m}$
Unsupported length	$=3 \mathrm{~m}$
Clear cover	$=40 \mathrm{~mm}$
f_{ck}	$=20 \mathrm{kN} / \mathrm{m}^{2}$

Column are the held in position and restrained against rotation

$L_{\text {eff }}=0.65 \mathrm{~L}$	$=0.650 \times 3=1.950 \mathrm{~m}$
Column dimension	$=230 \times 450 \mathrm{~mm}$
$L_{\text {eff }} / D$	$=1.95 / 0.45=4.3<12$

$L_{\text {eff }} / b \quad=1.95 / 0.23=8.5<12$
therefore, column are design short column

CHECK FOR ECCENTRICITY:

$$
\begin{array}{ll}
\mathrm{e}_{\min } & =1 / 500+\mathrm{D} / 30 \\
& =3000 / 500+450 / 30 \\
& =21 \\
\mathrm{e}_{\min } / \mathrm{D} & =21 / 450=0.044<0.05
\end{array}
$$

Design short column.
Design of longitudinal reinforcement:

$$
\begin{array}{ll}
\mathrm{M}_{\mathrm{u}} / \mathrm{f}_{\mathrm{ck}} \mathrm{bD}^{\wedge} 2 & =\left(12.15 \times 10^{\wedge} 6\right) /(20 \mathrm{x} \\
\left.230 \times 450^{\wedge} 2\right) & =0.013 \\
\mathrm{P}_{\mathrm{u}} /(\mathrm{fckbD}) & =600 \times 10^{\wedge} 3 /(20 \times 230 \\
\mathrm{x} 450)=0.298 & =40 / 450 \\
\mathrm{~d}^{\wedge} / \mathrm{D} & =0.088 \approx 0.013, \\
& \\
\text { SP: } 16 \text { (chart book) code book } & \\
\mathrm{P}_{\mathrm{t}} /\left(\mathrm{f}_{\mathrm{ck}}\right) & =0.04 \\
\mathrm{p}=0.04 \times 20 & =0.8 \% \\
\therefore \quad \mathrm{~A}_{\mathrm{sc}} & =0.8 / 100 \mathrm{bD} \\
=0.8 / 100 \times 230 \times 450 & \\
\mathrm{~A}_{\mathrm{sc}} & \\
\text { Provide } 4 \mathrm{no}-20 \mathrm{~mm} \phi \text { steel. } &
\end{array}
$$

LATERAL REINFORCEMENT:

diameter of the lateral ties is must not be less than
$\emptyset / 4=8 \mathrm{~mm}$
(b) 5 mm

Provide $8 \mathrm{~mm} \phi$ bars
Minimum spacing provided to be
smaller lateral dimension $=230 \mathrm{~mm}$

$$
\begin{array}{ll}
16 \mathrm{x} \varnothing & =400 \mathrm{~mm} \\
300 \mathrm{~mm} &
\end{array}
$$

Hence 8 mm diameter of lateral ties at $230 \mathrm{~m} \mathrm{c} / \mathrm{c}$

Fig -7: Reinforcement details of Column

66.4. Footing

Ultimate load $\mathrm{P}_{\mathrm{u}} \quad=1150 \mathrm{KN}$
Live load $P \quad=767 \mathrm{KN}$
dead weight of footing $\quad=10 \%$ of live load
$=76.7 \mathrm{KN}$
$=843.7 \mathrm{KN}$
overall load
$=195 \mathrm{KN} / \mathrm{m}^{2}$
Area of footing required $=8371 / 1951=4.29 \mathrm{~m}^{2}$
Provide footing of dimension $=2 \times 2.2 \mathrm{~m}$
SOIL PRESSURE FOR DESIGN:

$$
\begin{aligned}
\mathrm{q}_{\mathrm{u}} & =1150 /(2 \mathrm{X} \mathrm{2.2}) \\
& =261.36 \mathrm{KN} / \mathrm{m}^{2} \\
& =0.261 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056

ONE WAY SHEAR:

Lets Assume $\mathrm{p}_{\mathrm{t}}=0.15, \tau_{\mathrm{c}}$ for M_{20} concrete $=0.32 \mathrm{~N} / \mathrm{mm} 2$ $\mathrm{V}_{\mathrm{u}}=\tau_{\mathrm{c}} \mathrm{b}$ d

$$
0.261 * 1500(1275-d)=0.320 * 1500 * d
$$

$\mathrm{d}=572.76 \mathrm{~mm}$
Take $\mathrm{d}=600 \mathrm{~mm}$

$$
\mathrm{D}=650 \mathrm{~mm}
$$

CHECK FOR DEPTH:

Fig -8: Cross-section for one way shear
M_{u}
$=q_{u} X 2000 X\left(775^{\wedge} 2\right) / 8$
$=0.255$ X 2000 X 775^2/8
$=38.28 \mathrm{KN}-\mathrm{m}$
M_{u}
$\mathrm{M}_{\mathrm{ulim}}$
$=0.138 \mathrm{f}_{\mathrm{ck}} \mathrm{bd}^{\wedge} 2$
$=0.138 \mathrm{X} 20 \mathrm{X} 2000 \mathrm{X} 600^{\wedge} 2$
$=1987.2 \mathrm{KN}-\mathrm{m}$ less than M_{u} safe in depth

Check for two-way share :

Fig -9: Cross-section for two-way shear
Perimeter of resisting section

$$
\mathrm{b}_{1}
$$

$$
=20^{*}(680+460)
$$

$$
=2280 \mathrm{~mm}
$$

Resisting area $\quad=$ perimeter xd

$$
=2280 \times 600
$$

$$
=1.368 \mathrm{x} 106 \mathrm{~mm}^{2}
$$

Punching shear force $=38.28[3.00 * 1.5-0.68 * 0.46$ $=160 \mathrm{KN}$
Nominal shear (τv) $=\mathrm{Vu} /($ resisting area) $=$ (160x $\left.10^{\wedge} 3\right) /\left(1.368 \times 10^{\wedge} 6\right)=00.117 \mathrm{~N} / \mathrm{mm}^{2}$
But permissible shear stress $=\mathrm{ks} * \tau c$

$$
\mathrm{ks}=(0.50+\beta)<01
$$

$$
\begin{aligned}
& \beta_{1}=\mathrm{b} / \mathrm{d}=230 / 600=0.4 \\
& \mathrm{k}_{\mathrm{s}}=0.960 \quad
\end{aligned} \quad \text { Take } \mathrm{k}_{\mathrm{s}}=1 .
$$

$\tau \mathrm{C}=0.250 \sqrt{ }\left(\mathrm{f}_{\mathrm{ck}}\right)=0.25 \mathrm{x} \sqrt{200}=1.110 \mathrm{~N} / \mathrm{mm}^{2}$
Permissible shear stress $=1.11 \mathrm{~N} / \mathrm{mm}^{2}>\tau_{\mathrm{v}}$
footing are safe in two way shear.

DESIGN OF REINFORCEMENT:

In long direction:
$\mathrm{M}_{\mathrm{u}} \quad=155.45 \times 106$
$\mathrm{M}_{\mathrm{u}} \quad=0.87 \mathrm{X} \mathrm{f}_{\mathrm{y}}$ X A Ast $\left.\mathrm{X} \mathrm{d} \mathrm{X} \mathrm{[1-(A}_{\text {st }} \mathrm{X} \mathrm{f} \mathrm{y}\right) /\left(\mathrm{f}_{\mathrm{ck}} \mathrm{X}_{\mathrm{b}} \mathrm{X}\right.$
d)]38.28X106
$=0.87 \mathrm{X} 415 \mathrm{xA}_{\mathrm{st}} \mathrm{X} 600 \mathrm{X}\left[1\left(\mathrm{~A}_{\mathrm{st}} \mathrm{X} 415\right) /(20 \mathrm{X} 2200 \mathrm{X}\right.$
600)]

A_st $\quad=117.200 \mathrm{~mm}^{2}$
Ast ${ }_{\text {min }} \quad=0.12 \%$ cross sectional area
$=0.0012 * 3000 * 6500=2340 \mathrm{~mm}^{2}$
$\mathrm{A}_{\text {_st }}<$ Ast $_{\text {min }}$
hence provide Ast $_{\text {min }}$
Use 16 bar
Spacing $=\left(\pi / 4 \times 16^{\wedge} 2\right) / 2340 \times 1500 \approx 130 \mathrm{~mm}$
Provide 16 bars @ 1300 mm c/c
In short direction:
M_{u}
M_{u}
xd)]
$\mathrm{M}_{\mathrm{u}} \quad=0.87 \mathrm{x} 415 \mathrm{x}$ Ast x 600 x [1-(Ast x
415)/(20 x $2000 \times 600)$]
$\mathrm{A}_{\text {st }} \quad=117.25 \mathrm{~mm}^{2}$
$\mathrm{A}_{\text {st min }} \quad=0.12 \%$ * cross sectional area

$$
=0.0012 \times 1500 \times 650=1170 \mathrm{~mm}^{2}
$$

$\mathrm{A}_{\mathrm{st}}<\mathrm{A}_{\text {st min }}$
hence provide $\mathrm{A}_{\text {st min }}$
Use 16 diameter bar
Spacing $=\left(\pi / 4 \times 16^{\wedge} 2\right) / 1170 \times 1500 \approx 250 \mathrm{~mm}$
Provide 16 diameter bar @ 250 mm c/c

Fig -10: Reinforcement details of rectangle Footing

7. Conclusion

-This project study attended to provide information of the component of a multi-story structural drawing are reviewed, a concept of structural parts may be obtained. -For all loading combinations, ETABS used employed for the analysis since it minimizes time and provides the needed accuracy.
-These structural components are tested to ensure that they meet the serviceability standards, and the dimensions of all structural components are sufficient.
-We may estimate the cost of the entire structure based on the "analysis and design " before the construction begins. As a result, the whole expenditure of the structure will be known ahead of time.

ACKNOWLEDGEMENT

Special thanks to "Swathi infostructures" and our guide Dr. M.S. Shobha.

REFERENCES

[1] Divya Bahraini HOD Nova College of Engineering and Technology: "Optimized Design of a G+20 Storied Building Using ETABS". There is a gradual increase in the value of lateral forces from the bottom floor to top floor in software analysis IJMET, vol-3 Oct. 2016(1520-1529)
[2] Rohit Kumar. : Analysis and design of Multistory Structure Using ETABS (IRJET)." The analysis and design results obtained from software are safe when compared with manual calculations and design". IRJET May 2017 3504-3509
[3] V. Varalakshmi: "The design and analysis of multistore G+4 building at kukatpally", Hyderabad, India. IRJET June 2016 887-891.
[4] IS 456-2000, Code of Practice Plain and Reinforced concrete.
[5] IS 875-1987 (Part 1) - 1987, Code of Practice for Design Loads (other than earthquake) for buildings and structures.
[6] IS 875-1987 (Part 2) - 1987, Code of Practice for Design Loads (other than earthquake) for buildings and structures - Imposed loads.
[7] IS-SP-16:1980, code design aids for reinforced concrete.

BIOGRAPHIES

Ananda G
P.G. Scholar

Department of Civil Engineering., RYM ENGINEERING COLLEGE BALLARI, Karnataka, India.

Dr. M.S. Shobha

Professor.
Department of Civil Engineering., RYM ENGINEERING COLLEGE BALLARI, Karnataka, India.

