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Abstract - In the discipline of aerodynamics, most issues are 
conventionally solved by solving the appropriate partial 
differential equations (PDE). However, some issues such as 
flow field prediction are often high dimensional, highly non-
linear, and multi-scale making it extremely difficult to discover 
an analytical solution or provide a completely acceptable 
explanation. In most cases, these difficult to solve issues are 
treated utilising numerical methods, which can aid in 
obtaining numerical answers and producing an 
approximation to analytical solution. Nonetheless, numerical 
approaches are typically time-consuming and have a 
significant likelihood of diverging throughout the calculation 
process.  
 
Machine learning is currently widely employed in a variety of 
sectors to tackle challenges of all types. With the advancement 
of computer science and the increasing magnitude of datasets 
various efficient methods of computation have emerged. 
 
This work involved obtaining aerodynamic characteristics of 
airfoils from numerical simulation tool JavaFoil and 
generation of Airfoil images based on coordinates obtained 
from UIUC Airfoil data repository. The images are later 
transformed to embed flow conditions (Reynolds Number, 
Mach Number). In reference to Neural Network, Pytorch 
software package was used and Python as programming 
language. 
 
The developed convolutional neural network (CNN) models 
allow to choose any Mach number from 0-0.7, Reynold’s 
number from 30000-1630000 and work on any airfoil.  They 
can predict aerodynamic characteristics of airfoils faster 
compared to Computational Fluid Dynamics (CFD) method or 
any other numerical software. Hence, reducing time 
expenditure and computational cost associated with CFD 
analysis. 
 
Key Words:  Computational Fluid Dynamics (CFD), 
Artificial Intelligence (AI), Convolutional Neural 
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1.INTRODUCTION 

Choosing the correct airfoil is an important step in the early 
stage of any aerial vehicle design since its shape has a direct 
impact on the overall aerodynamic characteristics of the 
aircraft or rotorcraft. Aerodynamic characteristics in 
addition to providing a measure of performance are used to 
create additional subsystems such as a flight control system 
and to anticipate complex dynamic phenomena such as 
aeroelastic instability.  

These characteristics can be derived experimentally by wind 
tunnel testing or numerically via numerical simulation of the 
underlying basic equations of fluid dynamics depending on 
the accuracy required.  

Complex flows around the airfoils are modelled using 
computational fluid dynamics (CFD) on a daily basis in the 
area of aerodynamics, since CFD tools have already reached 
an appropriate degree of maturity. However, this implies a 
large computing cost which may be infeasible in some cases 
presently. To address this constraint, the CFD solver might 
be replaced by a surrogate model that generates a quick 
forecast of the aerodynamic characteristics based on past 
simulations or wind tunnel data.  

Machine learning techniques which are widely utilised in the 
field of artificial intelligence (AI) can provide significant aid 
in reducing the computing cost necessary for aerodynamic 
analysis. Machine learning techniques are currently being 
utilised in a variety of commercial sectors to exploit data in 
order to spot trends, find specific traits, patterns, and even 
forecast the future. One of the most important advantages of 
the machine learning method is its high working efficiency. 
As a result, many engineering problems particularly those 
involving numerical calculations can be solved in a relatively 
short period of time when certain and proper machine 
learning methods are implemented. However, the use of 
these concepts in the field of aerodynamics is still in its early 
phases. 

1.1 Methodology 

Methodology adopted for this work is application of 
Python language to create airfoil images using airfoil data 
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repository, Numerical analysis to obtain aerodynamic 
characteristics of airfoils. Generating master dataset 
involving flow conditions to develop Convolutional Neural 
Network (CNN) model for predicting aerodynamic 
characteristics of airfoils. 

2. NUMERICAL SIMULATION 

The key to processing airfoil data is to prepare the input 
images. The CNN prediction model typically receives an 
image as input, a two-dimensional matrix for grayscale 
images and three two-dimensional matrices for colour 
images. The airfoil picture is grayscale image which can be 
used directly as input to the CNN model.  

The flow conditions are three numerical parameters (Angle 
of Attack, Mach number, Reynold’s number) that could not 
be utilised directly as input to the CNN prediction model. As 
a result, they are transformed into images in order to be 
identified. 

2.1 Image Generation 

As raw data, the UIUC Airfoil Data Site [1] which provides 
coordinates for almost 1600 mainstream airfoils ranging 
from the NACA 4-digit series to the Selig series is used. The 
raw coordinate pairs are converted into greyscale images. 

The coordinate matrix is initially plotted as a contour 
image of 128 pixels by 128 pixels for each airfoil sample. 
Because aerodynamic performance of airfoils is very 
sensitive to subtle changes in shape, image size is set 
to (128x128) pixels instead of the normally smaller size, 
such as (28x28) in MNIST dataset or (32x32) in NIST36 
dataset as it is critical to maintain a decent resolution to 
maintain prediction accuracy. However, because there is not 
too many subtle feature information in the airfoil, making 
the contour size with resolution as high as (256x256) in 
the dataset would be computationally costly [2]. When 
accuracy and computation are considered, an image size of 
(128x128) will be the optimum match for the application in 
airfoil data. 

 

Fig -1: A snippet of Transformed Airfoil Images (TAIs) of 
an airfoil at various angles of attack, Reynolds number and 

Mach number. 

The grayscale airfoil images are generated with the help 
of Python at various angles of attack. For this work, angle of 
attack varies from -5° to +20°. Later, these images are used 
to generate three channel images involving all the flow 

conditions. These generated images are Transformed Airfoil 
Image (TAI) which are complex representation of airfoil 
shape, angle of attack, Mach number and Reynolds number. 

2.2 Ground Truth Calculation 

The aerodynamic data is collected by a series of computer 
simulations. Given the expected variation in flow conditions 
and airfoil shapes, JavaFoil is selected as the simulation tool 
for determining aerodynamic characteristics. 

JavaFoil is a simple software that analyses airfoils using 
numerous standard approaches [3]. 

For this work, range of Mach number considered is 0-0.7 
with step size of 0.2 and for Reynolds number from 30000-
1630000 with step size of 400000. A total of 102 airfoils 
comprising NACA 4 and NACA 6 series are used for model 
development. Output files in text format are obtained using 
JavaFoil for all the airfoils at different Reynolds and Mach 
number. 

 

Fig -2: Output File from JavaFoil for an airfoil for  
Re- 30000 and M- 0.4 

2.3 Dataset Generation 

The first and most important stage in determining the 
relation between aerodynamic characteristics and airfoil 
geometry using a neural network is to provide input data 
with suitable mathematical representation for training the 
neural network. Flow conditions, aerodynamic characteristics 
and airfoil images constitute the airfoil data. 

Aerodynamic characteristics obtained from JavaFoil are in 
text format. All the text files of various airfoils at different 
Mach numbers and Reynolds number are read using Python 
to generate a consolidated file which acts as master dataset 
for development of the model. Fig 3 shows a snippet of the 
master dataset. 
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Fig -3: Master Dataset (csv format) 

3. MODEL ARCHITECTURE 

An initial model architecture was selected and later OPTUNA 
[4], a hyperparameter optimization framework was used to 
automate hyperparameter selection. The hyperparameters 
optimized included dropout rate, batch size, learning rate 
and fully connected layer input dimension.  

 
Table -1: Hyperparameters 

 

Hyper-parameter 

Learning Rate 0.00506 

Batch Size 50 

Drop-out Rate 0.2 

FC-2 in-features 650 

 
Final model architecture is as follows: 
 
 5 Convolution layers  

 
I. Layer 1 

 
2D convolution with input channel = 3, output channel 
= 20 and kernel size of 5x5. Followed by batch 
normalization and max pooling with kernel size of 
2x2. Lastly, ReLU as activation function. 
 

II. Layer 2  
 

2D convolution with input channel = 20, output 
channel = 40 and kernel size of 3x3. Followed by batch 
normalization and max pooling with kernel size of 
2x2. Lastly, ReLU as activation function. 
 

III. Layer 3  
 

2D convolution with input channel = 40, output 
channel = 80 and kernel size of 3x3. Followed by batch 
normalization and max pooling with kernel size of 
2x2. Lastly, ReLU as activation function. 
 
 

IV. Layer 4 
 

2D convolution with input channel = 80, output 
channel = 160 and kernel size of 3x3. Followed by 
batch normalization and max polling with kernel size 
of 2x2. Lastly, ReLU as activation function. 
 

V. Layer 5 
 

2D convolution with input channel = 160, output 
channel = 200 and kernel size of 2x2. Followed by 
batch normalization, max polling with kernel size of 
3x1 and drop out set to 0.2. Lastly, ReLU as activation 
function. 

 
 2 Fully connected layers 

 
I. First fully connected (FC) layer has linear function 

which transforms the incoming data. Input 
features = 1800 and output features = 650. Drop 
out is set to 0.2 and ReLU as activation function. 
 

II. Second FC layer has input features = 650 and output 
features = 1. 

 
4. MODEL DEVELOPMENT 
 

4.1 Model for CL Prediction 

Model is trained on the training data which constitutes 
72% of the master dataset and its performance is validated 
after each epoch using validation dataset which constitutes 
18% of the master dataset. After the training is completed, 
model is evaluated on test dataset which is 10% of the 
master dataset. During the training process the model 
converged after 100 epochs, as losses and accuracies of each 
subsequent epoch remained same. Also, further training 
could overfit the model causing it to lose its generalization 
capabilities. 

 

 
 

Fig -4: Loss Plot 
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Fig -5: Accuracy Plot 

Test accuracy obtained is 92.32%. The confusion matrix 
shows the prediction capability of the model. 

 

Fig -6: Confusion Matrix 

4.2 Model for CD Prediction 

During the training process the model converged after 
150 epochs, as losses and accuracies of each subsequent 
epoch remained same. Also, further training could overfit the 
model causing it to lose its generalization capabilities. 

 

Fig -7: Loss Plot 

 

Fig -8: Accuracy Plot 

Test accuracy obtained is 81.42%. The confusion matrix 
shows the prediction capability of the model. 

 

Fig -9: Confusion Matrix 

4.3 Model for  Prediction 

During the training process the model converged after 
180 epochs, as losses and accuracies of each subsequent 
epoch remained same. Also, further training could overfit the 
model causing it to lose its generalization capabilities. 

 

Fig -10: Loss Plot 
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Fig -11: Accuracy Plot 

Test accuracy obtained is 81.29%. The confusion matrix 
shows the prediction capability of the model. 

 

Fig -12: Confusion Matrix 

These models developed can be used to predict each 
aerodynamic characteristic individually or all the models can 
be used at the same time to make inference. The models 
allow to choose any Mach number from 0-0.7, Reynold’s 
number from 30000- 1630000 and work on any airfoil. 

5. MODEL INFERENCE 

5.1 Prediction of Aerodynamic Characteristics of 
Airfoils 

After the model development is completed, the next step 
is to put the model in inference mode to start using it for 
predicting the aerodynamic characteristics of airfoils. Input 
file of any airfoil is created using python for specified flow 
conditions which allows the model to call the input images 
and later it predicts the output and stores it in the same file. 

 

Two cases are considered for analyzing model 
performance: 

1. Airfoil which is part of the dataset (NACA 6409) 

2. Airfoil which is not part of the dataset (NACA 13013) 

 NACA 6409 

 

 

 

Fig -13: Inference Graphs for NACA 6409 airfoil 

Flow conditions- Reynold’s No- 430000, Mach No- 0.2 

The graphs of inference obtained from the models and 
the actual data shows that the model has predicted 
aerodynamic characteristics quite accurately. 
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 NACA 13013 
 

 
 

Fig -14: Inference Graphs for NACA 13013 airfoil 

 

 

 
 

Fig -15: Inference Graphs for NACA 13013 airfoil 

 
Flow conditions- Reynold’s No- 430000, Mach No-0.2 
 
It can be observed that model has good accuracy on 

airfoils which were not part of the dataset. It took 0.66 
second for the model to make predictions (All aerodynamic 
characteristics). However, there is large error is predicting 

 compared to other parameters. 

 
A batch analysis involving prediction of aerodynamic 

characteristics of airfoils using the model and XFLR5 [5] 
shows, CNN model is 50 times efficient compared to XFLR5. 

Table -2: Efficiency Comparison 

 

 

 
 

Fig -16: Efficiency Plot 

 
6. CONCLUSION 
 
This work contributes toward development of a surrogate 
model which can predict aerodynamic characteristics of 
airfoil subjected to various flow conditions. The developed 

CNN model can predict CL, CD and  for different airfoils 

with the help of generated Transformed Airfoil Images (TAI) 
using flow conditions and coordinates of the airfoil. 
 
The CNN model has high level of accuracy for airfoils which 
were part of dataset as well as airfoils which are new to the 
model. For CL model, accuracy is 92.32%, CD model it is 

81.42% and for  it is 81.29%. It took 100 epochs to train CL 

model, 150 epochs to train CD model and 180 epochs to train 

 model. 

 
Model inference shows the capability of the model in 
prediction of the aerodynamic characteristics. It took 0.66 
second for the model to make predictions (All aerodynamic 
characteristics) which is highly efficient compared to CFD 
analysis as well as batch mode of XFLR5. CNN model is 50 
times efficient compared to batch mode of XFLR5. The 
models work on any airfoil. They allow to choose any Mach 
number from 0-0.7 and Reynold’s number from 30000- 
1630000. 
 

Batch Size (sec) CNN (sec) XFLR5 (sec) 

10 4.48 148.31 

20 8.56 270.57 

30 12.98 631.26 

50 20.94 1256.4 

100 40.45 2507.13 
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However, there is high error is predicting  compared to 

other parameters for airfoils due to high dispersion of the 
data. 
 
The performance of the models can be improved by 
increasing the size of the dataset along with the application 
of Virtual Machines to train the model, due to high training 
time requirement of the model. 
 
However, in its current state the developed models are ready 
to predict the aerodynamic characteristics with 15% relative 
tolerance and it can help to curb the time taken during 
preliminary stage of airfoil selection. 
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