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Abstract - Due to advancement of new technology in the 
field of VLSI and Embedded system, there is an increasing 
demand of high speed and low power consumption processor. 
Speed of processor greatly depends on its multiplier as well as 
adder performance. Matrix multiplication is the kernel 
operation used in many transform, image and discrete signal 
processing application. We develop new algorithms and new 
techniques for matrix multiplication on configurable devices. 
In this paper, we have proposed three designs for matrix-
matrix multiplication. These design reduced hardware 
complexity, throughput rate and different input/output data 
format to match different application needs. In spite of 
complexity involved in floating point arithmetic, its 
implementation is increasing day by day.  Due to which high 
speed adder architecture become important. Several adder 
architecture designs have been developed to increase the 
efficiency of the adder. In this paper, we introduce an 
architecture that performs high speed IEEE 754 floating point 
multiplier using carry select adder (CSA). Here we are 
introduced two carry select based design. These designs are 
implementation Xilinx Vertex device family.  

Key Words:  IEEE754, Single Precision Floating Point (SP 
FP), Double Precision Floating Point (DP FP), Matrix 
Multiplication 

1. INTRODUCTION  

With the growth in scale of integration circuits, more and 
more sophisticated digital signal processing circuits are 
being implemented in (field programmable gate array) FPGA 
based circuit. Indeed, FPGA have become an attractive fabric 
for the implementation of computationally intensive 
application such as digital signal processing, image, graphics 
card and network processing tasks used in wireless 
communication. These complex signal processing circuits 
not only demand large computational capacity but also have 
high energy and area requirements. Though area and speed 
of operation remain the major design concerns, power 
consumption is also emerging as a critical factor for present 
VLSI system designers [1]-[4]. The need for low power VLSI 
design has two major motivations. First, with increase in 
operating frequency and processing capacity per chip, large 
current have to be delivered and the heat generated due to 
large power consumption has to be dissipated by proper 
cooling techniques, which account for additional system cost. 
Secondly, the exploding market of portable electronic 

appliances demands for complex circuits to be powered by 
lightweight batteries with long times between re-charges 
(for instance [5]. 

Another major implication of excess power consumption is 
that it limits integrating more transistors on a single chip or 
on a multiple-chip module. Unless power consumption is 
dramatically reduced, the resulting heat will limit the 
feasible packing and performance of VLSI circuits and 
systems. From the environmental viewpoint, the smaller the 
power dissipation of electronic systems, the lower heat 
pumped into the surrounding, the lower the electricity 
consumed and hence, lowers the impact on global 
environment [6]. 

Matrix multiplication is commonly used in most signal 
processing algorithms. It is also a frequently used kernel 
operation in a wide variety of graphics, image processing as 
well as robotic applications. The matrix multiplication 
operation involves a large number of multiplication as well 
as accumulation. Multipliers have large area, longer latency 
and consume considerable power compared to adders. 
Registers, which are required to store the intermediate 
product values, are also major power intensive component 
[7]. These components pose a major challenge for designing 
VLSI structures for large-order matrix multipliers with 
optimized speed and chip-area. However, area, speed and 
power are usually conflicting hardware constraints such that 
improving upon one factor degrades the other two. The real 
numbers represented in binary format are known as floating 
point numbers. Based on IEEE-754 standard, floating point 
formats are classified into binary and decimal interchange 
formats. Floating point multipliers are very important in dsp 
applications. This paper focuses on double precision 
normalized binary interchange format. Figure 1 shows the 
IEEE-754 double precision binary format representation. 
Sign (s) is represented with one bit, exponent (e) and 
fraction (m or mantissa) are represented with eleven and 
fifty two bits respectively. 

2. DIFFERENT TYPES OF ADDER 

Parallel Adder:- 

Parallel adder can add all bits in parallel manner i.e. 
simultaneously hence increased the addition speed. In this 
adder multiple full adders are used to add the two 
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corresponding bits of two binary numbers and carry bit of the 
previous adder. It produces sum bits and carry bit for the 
next stage adder. In this adder multiple carry produced by 
multiple adders are rippled, i.e. carry bit produced from an 
adder works as one of the input for the adder in its 
succeeding stage. Hence sometimes it is also known as Ripple 
Carry Adder (RCA). Generalized diagram of parallel adder is 
shown in figure 3. 

 

Fig -1: Parallel Adder (n=7 for SPFP and n=10 for DPFP) 

An n-bit parallel adder has one half adder and n-1full adders 
if the last carry bit required. But in 754 multiplier’s exponent 
adder, last carry out does not required so we can use XOR 
Gate instead of using the last full adder. It not only reduces 
the area occupied by the circuit but also reduces the delay 
involved in calculation. For SPFP and DPFP multiplier’s 
exponent adder, here we Simulate 8 bit and 11 bit parallel 
adders respectively as show in figure 4. 

 

Fig -2: Modified Parallel Adder (n=7 for SPFP and n=10 for 
DPFP) 

Carry Select Adder:- 

Carry select adder uses multiplexer along with RCAs in which 
the carry is used as a select input to choose the correct output 
sum bits as well as carry bit. Due to this, it is called Carry 
select adder. In this adder  two RCAs are used to calculate the 
sum bits simultaneously for the same bits assuming two 
different  carry inputs i.e. ‘1’  and ‘0’. It is the responsibility of 
multiplexer to choose correct output bits out of the two, once 
the correct carry input is known to it. Multiplexer delay is 
included in this adder. Generalized figure of Carry select 
adder is shown in figure 3.9. Adders are the basic building 
blocks of most of the ALUs (Arithmetic logic units) used in 
Digital signal processing and various other applications. 
Many types of adders are available in today’s scenario and 
many more are developing day by day. Half adder and Full 

adder are the two basic types of adders. Almost all other 
adders are made with the different arrangements of these 
two basic adders only. Half adder is used to add two bits and 
produce sum and carry bits whereas full adder can add three 
bits simultaneously and produces sum and carry bits. 

 

Fig -3: Carry Select Adder 

3. PROPOSED METHODOLOGY 

Proposed Parallel-Parallel Input and Multi Output(PPI-MO) 

In this design, we opted for faster operating speed by 
increasing the number of multipliers and registers 
performing the matrix multiplication operation. From 
equation 2 we have derived for parallel computation of 3 × 3 
matrix-matrix multiplication and the structure is shown in 
figure 4. 

 

Fig -4: Proposed PPI – MO Design for n = 3 

For an n×n matrix – matrix multiplication, the operation is 

performed using 
2n number of multipliers, 

2n  number of 

registers and nn 2

 number of adders. The registers are 

used to store the partial product results. Each of the 
2n  

number of multipliers has one input from matrix B and the 
other input is obtained from a particular element of matrix A.  
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The dataflow for matrix B is in row major order and is fed 
simultaneously to the particular row of multipliers such that 

the 
thi  row of matrix B is simultaneously input to the 

thi  
row of multipliers, where 1 < i < n . The elements of matrix 

are input to the multipliers such that, 
thij ),(  element of 

matrix A is input to the 
thji ),( multiplier, where1 < i,j < n. 

The resultant products from each column of multipliers are 
then added to give the elements of output matrix C. In one 
cycle, n elements of matrix C are calculated, so the entire 
matrix the elements of matrix C are obtained in column 
major order with n elements multiplication operation 
requires n cycles to complete. 

Let us consider the example of a 3×3 matrix – matrix 
multiplication operation, for a better analysis of the design 
(as shown in figure 1). The hardware complexities involved 
for this design are 9 multipliers, 9 registers and 6 adders. 
Elements from the first row of matrix B (b11 b12 b13) are 
input simultaneously to the first row of multipliers (M11 M12 
M13) in 3 cycles. Similarly, elements from other two rows of 
matrix B are input to the rest two rows of multipliers. A 
single element from matrix A is input to each of the 

multipliers such that,  
thij ),(  element of matrix A is input to 

the multiplier Mij, where 1 < i,j < 3. The resultant partial 
products from each column of multipliers (M1k M2k M3k 
where 1 < k 3) are added up in the adder to output the 
elements of matrix C. In each cycle, one column of elements 
from matrix C is obtained (C1k C2k C3k where1 < k < 3) and so 
the entire matrix multiplication operation is completed in 3 
cycles. 

Booth Multiplier 

There is no need to take the sign of the number into 
deliberation in dealing with unsigned multiplication. 
However in signed multiplication the process will be 
changed because the signed number is in a 2’s compliment 
pattern which would give a wrong result if multiplied by 
using similar process for unsigned multiplication [6]. Booth’s 
algorithm is used for this. Booth’s algorithm preserves the 
sign of the result. Booth multiplication allows for smaller, 
faster multiplication circuits through encoding the signed 
numbers to 2’s complement, which is also a standard 
technique used in chip design, [6] and provides significant 
improvements by reducing the number of partial product to 
half over “long multiplication” techniques. Radix 2 is the 
conventional booth multiplier. 

Radix 2  

In booth multiplication, partial product generation is done 
based on recoding scheme e.g. radix 2 encoding. Bits of 
multiplicand (Y) are grouped from left to right and 
corresponding operation on multiplier (X) is done in order to 
generate the partial product [19]. In radix-2 booth 

multiplication partial product generation is done based on 
encoding which is as given by Table1. Parallel Recoding 
scheme used in radix-2 booth multiplier is shown in the 
Table 1. 

Table -1: Booth recoding for radix 2 

 

Radix-4 

To further decrease the number of partial products, 
algorithms with higher radix value are used. In radix-4 
algorithm grouping of multiplier bits is done in such a way 
that each group consists of 3 bits as mentioned in table 1. 
Similarly the next pair is the overlapping of the first pair in 
which MSB of the first pair will be the LSB of the second pair 
and other two bits. Number of groups formed is dependent 
on number of multiplier bits. By applying this algorithm, the 
number of partial product rows to be accumulated is 
reduced from n in radix-2 algorithm to n/2 in radix-4 
algorithm. The grouping of multiplier bits for 8-bit of 
multiplication is shown in figure 5. 

 

Fig -5: Grouping of multiplier bits in Radix-4 Booth 
algorithm 

For 8-bit multiplier the number groups formed is four using 
radix-4 booth algorithm. Compared to radix-2 booth 
algorithm the number of partial products obtained in radix-4 
booth algorithm is half because for 8-bit multiplier radix-2 
algorithm produces eight partial products. The truth table 
and the respective operation is depicted in table 1. Similarly 
when radix-8 booth algorithm is applied to multiplier of 8-
bits each group will consists of four bits and the number of 
groups formed is 3. For 8x8 multiplications, radix-4 uses 
four stages to compute the final product and radix-8 booth 
algorithm uses three stages to compute the product. In this 
thesis, radix-4 booth algorithm is used for 8x8 
multiplications because number components used in radix-4 
encoding style. 
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Table -2: Truth Table for Radix-4 Booth algorithm 

 

 4. SIMULATION RESULT 

All the designing and experiment regarding algorithm that 
we have mentioned in this paper is being developed on 
Xilinx 6.2i updated version. Xilinx 6.2i has couple of the 
striking features such as low memory requirement, fast 
debugging, and low cost. The latest release of ISETM 

(Integrated Software Environment) design tool provides the 
low memory requirement approximate 27 percentage low. 
ISE 6.2i that provides advanced tools like smart compile 
technology with better usage of their computing hardware 
provides faster timing closure and higher quality of results 
for a better time to designing solution. 

Table -3: Comparison Result 

 

Table -4: Simulation result for 3×3 and 4×4 Matrix 
Multiplication 

Structure Dimension Slice LUTs IOBs Delay (ns) 

Previous 
Design [1] 

 

 

3×3 

112 164 81 15.517 

MM using 
PPI-SO 

44 15 34 11.222 

MM using 93 154 74 15.058 

PPI-MO 

MM using 
PFI-MO 

34 55 38 9.128 

Previous 
Design [1] 

 

 

4×4 

248 412 96 17.227 

MM using 
PPI-SO 

49 88 42 13.771 

MM using 
PPI-MO 

221 388 74 15.058 

MM using 
PFI-MO 

39 72 48 11.543 

 

5. CONCLUSION 

Most of the digital signal processing (DSP) algorithms is 
formulated as matrix-matrix multiplication, matrix-vector 
multiplication and vector-vector (Inner-product and outer-
product) form. Few such algorithms are digital filtering, 
sinusoidal transforms, wavelet transform etc. The size of 
matrix multiplication or inner-product computation is 
usually large for various practical applications. On the other 
hand, most of these algorithms are currently implemented in 
hardware to meet the temporal requirement of real-time 
application [9]. When large size matrix multiplication or 
inner product computation is implemented in hardware, the 
design is resource intensive. It consumes large amount of 
chip area and power. With such a vast application domain, 
new designs are required to cater to the constraints of chip 
area and power and high speed. 

IEEE754 standardize two basic formats for representing 
floating point numbers namely, single precision floating 
point and double precision floating point. Floating point 
arithmetic has vast applications in many areas like robotics 
and DSP. Delay provided and area required by hardware are 
the two key factors which are need to be consider Here we 
present single precision floating point multiplier by using 
two different adders namely modified  CSA with dual RCA 
and modified CSA with RCA and BEC. 
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