
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 10 | Oct 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 764

High Speed and Area Efficient Matrix Multiplication using Radix-4

Booth Multiplier

Amit Kumar Gautam1, Prof. Gurpreet Singh2

1 Research Scholar, Trinity Institute of Technology & Research, Bhopal, India
2 Professor Electronics’ & Communication Dept., Trinity Institute of Technology & Research, Bhopal, India

---***---
Abstract - Due to advancement of new technology in the
field of VLSI and Embedded system, there is an increasing
demand of high speed and low power consumption processor.
Speed of processor greatly depends on its multiplier as well as
adder performance. Matrix multiplication is the kernel
operation used in many transform, image and discrete signal
processing application. We develop new algorithms and new
techniques for matrix multiplication on configurable devices.
In this paper, we have proposed three designs for matrix-
matrix multiplication. These design reduced hardware
complexity, throughput rate and different input/output data
format to match different application needs. In spite of
complexity involved in floating point arithmetic, its
implementation is increasing day by day. Due to which high
speed adder architecture become important. Several adder
architecture designs have been developed to increase the
efficiency of the adder. In this paper, we introduce an
architecture that performs high speed IEEE 754 floating point
multiplier using carry select adder (CSA). Here we are
introduced two carry select based design. These designs are
implementation Xilinx Vertex device family.

Key Words: IEEE754, Single Precision Floating Point (SP
FP), Double Precision Floating Point (DP FP), Matrix
Multiplication

1. INTRODUCTION

With the growth in scale of integration circuits, more and
more sophisticated digital signal processing circuits are
being implemented in (field programmable gate array) FPGA
based circuit. Indeed, FPGA have become an attractive fabric
for the implementation of computationally intensive
application such as digital signal processing, image, graphics
card and network processing tasks used in wireless
communication. These complex signal processing circuits
not only demand large computational capacity but also have
high energy and area requirements. Though area and speed
of operation remain the major design concerns, power
consumption is also emerging as a critical factor for present
VLSI system designers [1]-[4]. The need for low power VLSI
design has two major motivations. First, with increase in
operating frequency and processing capacity per chip, large
current have to be delivered and the heat generated due to
large power consumption has to be dissipated by proper
cooling techniques, which account for additional system cost.
Secondly, the exploding market of portable electronic

appliances demands for complex circuits to be powered by
lightweight batteries with long times between re-charges
(for instance [5].

Another major implication of excess power consumption is
that it limits integrating more transistors on a single chip or
on a multiple-chip module. Unless power consumption is
dramatically reduced, the resulting heat will limit the
feasible packing and performance of VLSI circuits and
systems. From the environmental viewpoint, the smaller the
power dissipation of electronic systems, the lower heat
pumped into the surrounding, the lower the electricity
consumed and hence, lowers the impact on global
environment [6].

Matrix multiplication is commonly used in most signal
processing algorithms. It is also a frequently used kernel
operation in a wide variety of graphics, image processing as
well as robotic applications. The matrix multiplication
operation involves a large number of multiplication as well
as accumulation. Multipliers have large area, longer latency
and consume considerable power compared to adders.
Registers, which are required to store the intermediate
product values, are also major power intensive component
[7]. These components pose a major challenge for designing
VLSI structures for large-order matrix multipliers with
optimized speed and chip-area. However, area, speed and
power are usually conflicting hardware constraints such that
improving upon one factor degrades the other two. The real
numbers represented in binary format are known as floating
point numbers. Based on IEEE-754 standard, floating point
formats are classified into binary and decimal interchange
formats. Floating point multipliers are very important in dsp
applications. This paper focuses on double precision
normalized binary interchange format. Figure 1 shows the
IEEE-754 double precision binary format representation.
Sign (s) is represented with one bit, exponent (e) and
fraction (m or mantissa) are represented with eleven and
fifty two bits respectively.

2. DIFFERENT TYPES OF ADDER

Parallel Adder:-

Parallel adder can add all bits in parallel manner i.e.
simultaneously hence increased the addition speed. In this
adder multiple full adders are used to add the two

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 10 | Oct 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 765

corresponding bits of two binary numbers and carry bit of the
previous adder. It produces sum bits and carry bit for the
next stage adder. In this adder multiple carry produced by
multiple adders are rippled, i.e. carry bit produced from an
adder works as one of the input for the adder in its
succeeding stage. Hence sometimes it is also known as Ripple
Carry Adder (RCA). Generalized diagram of parallel adder is
shown in figure 3.

Fig -1: Parallel Adder (n=7 for SPFP and n=10 for DPFP)

An n-bit parallel adder has one half adder and n-1full adders
if the last carry bit required. But in 754 multiplier’s exponent
adder, last carry out does not required so we can use XOR
Gate instead of using the last full adder. It not only reduces
the area occupied by the circuit but also reduces the delay
involved in calculation. For SPFP and DPFP multiplier’s
exponent adder, here we Simulate 8 bit and 11 bit parallel
adders respectively as show in figure 4.

Fig -2: Modified Parallel Adder (n=7 for SPFP and n=10 for
DPFP)

Carry Select Adder:-

Carry select adder uses multiplexer along with RCAs in which
the carry is used as a select input to choose the correct output
sum bits as well as carry bit. Due to this, it is called Carry
select adder. In this adder two RCAs are used to calculate the
sum bits simultaneously for the same bits assuming two
different carry inputs i.e. ‘1’ and ‘0’. It is the responsibility of
multiplexer to choose correct output bits out of the two, once
the correct carry input is known to it. Multiplexer delay is
included in this adder. Generalized figure of Carry select
adder is shown in figure 3.9. Adders are the basic building
blocks of most of the ALUs (Arithmetic logic units) used in
Digital signal processing and various other applications.
Many types of adders are available in today’s scenario and
many more are developing day by day. Half adder and Full

adder are the two basic types of adders. Almost all other
adders are made with the different arrangements of these
two basic adders only. Half adder is used to add two bits and
produce sum and carry bits whereas full adder can add three
bits simultaneously and produces sum and carry bits.

Fig -3: Carry Select Adder

3. PROPOSED METHODOLOGY

Proposed Parallel-Parallel Input and Multi Output(PPI-MO)

In this design, we opted for faster operating speed by
increasing the number of multipliers and registers
performing the matrix multiplication operation. From
equation 2 we have derived for parallel computation of 3 × 3
matrix-matrix multiplication and the structure is shown in
figure 4.

Fig -4: Proposed PPI – MO Design for n = 3

For an n×n matrix – matrix multiplication, the operation is

performed using
2n number of multipliers,

2n number of

registers and nn 2

 number of adders. The registers are

used to store the partial product results. Each of the
2n

number of multipliers has one input from matrix B and the
other input is obtained from a particular element of matrix A.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 10 | Oct 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 766

The dataflow for matrix B is in row major order and is fed
simultaneously to the particular row of multipliers such that

the
thi row of matrix B is simultaneously input to the

thi
row of multipliers, where 1 < i < n . The elements of matrix

are input to the multipliers such that,
thij),(element of

matrix A is input to the
thji),(multiplier, where1 < i,j < n.

The resultant products from each column of multipliers are
then added to give the elements of output matrix C. In one
cycle, n elements of matrix C are calculated, so the entire
matrix the elements of matrix C are obtained in column
major order with n elements multiplication operation
requires n cycles to complete.

Let us consider the example of a 3×3 matrix – matrix
multiplication operation, for a better analysis of the design
(as shown in figure 1). The hardware complexities involved
for this design are 9 multipliers, 9 registers and 6 adders.
Elements from the first row of matrix B (b11 b12 b13) are
input simultaneously to the first row of multipliers (M11 M12
M13) in 3 cycles. Similarly, elements from other two rows of
matrix B are input to the rest two rows of multipliers. A
single element from matrix A is input to each of the

multipliers such that,
thij),(element of matrix A is input to

the multiplier Mij, where 1 < i,j < 3. The resultant partial
products from each column of multipliers (M1k M2k M3k
where 1 < k 3) are added up in the adder to output the
elements of matrix C. In each cycle, one column of elements
from matrix C is obtained (C1k C2k C3k where1 < k < 3) and so
the entire matrix multiplication operation is completed in 3
cycles.

Booth Multiplier

There is no need to take the sign of the number into
deliberation in dealing with unsigned multiplication.
However in signed multiplication the process will be
changed because the signed number is in a 2’s compliment
pattern which would give a wrong result if multiplied by
using similar process for unsigned multiplication [6]. Booth’s
algorithm is used for this. Booth’s algorithm preserves the
sign of the result. Booth multiplication allows for smaller,
faster multiplication circuits through encoding the signed
numbers to 2’s complement, which is also a standard
technique used in chip design, [6] and provides significant
improvements by reducing the number of partial product to
half over “long multiplication” techniques. Radix 2 is the
conventional booth multiplier.

Radix 2

In booth multiplication, partial product generation is done
based on recoding scheme e.g. radix 2 encoding. Bits of
multiplicand (Y) are grouped from left to right and
corresponding operation on multiplier (X) is done in order to
generate the partial product [19]. In radix-2 booth

multiplication partial product generation is done based on
encoding which is as given by Table1. Parallel Recoding
scheme used in radix-2 booth multiplier is shown in the
Table 1.

Table -1: Booth recoding for radix 2

Radix-4

To further decrease the number of partial products,
algorithms with higher radix value are used. In radix-4
algorithm grouping of multiplier bits is done in such a way
that each group consists of 3 bits as mentioned in table 1.
Similarly the next pair is the overlapping of the first pair in
which MSB of the first pair will be the LSB of the second pair
and other two bits. Number of groups formed is dependent
on number of multiplier bits. By applying this algorithm, the
number of partial product rows to be accumulated is
reduced from n in radix-2 algorithm to n/2 in radix-4
algorithm. The grouping of multiplier bits for 8-bit of
multiplication is shown in figure 5.

Fig -5: Grouping of multiplier bits in Radix-4 Booth
algorithm

For 8-bit multiplier the number groups formed is four using
radix-4 booth algorithm. Compared to radix-2 booth
algorithm the number of partial products obtained in radix-4
booth algorithm is half because for 8-bit multiplier radix-2
algorithm produces eight partial products. The truth table
and the respective operation is depicted in table 1. Similarly
when radix-8 booth algorithm is applied to multiplier of 8-
bits each group will consists of four bits and the number of
groups formed is 3. For 8x8 multiplications, radix-4 uses
four stages to compute the final product and radix-8 booth
algorithm uses three stages to compute the product. In this
thesis, radix-4 booth algorithm is used for 8x8
multiplications because number components used in radix-4
encoding style.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 10 | Oct 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 767

Table -2: Truth Table for Radix-4 Booth algorithm

 4. SIMULATION RESULT

All the designing and experiment regarding algorithm that
we have mentioned in this paper is being developed on
Xilinx 6.2i updated version. Xilinx 6.2i has couple of the
striking features such as low memory requirement, fast
debugging, and low cost. The latest release of ISETM

(Integrated Software Environment) design tool provides the
low memory requirement approximate 27 percentage low.
ISE 6.2i that provides advanced tools like smart compile
technology with better usage of their computing hardware
provides faster timing closure and higher quality of results
for a better time to designing solution.

Table -3: Comparison Result

Table -4: Simulation result for 3×3 and 4×4 Matrix
Multiplication

Structure Dimension Slice LUTs IOBs Delay (ns)

Previous
Design [1]

3×3

112 164 81 15.517

MM using
PPI-SO

44 15 34 11.222

MM using 93 154 74 15.058

PPI-MO

MM using
PFI-MO

34 55 38 9.128

Previous
Design [1]

4×4

248 412 96 17.227

MM using
PPI-SO

49 88 42 13.771

MM using
PPI-MO

221 388 74 15.058

MM using
PFI-MO

39 72 48 11.543

5. CONCLUSION

Most of the digital signal processing (DSP) algorithms is
formulated as matrix-matrix multiplication, matrix-vector
multiplication and vector-vector (Inner-product and outer-
product) form. Few such algorithms are digital filtering,
sinusoidal transforms, wavelet transform etc. The size of
matrix multiplication or inner-product computation is
usually large for various practical applications. On the other
hand, most of these algorithms are currently implemented in
hardware to meet the temporal requirement of real-time
application [9]. When large size matrix multiplication or
inner product computation is implemented in hardware, the
design is resource intensive. It consumes large amount of
chip area and power. With such a vast application domain,
new designs are required to cater to the constraints of chip
area and power and high speed.

IEEE754 standardize two basic formats for representing
floating point numbers namely, single precision floating
point and double precision floating point. Floating point
arithmetic has vast applications in many areas like robotics
and DSP. Delay provided and area required by hardware are
the two key factors which are need to be consider Here we
present single precision floating point multiplier by using
two different adders namely modified CSA with dual RCA
and modified CSA with RCA and BEC.

REFERENCES

[1] Di Yan, Wei-Xing Wang, Lei Zuo, Member, IEEE and Xiao-
Wei Zhang, “Revisiting the Adjoint Matrix for FPGA
Calculating the Triangular Matrix Inversion”, IEEE
Transactions on Circuits and Systems II: Express Briefs,
2020.

[2] X.-W. Zhang, L. Zuo, M. Li and J.-X. Guo, “High-throughput
FPGA implementation of Matrix inversion for control
systems,” Accepted by IEEE Trans. Ind. Electron., 2020.

[3] C. Zhang, et al,. “On the low-complexity, hardware-
friendly tridiagonal matrix inversion for correlated
massive MIMO systems,” IEEE Trans. Vehic. Tech., vol. 68,
no. 7, pp. 6272-6285, Jul. 2019.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 10 | Oct 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 768

[4] Y.-W. Xu, Y. Xi, J. Lan and T.-F. Jiang, “An improved
predictive controller on the FPGA by hardware matrix
inversion,” IEEE Trans. Ind. Electron., vol. 65, no. 9, pp.
7395–7405, Sep. 2018.

[5] Lakshmi kiran Mukkara and K.Venkata Ramanaiah, “A
Simple Novel Floating Point Matrix Multiplier VLSI
Architecture for Digital Image Compression
Applications”, 2nd International Conference on
Inventive Communication and Computational
Technologies (ICICCT 2018).

[6] Soumya Havaldar, K S Gurumurthy, “Design of Vedic
IEEE 754 Floating Point Multiplier”, IEEE International
Conference On Recent Trends In Electronics Information
Communication Technology, May 20-21, 2016, India.

[7] Ragini Parte and Jitendra Jain, “Analysis of Effects of
using Exponent Adders in IEEE- 754 Multiplier by
VHDL”, 2015 International Conference on Circuit, Power
and Computing Technologies [ICCPCT] 978-1-4799-
7074-2/15/$31.00 ©2015 IEEE.

[8] Ross Thompson and James E. Stine, “An IEEE 754
Double-Precision Floating-Point Multiplier for
Denormalized and Normalized Floating-Point Numbers”,
International conference on IEEE 2015.

[9] M. K. Jaiswal and R. C. C. Cheung, “High Performance
FPGA Implementation of Double Precision Floating Point
Adder/Subtractor”, in International Journal of Hybrid
Information Technology, vol. 4, no. 4, (2011) October.

[10] B. Fagin and C. Renard, "Field Programmable Gate
Arrays and Floating Point Arithmetic," IEEE
Transactions on VLS1, vol. 2, no. 3, pp. 365-367, 1994.

[11] N. Shirazi, A. Walters, and P. Athanas, "Quantitative
Analysis of Floating Point Arithmetic on FPGA Based
Custom Computing Machines," Proceedings of the IEEE
Symposium on FPGAs for Custom Computing Machines
(FCCM"95), pp.155-162, 1995.

[12] Malik and S. -B. Ko, “A Study on the Floating-Point Adder
in FPGAs”, in Canadian Conference on Electrical and
Computer Engineering (CCECE-06), (2006) May, pp. 86–
89.

[13] D. Sangwan and M. K. Yadav, “Design and
Implementation of Adder/Subtractor and Multiplication
Units for Floating-Point Arithmetic”, in International
Journal of Electronics Engineering, (2010), pp. 197-203.

[14] L. Louca, T. A. Cook and W. H. Johnson, “Implementation
of IEEE Single Precision Floating Point Addition and
Multiplication on FPGAs”, Proceedings of 83rd IEEE
Symposium on FPGAs for Custom Computing Machines
(FCCM‟96), (1996), pp. 107–116.

[15] Jaenicke and W. Luk, "Parameterized Floating-Point
Arithmetic on FPGAs", Proc. of IEEE ICASSP, vol. 2,
(2001), pp. 897-900.

[16] Lee and N. Burgess, “Parameterisable Floating-point
Operations on FPGA”, Conference Record of the Thirty-
Sixth Asilomar Conference on Signals, Systems, and
Computers, (2002).

[17] M. Al-Ashrafy, A. Salem, W. Anis, “An Efficient
Implementation of Floating Point Multiplier”, Saudi
International Electronics, Communications and
Photonics Conference (SIECPC), (2011) April 24-26, pp.
1-5.

