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Abstract - Controller Area Network (CAN) is a low-cost 
communication protocol which is being used in various 
applications like automotive, medical, military, aviation, etc. 
Current CAN applications are based on the standard CAN 2.0 
protocol. It was not designed for secure communication; 
although, it offers built-in error detection, robustness, speed 
and flexibility, the security side of CAN communication is 
highly underdeveloped. Research on in-vehicle CAN security 
primitives is difficult as it is hard to get a real vehicle for 
evaluation and development of these security primitives. The 
cost of research is considerably high, for some researchers this 
creates a barrier, acting as a deterrence. This paper presents 
implementation of CAN on FPGA and evaluation of 
cryptographic algorithms as a security measure in CAN bus 
communication. 
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1.  INTRODUCTION  

If we consider only automobiles, there could be as many as 
100 Electronic Control Units (ECUs) all communicating 
through a single CAN bus system. Despite the functional 
benefits, the CAN bus system is vulnerable to cyber-attacks 
like replay attacks, denial-of-service, and man-in-the-middle 
attacks. Security of any network can be assessed on three 
attributes: confidentiality, integrity, and authentication. Many 
researchers have demonstrated various successful attacks 
which showed that CAN bus fails in all these three 
parameters [2,17,13]. Manufacturers understand these 
vulnerabilities and have started implementing security 
measures like, Network Segmentation, Intrusion Detection 
System, Software-based encryption methods. But all these 
are computation intensive, have their own vulnerabilities, 
and are slower, thus reducing the data transfer rate of such a 
time-critical system. And as pointed out by [3], considering 
the lifetime of a vehicle, it is possible to find vulnerabilities in 
above mentioned measures and crack a static encryption 
key. For high stake applications like military-equipment, 
vehicles, aircraft such vulnerabilities are not acceptable. A 
lot of research has been done in securing CAN 
communications [14-18]; however, these proposed solutions 
have their own limitations and vulnerabilities. Developing a 
system that is able to meet resource constraints put by CAN 
communication system is a real challenge. Modern day ECUs 
are relatively efficient and fast compared to the ones used a 
decade ago, hence some of the solutions proposed by some 

authors could be a viable option with some performance 
enhancing tweaks. However, a thorough evaluation of these 
proposed methods is needed in order to explore the areas of 
improvements. This is a laborious, complicated and time-
consuming process, to streamline this process a versatile 
test-bed is needed that speeds up the entire chain of 
implementation, evaluation, and development and 
deployment. FPGAs based solutions can help to address 
these challenges by enabling true flexibility and scalability to 
address the security requirements of CAN bus with inherent 
hardware and software programmability. Rather than 
creating a bare-metal application to run on FPGA emulated 
CAN controller, we rely on a test-bed that runs a light-weight 
Linux kernel on top. Bare-metal application are difficult to 
debug as there are no fault management and error 
notifications unless they have been explicitly implemented 
and validated. Given the scope of our application it is difficult 
to figure out what exactly could go wrong, hence the need of 
a test-bed that has error handling and prompting abilities is 
needed, this allows for speedy debugging and evaluation of 
the proposed solutions, and speed up the development of 
new ones. In our experimental test-bed, we have used 
OpenCores SJA1000 controller, that has been modified to 
ignore CAN FD frames. This version of SJA1000 is modified 
by Czech Technical University, Prague (CTU) [1] and allows 
this controller to co-exist and send data on CAN FD network. 

2. SYSTEM DESIGN 

The test-bed is built in two parts: hardware and software. 
The design of hardware is done using Xilinx Vivado Design 
Suite and is implemented on ZYBO (ZYnq BOard) that uses 
Zynq All Programmable System on Chip Architecture. The 
SoC design has two subsystems: Processing System (PS) and 
Programmable Logic (PL). The PS, is Zynq-7000, has software 
programmability features and takes over the job of 
controlling and communicating with PL. PL is Xilinx Artix-7 
FPGA with configurable ports and buses, and has hardware 
modules that are being emulated. The software design is 
done with the help of PetaLinux SDK to streamline embedded 
Linux development. This tool helps us to develop a Bootable 
System Image that consists of a custom CPU-optimized Linux 
kernel, device drivers and bootloader configurations. The 
test-bed is now ready for further implementation, evaluation 
and development of security measures for CAN bus 
communications. This section further discusses the important 
elements of hardware and software design. 
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2.1 Hardware Design 

The hardware consists of SJA1000 controller, TJA1050 
CAN trans-receiver, Zynq 7000 SoC, and other periphery 
circuits required for implementation of test-bed. Multiple 
instances of this test-bed can be used to connect and 
communicate on a CAN bus line for analysis and evaluation 
of different security measures. For the demonstration of 
communication between two CAN nodes; Node1 and Node2 
over the CAN bus, we perform a simple signal detection 
experiment. When input is given to any one of the nodes by 
pressing the switch, for instance consider Node1, CAN 
communication is triggered and a data-frame corresponding 
to the signal is transmitted over the CAN bus, this signal 
data-frame is picked up by Node2, it interprets it and the LED 
assigned to the switch, turns on or off. i.e., the LED of one 
node is controlled by another node. Fig. 1 shows the block 
diagram of a CAN node. 

 

Fig -1: Block Diagram of Test-bed. 

2.1.1 SJA1000 

It is a stand-alone controller for the Controller Area 
Network (CAN), mostly used within automotive and general 
industrial environments. It has both CAN 2.0A (Standard 
CAN) and 2.0B (Extended CAN) protocol support, with 
bitrates up to 1 Mb/s. The SJA1000 that is used in this project 
is CAN FD tolerant and is written in Verilog language [1]. It 
contains transmission buffer (TXB), receiving buffer (RXB), 
bit timing logic (BTL), acceptance filter (ACF), bit stream 
processor (BSP), error management logic (EML), and 
interface management logic (IML). It uses an APB interface 
for on chip communication with master (i.e., the processing 
system). SJA1000 appears to a master as a memory-mapped 
I/O device. Independent operation of both devices is 
guaranteed by a RAM-like implementation of its registers. Fig. 
2 shows schematic diagram of the implemented SJA1000 CAN 
controller. 

 

Fig -2: Schematic of Implemented SJA1000 CAN 
Controller 

2.1.2 TJA1050 CAN transreceiver 

It is an interface between CAN controller and physical 
bus. It provides differential transmit and differential receive 
capability to the CAN controller. It converts the Tx and Rx 
signal of controller to CANH and CANL signal. It offers good 
performance when it comes to optimal matching of output 
signals (CANH, CANL). The figure below shows block 
diagram of TJA1050. 

2.1.3 Processing System  

Zynq-7000 processing system (PS) is the master and an 
instance of SJA1000 in PL is the slave. Communication 
between master and slave on the SoC is done through AXI 
and APB buses respectively. AXI is designed for 
communication between blocks of IP on FPGA. AXI 
interconnect IP is used to connect one or more AXI memory-
mapped master devices to one or more memory-mapped 
slave devices. The SJA1000 IP has APB interface, suitable for 
low-speed communication. An AXI-APB bridge is needed to 
connect this APB slave to the AXI master. Interrupts coming 
from the CAN controller is connected to the PL-PS interrupt 
port of the processing system. Tx and Rx signals of the CAN 
controller are mapped to IO pins connected to the high speed 
Pmod (peripheral module) ports on the board, it is an open 
standard defined by Digilent Inc. for connecting peripheral 
modules to FPGA. The Tx-Rx pair of the controller is 
converted to CANH and CANL signal by the transceiver 
module connected to Pmod port. Configuration and control 
of CAN controller is done by the PS using a driver code which 
accesses the controller using the virtual memory address. 
Driver program is required for mode selection, reading and 
writing messages to the controller, etc. A top-level 
application is required to read sensor values, manage keys 
and construct messages. A standalone application could be 
created for this purpose but as discussed earlier our 
application requires a different approach. The custom Linux 
kernel in the system has support for Python, C, and C+, this 
allows for rapid development and deployment of application 
program. The interface circuit diagram of our system is 
shown below. 
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Fig -3:  Interface Diagram of the Test-bed not using 
transreceiver 

2.2 Software Design 

The processor in the Processing System boots first, this 
allows for a software centric approach for Programmable 
Logic configuration which is managed by a program running 
on the CPU. After it starts, the Linux kernel probes the 
devices in the system, it gets to know about the devices 
present in the system from the Device Tree. A device's 
existence in the system, its location on the bus from which it 
may be accessed, and its configuration—including its 
registers, interrupts, and other settings—are all specified in 
the device tree entry.  Device tree entry of SJA1000 is shown 
below. Field called ‘compatible’ is used to specify the name of 
the driver associated to the device, ‘interrupts-’ field 
specifies on which pin number the interrupt of device is 
connected and reg specifies the address of device. 

Code Snippet: 

sja1000_0: sja1000@43c00000 { 
compatible = "nxp, sja1000"; 
interrupt-names="irq"; 
interrupt-parent = <&intc>; 
interrupts = <0 29 4>; 
reg = <0x43c00000 0x10000>; 
reg-to-width = <4>; 
status = "okay"; 
nxp, external-clock-frequency = <100000000>; 
}; 
 

The software realization of CAN node communication is 
done in two parts: Initializing the SJA1000 CAN controller 
and creating an application program that can access the 
controller for establishing communication with other nodes 
on CAN bus.  

 
2.2.1 Initializing SJA1000 CAN controller 
 

The system at this stage is ready to send all data and 
receive all data using default arbitration ID (0x001), without 
filtering any messages, owing to the default filter register 

values of the SJA1000 controller set by the SocketCAN device 
driver. Without changing the default filter register values, we 
can directly access the controller through command line 
interface (CLI) to send/receive data to/from the bus. 
Another way is to set the values of filter register before 
initializing the CAN controller. Both of these methods are 
discussed below.  
 
A. Direct access to CAN controller: This can be done at OS 
level using CLI as well as at application program level. For 
simplicity, we show this process done at OS level, by 
executing the following command.  

 

 

 
 

Fig -4: Initializing two instances of SJA1000 CAN 
controller. 

 
After initialization, the CAN controller can be now be 
directly accessed to send and receive message, along with a 
custom or default arbitration ID. The direct access method 
is helpful when we wish to receive and analyse all the data 
broadcasted over the CAN bus. The figure below shows the 
execution.  
 

 
 

Fig -5: can1 (Node2) sending data over CAN bus using ID 
(0x123) 

 

 
 

Fig -6: can0 (Node1) receiving data over CAN bus from 
CAN node having ID (0x123) 

 
B. By changing filter register values: SocketCAN driver does 
not have support for writing the filter registers of the CAN 
controller by the user. Since the registers are written at the 
time of insertion of device driver module and can’t be 
changed frequently, the values of all four Acceptance Code 
Register (ACR) and all four Acceptance Mask Register 
(ACR) are hard coded as all zeros and all ones respectively, 
which means all the messages on the bus will be received 
and sent in FIFO manner. In the SocketCAN driver, filtering 
is done at the kernel layer which doesn’t make sense for 
our application since we have actual CAN protocol 
controller IP on the chip. We have modified he kernel 
module code, which allows us to change values of filter 
registers. The shell command below shows the process of 
changing filter register values after kernel module code 
modification. 
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Fig -7: Shows process to change filter register values 

2.2.2   Program for sending and receiving message 

After the initialization of CAN controller, the system is 
ready to take part in communication. Apart from directly 
sending data through shell command, writing an application-
based program helps in realizing autonomous 
communication. The message that is written to or read from 
CAN data-frame depends on the purpose of application. 

 

 

 

 

Fig -8: Program design flow 

3. SYSTEM TEST 

To ensure the functionality and viability of test-bed we 
carried out following tests. 

3.1 Switch status transfer using CAN bus between two 
nodes 

Communication tests were performed with and without 
using transreceiver for further evaluation. In this test 
discussed here, instead of using transceiver modules we can 
emulate the transceiver operation simply by ANDing the Tx 
signals from the two controllers. For this purpose, we use a 
two input AND gate. Tx signal of both the controllers are 
given as inputs to the AND gate and its output is connected 
to the Rx of both the controllers. This allows for successful 
arbitration. After the initialization of the system, we run our 
script in Linux shell of our test-bed. Python application 
running at the top level accesses the memory mapped GPIOs. 
It reads sensor values, decides message identifier and 
attaches the corresponding count value to construct the 
message according to the protocol. Then it sends the 
message to the controller through SocketCAN and reads the 
received message from the controller. The program enables 

two CAN nodes to communicate. When input is given to 
Node1 by flipping switch, this input signal is sent over CAN 
bus and is received by Node2, Node2 then extracts the signal 
message from CAN data-frame and turns on its LED that is 
assigned to the switch of Node1. In short, the LEDs of Node2 
is controlled by Node1 and vice-versa. Fig.9 shows the 
demonstration. For this test, acceptance filter register values 
were changed so that each node accepts data frame from 
another node and filters out its own data frame. 

 

 

Fig -9. A: Message sent over CAN bus 

 

Fig -9. B: Switch status transfer between two CAN nodes 

In Fig. 9.A and 9.B CAN nodes on left (Node1) with identifier 
<0x128> sends message 0x06 to Node2 and CAN nodes on 
right (Node2) with identifier <0x120> sends message 0x09 to 
Node1. The received messages contain the status of the 
switch and depending upon the status, corresponding LEDs 
are turned on. The switches highlighted in blue are in off 
state and the ones highlighted in green are in on state, their 
status can be seen other board. 

3.2 Ciphertext over CAN Bus 

Cryptographic algorithms were evaluated on test-bed for 
evaluation of its performance. Algorithm were implemented 
on application layer. A time-delay analysis was performed to 
see the delay caused by inclusion of these algorithms in 
communication. This delay included time taken for sending 
and receiving message over CAN bus, time needed for 
encryption and decryption of message. An overview of this 

operation is shown below. For this test a bit-rate 125Kb/s 
was used for reference and of multiple iterations of test were 
performed with 1000 random messages in each test.  

 

Create a 

socket 

and bind 

it to CAN 

interface 

 

 

 

 

 

 

Triggering 

Communi-

cation 

 

 

Writing 

and 

Reading 

CAN Frame 

 

 

Perform 

memory 

mapping of 

peripherals 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 09 Issue: 11 | Nov 2022                 www.irjet.net                                                                     p-ISSN: 2395-0072 

 

© 2022, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 604 
 

 

Fig -10. A:  Line1 - Message to encrypt 

Line 2 - CAN controller of Node1 invoked after encrypted 
message passed to it 

 

Fig -10. B: Encrypted message sent on CAN bus by Node1 

 

Fig -10. C: Encrypted message picked up by Node2 and 
decrypted to reveal the original message 

Fig. 10.A shows the plaintext i.e., the message to be sent to 
Node2 by Node1, this plaintext in converted into ciphertext 
by cryptographic algorithms and is then sent to CAN 
controller of Node1. Fig. 10.B shows the encrypted message 
(plaintext) or ciphertext on CAN bus sent buy Node1. Fig. 
10.C shows the ciphertext received by Node2 and is 
decrypted to reveal the original message (plaintext). The 
charts below give an overview of the results.  

 

 

Fig -11. A: Performance analysis during Encryption 

 

Fig -11. A: Performance analysis during Decryption. 

We have tested three different algorithms: Advance 
Encryption Standard (AES), Data Encryption Standard (DES), 
Triple Data Encryption Standard (3DES). We are running the 
algorithms in (Cipher Block Chaining) CBC mode, in this 
mode block of plaintext are XORed with ciphertext of 
pervious of previous block and is then encrypted. The 
difference in encryption and decryption time of these 
algorithms is because in CBC mode encryption is done 
sequentially, where each cypher block is dependent on 
previous block. However, in case of decryption, to decrypt 
next cypher block there is no need of previous plaintext so 
decryption can be completely parallelized and is much faster 
in concurrent systems, like FPGA.  The execution time and 
latency induced in pure software implementation of these 
algorithms is shown table below.  

Table -1 Comparison of overhead because of use of 
Cryptographic Algorithms. 

Sr. 
No. 

Method 
Network 
Capacity 

Penalty 
Execution 
Time 

Delay 
Induced 

1 
No 
Algorithm 

115 Kb/s 8% 10 ms 2 ms 

2 AES-128 82 Kb/s 28.57% 14 ms 4 ms 

3 DES 38 Kb/s 66.66% 30 ms 20 ms 

4 3DES 19 Kb/s 83.60% 61 ms 51 ms 
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In Table 1, entry 1 shows the actual network load achieved 
without use of any cryptographic algorithm.  AES being the 
fastest uses more computation power, followed by DES and 
then 3DES. These implemented algorithms cause an increase 
in network load because of the limited data size of standard 
CAN frame which is overcome by sending multiple CAN 
frames for one message. This may not be a problem for low 
traffic networks however with the advancement in modern 
vehicles there is more integration of sophisticated 
technology (Ex: ADAS) the number of ECUs are only going to 
go up. Hence, it is imperative to look for a solution that 
satisfies the time-critical needs of CAN bus communication. 

4. PRACTICAL IMPLICATIONS  

The test-bed can be used to evaluate different proposed 
security measures and carry out analysis for areas of 
improvement. We have demonstrated test-bed’s 
functionality and analysed the performance of cryptographic 
algorithms in CAN communication. This test-bed is a 
versatile option that facilitates fast paced development and 
deployment. Application program can be developed in other 
system and then can be directly copied into the memory of 
the test-bed. For any fine tuning or changes needed in 
program, it can be done directly by accessing the program 
through the Linux shell in test-bed. This is helpful when 
iterative changes are made to program. The system does not 
need to restart every time, all the changes can be made 
directly to program while the test-bed is online. Moreover, 
this system gives the ability to debug a program which is not 
possible when bare-metal application is created, the error 
handling and prompting ability is just another advantage of 
this test-bed. This test-bed is intended for evaluation and 
development of security measures. Once a satisfactory 
analysis is carried out, later a bare-metal application or 
RTOS (Real Time Operating System) based solution can be 
developed to improve execution speed. 

5. CONCLUSION & FUTURE SCOPE 

The functionality and viability of the test-bed has been 
verified through different experiments. The test-bed is 
simple, stable and practical, and thus can be used for further 
studies and evaluations. Hardware-based solutions are 
better when it comes to performance and security, but are 
not versatile. Software based solutions are versatile but 
effective only when high performance CPUs are available and 
they induce communication delay. Taking advantage of high 
level of parallelism offered by FPGA and flexibility of 
Embedded Systems it is possible to come with a versatile and 
high-performance security solutions. Based on the findings 
of subsequent tests, the primary goal would be to 
concentrate on creating a workable solution for safeguarding 
CAN Bus communications.  
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