
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 02 | Feb 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 446

Plant disease detection system using image processing

Eric Mervin Anandraj1, Ahnaf Rehan Shah2, Shobhit Singh3, Tanishq Kohli4

1234U.G. Student, Dept. of Computer Science Engineering and Technology
Bennett University, Greater Noida, Uttar Pradesh, India

---***---
Abstract - In India, one of the main sources of income for a
large chunk of the population is agriculture. According to a
survey, one of the main problems that farmers face is crops
getting infected by pests, ruining months of hard work. To
prevent this, we planned to implement an image processing
algorithm that would detect and classify the infected part of
the plant leaf, with the help of Python and Convolutional
Neural Networks (CNN), in order to identify the disease and
suggest a treatment. According to our results, the accuracy of
the method we chose comes out to be 95.3%, which is better
than the conventional approach. The CNN algorithm proposed
can play a vital role in the field of smart agriculture. According
to studies, human society needs to increase food production by
an estimated 70% by 2050 to feed an expected population size
that is predicted to be over 9 billion people. Currently,
infectious diseases reduce the potential yield by an average of
40% with many farmers in the developing world experiencing
yield losses as high as 100%.

Key Words: image processing, plant disease detection,
densenet, tensorflow, keras, convolutional neural
networks

1. INTRODUCTION

The Indian economy is also highly dependent on agricultural
productivity which contributes around 20% of India’s GDP
[1]. One of the main problems that farmers face is the crops
getting infected by pests, fungi ruining months of hard work
causing huge economic losses every year and threatening
food security. According to a survey, annual crop losses due
to plant diseases are around 220 billion dollars worldwide
[2]. The conventional tools are not very useful as it is very
difficult for farmers to identify the diseases by just naked eye
observation, and it takes a lot of time and manual work as it
requires continuous monitoring of the plant which will cost
you a lot when you do it on a large scale. In countries like
India, farmers do not have proper facilities, due to which this
process may cost you even more. Visually detecting plant
diseases is a risky task as it is less accurate and can only be
done by some consulting experts. About 85% of plant
diseases are caused by fungi and if a farmer can detect these
diseases in the early stages and apply appropriate treatment
then it can prevent a lot of waste and economic loss. We have
come up with the idea of developing an application
implemented with an image processing algorithm that will
detect and classify the infected part of the plant leaf, with the
help of Python and Convolutional Neural Networks (CNN) in

order to identify the disease and suggest a treatment. We can
give our application to the farmers, and they just have to
take a picture of the plant and our application will tell them
whether the plant is healthy or has any diseases. With the
help of our application, we can analyse how agriculture in
India can be made more efficient and sustainable.

2. RELATED WORK

Convolutional Neural Network (CNN) performance for object
recognition and image detection has improved dramatically
in recent years (Szegedy, 2015; He, 2015; Zeiler and Fergus,
2014; Simonyan and Zisserman, 2014; Krizhevsky, 2012) [3].
In the past, it was based on hand engineered features namely
SURF (Bay, 2008), HoG(Dalal and Triggs, 2005), SIFT (Lowe,
2004) [4] etc. This was later followed by a learning
algorithm.

It was extremely tedious and complicated since it had to be
revisited every single time the dataset changed considerably.
Almost all traditional plant disease detection attempts had
this problem and thus relied heavily on very labour-
intensive methods. Traditionally, the focus was on a small
number of classes, typically within the same crop. E.g. “a
feature extraction and classification pipeline using thermal
and stereo images in order to classify tomato powdery
mildew against healthy tomato leaves [5]; the detection of
powdery mildew in uncontrolled environments using RGBD
images [6]; comparison of two aerial imaging platforms for
identification of Huanglongbing infected citrus trees [7]; the
detection of tomato yellow leaf curl virus by using a set of
classic feature extraction steps, followed by classification
using a support vector machines pipeline etc. Recently, the
use of machine learning on plant phenotyping [8] (“for the
classification and detection of Phalaenopsis seedling
diseases like bacterial soft rot, bacterial brown spot, and
Phytophthora black rot”) substantially talked about the work
in this area of study. Even though neural networks were
used in the identification of diseases, it required images to be
carefully selected before the classification could begin. Not
long ago, a new study by Ilya Sutskever and his colleagues
[9] showed for the very first time that it was practically
possible to do end to end supervised training using a deep
CNN architecture despite the image classification problems
using a large number of classes. This left traditional methods
that used hand-engineered methods in the dust by a huge
margin. As the labor-intensive aspect of feature engineering

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 02 | Feb 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 447

was not present, it made this solution very appealing and
promising because of its huge scalability.

3. PROPOSED METHODOLOGY

3.1 Dataset Description

For this experiment, we used the Plant Village Dataset, which
comprises over 55 thousand photos of different plants and
crops. The plants considered for this dataset include
oranges, tomatoes, apples, among others.

David P. Hughes and Marcel Salate [10] compiled the original
data set under Cornell University in the year 2015, which
was later revised in 2016. Their primary motive behind
gathering this dataset was to start a crowdsourcing effort to
curb the increase in yield losses. On average, 40% of crops
are of no use (worldwide, as of 2015) because of being
unable to detect and treat the diseases affecting the crops.
Hughes and Marcel believe we can solve this problem using
computer vision.

This dataset consists not only of plants affected by bacterial
and/or viral diseases, but there is a subset of healthy plant
leaves for each plant taken into consideration. It includes
photos of 17 basic diseases, 4 bacterial diseases, 2 moulds
(oomycete) diseases, 2 viral infections, and 1 mite disease.
There are additional 12 crop species.

All the photos in the dataset are in the JPEG format in RGB
colour mode, with a resolution ranging from 0.05 to 0.1
Megapixels. The total number of class labels assigned to the
plant leaves is 38, where each label is a crop-disease pair. We
aim to predict this same pair, with only the photos of the
plant leaf being given to the model.
We passed the dataset through an augmentation algorithm
where the photos were rotated and colour shifted, to train
the model better and generate better results. We saved the
augmented photos along with the originals. This offline
augmentation led to an increase in the dataset’s size from
54k to around 87k images. Apart from this, we added a
separate directory comprising around 30 images for the
prediction that is to be carried out later.

3.2 Data Preprocessing

We split our dataset into an 85/15 ratio of training and
validation, for the preprocessing of the dataset.

Besides the offline augmentation carried out on the dataset,
we run the dataset through a preprocessing phase using the
Keras ImageDataGenerator. Keras allows us to augment our
images in real-time before using them for the training and
testing of the model. The different augmentations we used
include scaling, sheering, shifting the image either along its
width or its height. [11]

The data fed into neural networks will be normalised to
make the network’s processing easier. In our case, we will
normalise the pixel values so that they’re all in the [0, 1]
range, which is where they were previously.

Before performing any tests, the Convolutional Neural
Network will give the validation phase, during which it will
boost efficiency. The following phase will be to test the
model, and then the best model will be deployed.

Fig. 1. Preprocessed Images

3.3 Convolutional Neural Network

In our project, we are using the Convolutional Neural
Network (CNN) in which a single neuron is present in a layer
that will only be connected to a small region of the layer,
rather than all the neurons being fully connected. We are
using CNN because of its widely demonstrated efficacy in
performing image classification, automatic feature learning
capability, and ease of training. Generally, CNN is composed
of 4 types of layers - convolutional layer, pooling layer, ReLu
layer, and fully connected layers. The convolutional layer is
the core building block. Its parameters consist of a set of
learnable filters that get activated when it detects some
specific type of feature at some occupied position in the
input. A pooling layer is used to reduce the space occupied
by an image in the network. ReLu is an abbreviation for
Rectified Linear Units, it enhances the nonlinear properties
of the overall network without affecting the receptive fields
of the convolutional layer. Finally, after several convolutional
layers, the highest level of reasoning is done through the
fully connected layers [12].

To train our CNN model, we need an activation function and
a pooling layer between each convolution layer. Activation
functions are responsible for determining the output of each
convolution computation and reducing the complexity of our
project. In our case, the activation function is the ReLu
function which keeps any negative results at 0 and keeps the
positive values for the same and having all these zeroes will
make the network more efficient to train in computational
time.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 02 | Feb 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 448

For our project, we’ve chosen DenseNet201 instead of VGG
because the deeper the CNN gets, the harder it becomes to
train as the gradients start to disappear. DenseNet improves
gradient propagation by connecting all layers directly to
each other. This vanishing gradient problem occurs in
networks with large layers. When we backpropagate the
unit, this unit is reduced at every step and eventually
becomes zero because we’re partially deriving each unit. It
has some advantages over VGG because it uses parameter
efficiency which means that each layer only adds a limited
number of parameters thereby improving the flow of
gradients through the network. As compared to VGG, it has
reduced the number of parameters by five times with the
same number of layers.

3.4 Flow Diagram

The project is divided into three stages:

 TensorFlow and Keras will be used to build and
create a machine learning model.

 TFLite will be used to deploy the model to an
Android application.

 The development method will be documented and
made open source.

Fig. 2. Flow Diagram

3.5 Densenet Algorithm

In our project, we are focusing on arguably one of the best
and most promising CNN architecture - DenseNet (Densely
Connected CNN). It has multiple versions depending on the
depth, varying from 121 layers with 800,000 parameters to
264 layers with 15,300,000 parameters. In a typical network,
n layers will have n connections, whereas here, it’ll have
n(n+1)/2 connections.

Let’s assume we have x number of input layers, and an RGB
image will have 3 channels. In the first layer (R), it’ll make 4
feature maps (a=4). But as we go deeper into the network to
layer 2 (G), it’ll not only take 4 layers from the previous layer
(denoted by the black arrow) but also layers from the input
layer (denoted by the yellow arrow). Further, the 3rd layer
(B) takes all the preceding layers as input.

Fig. 3. Diagram showing Image Mapping in a DenseNet for
an RGB Image

However, this becomes unsustainable as we go deeper
and have more layers. This may lead to a feature map
explosion. To overcome this issue, the number of output
maps are fixed for each layer and also, a dense block is
created which has a predetermined number of layers
inside it. The feature maps are shared among those
layers. The output from a particular dense block is
passed on to a transition layer which uses a 1×1
convolution followed by max-pooling to reduce the size
of the feature maps. [13]

Without a dense block, max-pooling wouldn’t have been
possible because the size of feature maps across max-
pooling would be less and would be extremely difficult
to concatenate the feature maps. To reduce the model
complexity and size, BN-ReLU-1×1 Conv is done before
BN-ReLU-3×3 Conv [14].

Here’s a diagram to explain how DenseNet will be used
to detect a diseased leaf:

Fig. 4. Detecting a diseased leaf using DenseNet

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 02 | Feb 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 449

4. RESULT AND ANALYSIS

4.1 Optimizers, Losses, and Metrics

In our project, we chose ‘Adam’ as the optimizer because of
its computational efficiency. We found it to be the most
suitable for our dataset, which is large and contains over
55,000 images. It is a combination of both Adagrad algorithm
and RMSProp algorithm and thus, yields the most optimized
results. [15]

The loss function we chose to minimize was ‘Categorical
Cross-Entropy’. It is suitable for multiple classes and our
project has 38. As the result can only belong to one category
out of many, we needed the model to decide which one and
thus, making it the pick for our project.

For the metric, we chose ‘Accuracy’ as it is a built-in function,
commonly used in Keras.

Fig. 5. Plotting Validation Accuracy and Training Accuracy
of our model against epochs

Fig. 6. Plotting Validation Loss and Training Loss of our
model against epochs

4.2 Comparison with similar algorithms

Since the release of the initial version of the Plant Village
Dataset by Hughes and Salate, a lot of experiments on
disease detection using plant leaves have been conducted by
various scholars and researchers. Hughes and Salate, in their
initial experiments, could achieve an accuracy of 31.8% but
with time and developments in CNN, the accuracy has now
increased drastically.

 DenseNet201 VGG16

Size (MB) 80 528

Layers 201 16

Top-1 Accuracy 0.773 0.713

Top-5 Accuracy 0.936 0.901

Time (ms) per inference step
(CPU)

127.24 69.5

Table -1: Keras Models DenseNet201 vs VGG16

One such project is that of Dhiman Thakuria of Kaziranga
University, titled Leaf Disease, which uses the Plant Village
Dataset to detect and predict diseases. We have used the
same dataset but to increase the accuracy, added more
images by augmenting and saving a portion of the images
again in the dataset. [16]

Moreover, we have used the DenseNet201 of the Keras
Application compared to VGG16 that has been used in their
project. The advantages of using DenseNet201 over VGG16
are as follows:

 DenseNet201 has a depth of 201 layers which is 185
layers more compared to the number of layers in
VGG16 (16 layers)

 VGG16, which was released in the year 2014 is also
very heavy in terms of boot disk required, 530MB in
total. DenseNet201 on the other hand is only 80MB
in size.

 DenseNet201 yields better results in both Top-1
Accuracy and Top-5 Accuracy compared to VGG16.

 When run on the CPU, VGG16 takes less time per
each inference step.

Let’s compare the accuracy of the two projects now. As it can
be seen from Fig. 7 and 8, our model has a better validation
accuracy and loss than that of Dhiman’s.

3. CONCLUSIONS

The plant leaf disease recognition model that we have
proposed in this paper, is supervised, has high accuracy, and
has high training efficiency. The model, primarily based on
deep learning still has some problems. To solve the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 02 | Feb 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 450

remaining problems in accuracy and practicability of plant
disease detection and enhance the detection process, this
paper proposes a CNN model which could efficiently save us
the trouble of plant disease recognition in a tedious way. The
proposed model increases the accuracy of disease detection
and adapts to complex environments. In contrast to the
conventional approach, the one proposed in this ensures the
robustness of the CNN and additionally reduces manual
effort drastically. Therefore, the version may want to assist
agricultural manufacturing employees to save you and
therapy the plant ailment quickly.

Fig. 7. Validation Loss Comparison

Fig. 8. Accuracy Loss Comparison

The proposed algorithm enhances the conventional
approach and helps to increase the accuracy. In the field of
smart agriculture this approach will be of substantial
importance and facilitates scientists and researchers alike, to
take note of the critical position of problems faced in plant
disease recognition.

Hence, the model uses convolutional networks and statistics
to solve a predominant problem in agricultural
manufacturing and is complementary to the sustainable
advancement of smart agriculture.

REFERENCES

[1] Manglesh R. Yadav and Shashank Gore. Strengthening the
Indian Agriculture Ecosystem.
[2] Karen Simonyan and Andrew Zisserman. Global spread of
plant pests and diseases.
[3] The Food and Agriculture Organization of the United
Nations. New standards to curb the global spread of plant
pests and diseases.
[4] Navneet Dalal and Bill Triggs. Histograms of Oriented
Gradients for Human Detection.
[5] John Clarkson Shan e Ahmed Raza, Gillian Prince and
Nasir Rajpoot. Automatic Detection of Diseased Tomato
Plants Using Thermal and Stereo Visible Light Images.
[6] David P. Hughes Sharada P. Mohanty and Marcel Salathe.
Using Deep ´ Learning for Image-Based Plant Disease
Detection.
[7] Joe Mari Maja W. S. Lee Francisco Garcia-Ruiz, Sindhuja
Sankaran. Comparison of two aerial imaging platforms for
identification of Huanglongbing-infected citrus trees.
[8] D Ng JJ Johnston, KL Lewis and LN Singh. Individualized
iterative phenotyping for genome-wide analysis of loss-of-
function mutations.
[9] Ilya Sutskever Alex Krizhevsky and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural
networks.
[10] David Hughes, Marcel Salathe, et al. An open access
repository of ´ images on plant health to enable the
development of mobile disease diagnostics. arXiv preprint
arXiv:1511.08060, 2015.
[11] Manpreet Singh Minhas. Image Data Generators in
Keras.
[12] Saad Al-Zawi Saad Albawi, Tareq Abed Mohammed.
Understanding of a convolutional neural network.
[13] Jason Brownlee. Model complexity. arXiv preprint
arXiv:1312.4400, 2017.
[14] Sik-Ho Tsang. Review: DenseNet — Dense
Convolutional Network (Image Classification).
[15] Jimmy Ba Diederik P. Kingma. Adam: A Method for
Stochastic Optimization.
[16] Dhiman Thakuria. Leaf Disease Detection

