
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1056

Design and Implementation of a Self-Balancing Two-Wheeled Robot

Driven by a Feed-Forward Backpropagation Neural Network

Mr. Rajvardhan Shendge1, Mrs. Tejashree Shendge2

1Student, Computer Engineering, Ramrao Aidik Institute of Technology(India)
2Student, Electronics and Telecommunication Engineering, Fr. C. Rodrigues Institute of Technology(India)

---***--
Abstract - The design, manufacture, and implementation of a
revolutionary control system for a two-wheeled self-balancing
robot are covered in this research paper. A pair of DC motors,
an Arduino Uno R3 microcontroller board, a 3-axis gyroscope,
and a 3-axis accelerometer (for altitude measurement) are all
part of the system design (employed for altitude
determination). The two-wheeled robot that was constructed
is essentially a real-time model of an inverted pendulum open-
loop system that is inherently unstable without feedback
control and has nonlinear dynamics. The recommended
balancing solution entails utilizing the backpropagation
algorithm to train a feedforward neural network to learn to
balance the bot through supervised learning on the basis of a
training routine that runs at startup. In addition, gyro drifts
are compensated for using the linear quadratic estimation
technique (LQE) and a complementary filter. Our findings
demonstrate that the suggested feedforward neural network
balancing approach can learn to balance the bot in a short
amount of time, with far less oscillations around the
equilibrium point than a traditional PID controller, resulting
in a more elegant system. Our bot is a modest, low-cost
prototype that demonstrates artificial neural networks'
(ANNs) efficiency and complex-learning capabilities (ANNs).

Key Words: Two-Wheeled robot; Self-Balance control;
Proportional-Integral-Derivative Controller; Kalman
Filter; Arduino Uno R3; Digital Motion Processing
(DMP); Backpropagation Algorithm; Feedforward
Neural Network.

1.INTRODUCTION

Over the past decade, mobile robots have penetrated
public spaces such as hospitals, schools, and ordinary homes,
moving away from military and industrial corridors. While
many of these robots for civil purposes are technically stable,
such as 'Aibo,' the Sony robotic dog, or four-wheeled
intelligent vacuum cleaners, the Segway personal transport
is one that everyday onlookers would find awe-inspiring. It's
a mechanically unreliable, two-wheel self-balancing mode of
transportation that's been used by police enforcement,
tourists, and individuals. The Segway might be classified as a
robot since it can never stay upright without the sensory
capabilities and advanced controls that come with a robot.
While the Segway is a well-known commercial product, there
has been a lot of study on how to operate such a mechanical
device.

Aside from the Segway, there has been a lot of study on
two-wheel self-balancing robots. JOE [1] and nBot [2], for
example, are both early versions featuring inertia sensors,
motor encoders, and onboard microcontrollers. Since then,
there has been significant research on control design for
such systems, including nonlinear backstepping controls, PID
controllers, application of discrete Kalman filters, fuzzy-
neural control, Linear-quadratic regulators (LQR), and
combinations of the aforementioned [3][4]. To deal with the
equilibrium problem posed by wheeled inverted pendulums,
several intelligence approaches have been developed,
including fuzzy control [5][6], control systems based on
support vector machines [7], operant conditioning theory
[8,] and so on.

The wheeled mobile robot and the inverted pendulum
mechanism are combined in the two-wheeled robot [9]. It
also entails the idea of establishing a mode of human
transportation. The inverted pendulum is a dynamically
unstable and nonlinear open-loop system with a single-
input, multi-output system configuration (SIMO), in which
the system's center of mass is located above the pivot point.
As a result, this system has become a classic problem in
dynamics and control theory, and it is often used as a
benchmark for assessing control system solutions. The
wheeled inverted pendulum is not self-propelled and
requires human balancing to remain upright. It uses
gyroscopes and accelerometers to detect the inclination of
the vertical axis, and the controller provides torque signals
to each motor to counteract the inclination and prevent the
system from falling. It's a control system paradigm in which
an item can only be changed by adding more weight to it. As
a result, wheeled inverted pendulums have become a new
topic, and developing balancing algorithms to solve their
equilibrium problem has piqued the interest of many
specialists.

Although there are many studies in this field, only a few
have focused on making meaningful comparisons between
traditional control system techniques like PID controllers
and LQR feedback controllers and the relatively new
artificial-intelligence based neural network controllers. That
is precisely what we are aiming for. We will investigate the
self-balancing system using dynamic theory, establish a
mathematical model, and explain the behavior of the neural
net in the most detailed and clear manner possible, as well as

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1057

create a simulation that demonstrates its functionality and
efficiency.

2. CONSTRUCTION OF THE ROBOT

1. ACRYLIC SHEET CHASIS: Our frame is made out of
acrylic sheets. To hold our three-tiered structure in
place, we used metallic rods with a diameter of 3mm.
The gyroscope sensor and 9V batteries are housed in
the upper half. The Arduino Uno R3 microcontroller
board and another 9V battery are located on the
middle sheet. Finally, the driver motor controller and
two DC geared motors are housed in the bottom
layer.

2. MOTORS: The motors we've selected are standard DC
geared motors that run on 12V and provide 1.5 kg-cm
of torque at 300 rpm.

3. MOTOR CONTROLLER: The L298N motor controller
is a dual H-bridge motor driver that allows us to
regulate the speed and direction of two DC motors at
the same time. The module can run DC motors with
voltages ranging from 5 to 35V and peak currents of
up to 2A.

4. GY-521 MODULE: This module measures the robot's
tilt angle. The values of the same are called using a
function. The MPU-6050 MEMS
(Microelectromechanical system) has a 3-axis
gyroscope, a 3-axis accelerometer, a digital motion
processor (DMP), and a temperature sensor. The GY-
521 module is a breakout board for the MPU-6050
MEMS (Microelectromechanical system). Complex
algorithms may be computed directly on the board
using the digital motion processor. Typically, the
DMP runs algorithms that convert the sensor's raw
data into accurate location data. The sensor data is
gathered via the I2C serial data bus, which only
requires two wires (SCL and SDA) (SCL and SDA). We
used the MPU6050 Arduino library, which has
reverse-engineered functions that calculate yaw,
pitch, and roll using the DMP on-board the MPU6050.

5. ARDUINO UNO R3: The Arduino Uno R3 is a
microcontroller board that uses the ATmega328P
(datasheet) microcontroller (datasheet). There are 14
digital input/output pins (six of which may be used as
PWM outputs), six analog inputs, a 16 MHz quartz
crystal, a USB connection, a power connector, an ICSP
header, and a reset button on the board.

6. JUMPER WIRES: Wires that connect males to males
and females to males.

Fig. 1: Schematic model for a wheeled inverted pendulum

Fig. 2: Front view of constructed robot

Fig. 3: Top view of constructed robot

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1058

Fig 4: Circuit Schematic

3. ALGORITHMS USED

3.1 PID CONTROLLER APPROACH

We investigate two strategies for keeping the robot upright.
The first method is to use a PID controller. The Proportional
Integral Derivative controller (PID) is a feedback control
loop mechanism that is widely used in industrial control
systems and a variety of other applications that need
continually modulated control [10]. The PID controller
continuously calculates an error value as the difference
between the desired setpoint (SP) and the measured process
variable (PV) and initiates a correction based on
proportional, integral, and derivative terms, which are
denoted by P, I, and D, respectively, and give the controller
its name. Technically, it is a control function that transmits
accurate and responsive correction. PID is made up of three
sections: (1). The proportional component is used to change
the response's magnitude directly. The system becomes
unstable if the value of Kp is too high or too low. (2). The
integral part is used to smooth out prior inaccuracies and
accelerate the process's progress toward the setpoint. (3).
The derivative element predicts future errors based on
previous error variations. Simply adding these three
variables together yields the final control value. The
following is the formula:

Fig 5: PID Controller Block Diagram

Algorithm to adjust Kp, Ki and Kd values: -

• We modify the value of P after setting the I and D terms to
0 so that the robot begins to oscillate around the mean
position. P should be large enough for the robot to move
about in, but not too large that it hinders smooth movement.

• When P is correctly recognized, I is increased, causing the
robot to accelerate more quickly when it is off balance.

The robot should be able to balance itself for at least a few
seconds if P and I are adjusted correctly.

• Next, the value of D is chosen so that the robot may move
about its balanced position in a more friendly manner. There
should also be no significant overshoots.

• If the first attempt does not provide satisfactory results,
reset the PID settings and repeat the technique above until
you get a satisfactory result.

• During fine tuning, the PID values are confined to nearby
values, and their effects are seen in real-world situations.

3.2 FEEDFORWARD NEURAL NET APPROACH

A feedforward neural network is used in our proposed
approach to control a two-wheeled self-balancing robot. The
robot is incapable of doing anything other than self-
balancing, and there is no way to regulate its direction. The
program uses a neural network with a single input node, two
hidden nodes, and a single output node to get around the
Arduino Uno's 2K SRAM limitation. The program starts with
a training procedure that takes just a few seconds and may
be repeated every time the robot is launched. The bot must
be kept upright when the backpropagation approach is used
to teach the neural network routine. The input sensor values
(the robot's tilt angle) are converted to a number between 0
and 1. This value is fed into the neural network model, which
subsequently generates a sigmoid activation layer output
that ranges from 0 to 1. Finally, we transform these output
numbers to a useful value for DC motors, in this case from -
255 to 255.

Fig 6: Feedforward Neural Network Architecture

4. METHODOLOGY

In order to reverse-engineer the DMP (Digital Motion
Processing) algorithm of the GY-521 Breakout Board, which
uses the InvenSense MPU-6050 6-Axis Accelerometer and
Gyroscope Module, we use the Kalman filter, also known as

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1059

the Linear Quadratic Estimation (LQR) algorithm, in
conjunction with the Complementary filter to obtain
information about the robot's spatial orientation. TheDMP
procedures are called and used to get precise and accurate
data for our mechanically unstable system's Yaw, Pitch, and
Roll.

The Pitch value is then used to interpret and calculate the
robot's vertical tilt angle, allowing the robot to restore its
alignment afterwards. This is accomplished by using Pulse-
Width Modulated Signals (PWM) to control the speed of the
motors based on the tilt angle. Because PWM signals may be
sent in the range of -255 to 255, a PIDcontroller is used to
decide the value to be delivered as PWM. To compute the
PWM value, we must first submit an input and a Setpoint to
the PID controller, which will calculate the error (Setpoint –
Input) and then provide an output that will reduce the error.
As an input, we provide the robot's tilt angle while keeping it
upright. Because the input tilt angle varies depending on the
surface where the robot is housed, we must alter the value in
the code.

However, none of these parameters are required in our
neural network application. We simply use the back-
propagation method and add a single input node, two hidden
nodes, and a single output node in the neural network.

Rather of meddling with all of the Kp, Ki, and Kd parameters
required by the PID Controller, we just call a training
procedure at the robot's starting during which the bot must
be kept upright and steady. The bot uses this vertical tilt
angle as the training set's input angle and calculates the
error.

The Sigmoid Activation Function is used for the neural net in
this situation. The function's graph is as follows:

Fig. 7: Sigmoid Activation Function

The hyperparameters set for the neural net are as follows

Table 1: Optimized Hyperparameter values of FNN

The value of the option 'Success' has been set to 0.0015. The
difference between the requisite Set Point (vertical tilt angle)
and the Current Angle (Real-Time Tilt Angle) is anticipated
to be less than the value of success in order to keep the robot
upright, and the neural net provides the necessary output.
This value is then linearly translated into the 0-255 range.
The magnitude of the PWM signal is then calculated using
this number. As a result, the greater the value provided to
the PWM signal, the greater the torque created by the motor,
allowing the bot to maintain its upright position.

5. RESULTS AND DISCUSSION

We employed both approaches on our constructed robot, in
order to compare and infer as to which algorithm worked
better.

The first approach was the PID Controller approach where
the following steps were taken-

 The desired setpoint was set as 6.10 (degrees from the
vertical).

 The value of Kp after extensive experimenting, was set
to 90 as it was optimal and made the bot oscillate about
the balance position.

 The value of Ki was set to 250 as it made the balancing
more efficient and provided more torque to the motors
at higher tilt angles.

 The value of Kd was set at 2.15 since any value more
than that made the robot jitter and any value less than
that made the robot fall.

The next approach was the Neural Net approach where the
following steps were taken-

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1060

 The desired setpoint was set as 6.10 (degrees from the
vertical).

 The value of Learning Rate was tinkered with, and it
was found that a value of 0.3 made the bot balance
perfectly without oscillating at high frequencies and
causing large deviations.

 A high learning rate made the output change frequently
and this caused the motors to frequently change speed,
thus making the robot oscillate and jitter.

 The momentum and initial weights were set as 0.9 and
0.5 respectively based on hit and trial.

 The Success value was kept at 0.0015 since any number
higher or lower than that resulted in a significant
change in the error computation and caused the DMP
function to be called more often than required, causing
the robot to jitter excessively.

In addition, in order to examine and assess the motor control
signals under wheel synchronization in Fig. 8, we used the
serial graph plotter included in the Arduino IDE Software.
The wheel synchronization can clearly be seen to be
operating.

Fig. 8: PWM Motor Control Signals

The Serial Graph feature of the Arduino IDE Software was
also used to create a graph between the tilt angle and the
time elapsed. These graphs were shown for both approaches,
and it can be shown in Fig. 9 that PID control has low
stability. Meanwhile, the Neural Net provides substantially
more enhanced stability, and the tilt angle deviates far less
when using the Neural Net.

Fig. 9: Experimentally obtained history of tilt angle: PID
controller (top), Neural Net (Bottom)

6. CONCLUSIONS

Neural Net approaches for self-balancing are not as
commonly employed as PID controllers, nonetheless based
on our complete analysis we can deduce that the
Feedforward Neural Network was able to balance the robot
much better than the PID Controller. The Kp, Ki, and Kd
parameters of the PID Controller need to be adjusted
significantly, as shown by the data. These values are unique
to a system and vary from one to the next. As a result, the
identical settings for one robot cannot be used for another.
The parameters created in the neural net, on the other hand,
are universal, hence this approach does not need any
adjustments. Once the neural net code is loaded into the
Arduino Uno Microcontroller, the robot will begin to balance
itself. Finally, the Neural Net approach is a fascinating and
trustworthy way to balance the robot since it causes the bot
to vary less around the balancing point and so keeps it
steady for a longer period of time. Meanwhile, when the PID
controller is subjected to manual disturbances/imbalances,
it performs better. When the bot is supplied with a tiny push
and forced to unbalance, the PID controller is able to deliver
the larger torque required and balances the bot whereas the
Neural Net often fails to do so, allowing the robot to tumble.
Finally, using low-cost components, we were able to develop
a compact and cost-effective two-wheeled selfbalancing
robot. A fine-tuned PID controller and a 3-layered
feedforward neural network trained using the
backpropagation method were used to handle the
selfbalancing problem, and pertinent comparisons were
made between them.

REFERENCES

[1] F. Grasser, A. D. Arrigo, and S. Colombi, “JOE: A mobile,
inverted pendulum,” IEEE Trans. Ind. Electron., vol. 49,
no. 1, pp. 107–114, Feb. 2002.

[2] http://www.geology.smu.edu/~dpa-www/robo/nbot/

http://www.geology.smu.edu/~dpa-www/robo/nbot/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1061

[3] Nguyen Gia Minh Thao, Duong Hoai Nghia and Nguyen
Huu Phuc, "A PID backstepping controller for
twowheeled self-balancing robot," International Forum
on Strategic Technology 2010, Ulsan, 2010, pp. 76-81,
doi: 10.1109/IFOST.2010.5668001.

[4] W. An and Y. Li, "Simulation and control of a
twowheeled self-balancing robot," 2013 IEEE
International Conference on Robotics and Biomimetics
(ROBIO), Shenzhen, 2013, pp. 456-461, doi:
10.1109/ROBIO.2013.6739501.

[5] Q. Yong, L Yanlong, Z Xizhe, and L. Ji, “Balance control of
two-wheeled self-balancing mobile robot based on TS
fuzzy model,” 2011 6th International Forum on Strategic
Technology (IFOST), pp.406,409, Aug 22–24, 2011.

[6] J. Wu, S. Jia, “T-S adaptive neural network fuzzy control
applied in two-wheeled self-balancing robot,” 2011 6th
International Forum on Strategic Technology (IFOST),
pp.1023, 1026, Aug 22–24, 2011.

[7] L. Jiang, M. Deng, and A. Inoue, “Support vector
machinebased two wheeled mobile robot motion control
in noisy environment”, J. of Systems and Control
Engineering, vol. 222, no. 7, pp. 733–743, 2008.

[8] J. Cai and X. Ruan, “Bionic autonomous learning control
of a two-wheeled self-balancing flexible robot,” J. of
Control Theory and Applications, vol. 9, no. 4, pp.521–
528, 2011.

[9] Kim, Y., Kim, S.H. & Kwak, Y.K. Dynamic Analysis of a
Nonholonomic Two-Wheeled Inverted Pendulum Robot.
J Intell Robot Syst 44, 25–46 (2005).
https://doi.org/10.1007/s10846-005-9022-4

[10] S. Cong and Y. Liang, “PID-like neural network nonlinear
adaptive control for uncertain multivariable motion
control system,” IEEE Trans. Ind. Electron., vol. 56, no.
10, pp. 3872–3879, Oct. 2009

https://doi.org/10.1007/s10846-005-9022-4

