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Abstract - The design, manufacture, and implementation of a 
revolutionary control system for a two-wheeled self-balancing 
robot are covered in this research paper. A pair of DC motors, 
an Arduino Uno R3 microcontroller board, a 3-axis gyroscope, 
and a 3-axis accelerometer (for altitude measurement) are all 
part of the system design (employed for altitude 
determination). The two-wheeled robot that was constructed 
is essentially a real-time model of an inverted pendulum open-
loop system that is inherently unstable without feedback 
control and has nonlinear dynamics. The recommended 
balancing solution entails utilizing the backpropagation 
algorithm to train a feedforward neural network to learn to 
balance the bot through supervised learning on the basis of a 
training routine that runs at startup. In addition, gyro drifts 
are compensated for using the linear quadratic estimation 
technique (LQE) and a complementary filter. Our findings 
demonstrate that the suggested feedforward neural network 
balancing approach can learn to balance the bot in a short 
amount of time, with far less oscillations around the 
equilibrium point than a traditional PID controller, resulting 
in a more elegant system. Our bot is a modest, low-cost 
prototype that demonstrates artificial neural networks' 
(ANNs) efficiency and complex-learning capabilities (ANNs). 
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Proportional-Integral-Derivative Controller; Kalman 
Filter; Arduino Uno R3; Digital Motion Processing 
(DMP); Backpropagation Algorithm; Feedforward 
Neural Network. 

1.INTRODUCTION 

Over the past decade, mobile robots have penetrated 
public spaces such as hospitals, schools, and ordinary homes, 
moving away from military and industrial corridors. While 
many of these robots for civil purposes are technically stable, 
such as 'Aibo,' the Sony robotic dog, or four-wheeled 
intelligent vacuum cleaners, the Segway personal transport 
is one that everyday onlookers would find awe-inspiring. It's 
a mechanically unreliable, two-wheel self-balancing mode of 
transportation that's been used by police enforcement, 
tourists, and individuals. The Segway might be classified as a 
robot since it can never stay upright without the sensory 
capabilities and advanced controls that come with a robot. 
While the Segway is a well-known commercial product, there 
has been a lot of study on how to operate such a mechanical 
device. 

Aside from the Segway, there has been a lot of study on 
two-wheel self-balancing robots. JOE [1] and nBot [2], for 
example, are both early versions featuring inertia sensors, 
motor encoders, and onboard microcontrollers. Since then, 
there has been significant research on control design for 
such systems, including nonlinear backstepping controls, PID 
controllers, application of discrete Kalman filters, fuzzy-
neural control, Linear-quadratic regulators (LQR), and 
combinations of the aforementioned [3][4]. To deal with the 
equilibrium problem posed by wheeled inverted pendulums, 
several intelligence approaches have been developed, 
including fuzzy control [5][6], control systems based on 
support vector machines [7], operant conditioning theory 
[8,] and so on. 

The wheeled mobile robot and the inverted pendulum 
mechanism are combined in the two-wheeled robot [9]. It 
also entails the idea of establishing a mode of human 
transportation. The inverted pendulum is a dynamically 
unstable and nonlinear open-loop system with a single-
input, multi-output system configuration (SIMO), in which 
the system's center of mass is located above the pivot point. 
As a result, this system has become a classic problem in 
dynamics and control theory, and it is often used as a 
benchmark for assessing control system solutions. The 
wheeled inverted pendulum is not self-propelled and 
requires human balancing to remain upright. It uses 
gyroscopes and accelerometers to detect the inclination of 
the vertical axis, and the controller provides torque signals 
to each motor to counteract the inclination and prevent the 
system from falling. It's a control system paradigm in which 
an item can only be changed by adding more weight to it. As 
a result, wheeled inverted pendulums have become a new 
topic, and developing balancing algorithms to solve their 
equilibrium problem has piqued the interest of many 
specialists. 

Although there are many studies in this field, only a few 
have focused on making meaningful comparisons between 
traditional control system techniques like PID controllers 
and LQR feedback controllers and the relatively new 
artificial-intelligence based neural network controllers. That 
is precisely what we are aiming for. We will investigate the 
self-balancing system using dynamic theory, establish a 
mathematical model, and explain the behavior of the neural 
net in the most detailed and clear manner possible, as well as 
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create a simulation that demonstrates its functionality and 
efficiency. 

2. CONSTRUCTION OF THE ROBOT 

1. ACRYLIC SHEET CHASIS: Our frame is made out of 
acrylic sheets. To hold our three-tiered structure in 
place, we used metallic rods with a diameter of 3mm. 
The gyroscope sensor and 9V batteries are housed in 
the upper half. The Arduino Uno R3 microcontroller 
board and another 9V battery are located on the 
middle sheet. Finally, the driver motor controller and 
two DC geared motors are housed in the bottom 
layer. 

2. MOTORS: The motors we've selected are standard DC 
geared motors that run on 12V and provide 1.5 kg-cm 
of torque at 300 rpm. 

3. MOTOR CONTROLLER: The L298N motor controller 
is a dual H-bridge motor driver that allows us to 
regulate the speed and direction of two DC motors at 
the same time. The module can run DC motors with 
voltages ranging from 5 to 35V and peak currents of 
up to 2A. 

4. GY-521 MODULE: This module measures the robot's 
tilt angle. The values of the same are called using a 
function. The MPU-6050 MEMS 
(Microelectromechanical system) has a 3-axis 
gyroscope, a 3-axis accelerometer, a digital motion 
processor (DMP), and a temperature sensor. The GY-
521 module is a breakout board for the MPU-6050 
MEMS (Microelectromechanical system). Complex 
algorithms may be computed directly on the board 
using the digital motion processor. Typically, the 
DMP runs algorithms that convert the sensor's raw 
data into accurate location data. The sensor data is 
gathered via the I2C serial data bus, which only 
requires two wires (SCL and SDA) (SCL and SDA). We 
used the MPU6050 Arduino library, which has 
reverse-engineered functions that calculate yaw, 
pitch, and roll using the DMP on-board the MPU6050. 

5. ARDUINO UNO R3: The Arduino Uno R3 is a 
microcontroller board that uses the ATmega328P 
(datasheet) microcontroller (datasheet). There are 14 
digital input/output pins (six of which may be used as 
PWM outputs), six analog inputs, a 16 MHz quartz 
crystal, a USB connection, a power connector, an ICSP 
header, and a reset button on the board. 

6. JUMPER WIRES: Wires that connect males to males 
and females to males. 

 

 

 

Fig. 1: Schematic model for a wheeled inverted pendulum 

 

Fig. 2: Front view of constructed robot 

 

Fig. 3: Top view of constructed robot 
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Fig 4: Circuit Schematic 

3. ALGORITHMS USED 

3.1 PID CONTROLLER APPROACH 

We investigate two strategies for keeping the robot upright. 
The first method is to use a PID controller. The Proportional 
Integral Derivative controller (PID) is a feedback control 
loop mechanism that is widely used in industrial control 
systems and a variety of other applications that need 
continually modulated control [10]. The PID controller 
continuously calculates an error value as the difference 
between the desired setpoint (SP) and the measured process 
variable (PV) and initiates a correction based on 
proportional, integral, and derivative terms, which are 
denoted by P, I, and D, respectively, and give the controller 
its name. Technically, it is a control function that transmits 
accurate and responsive correction. PID is made up of three 
sections: (1). The proportional component is used to change 
the response's magnitude directly. The system becomes 
unstable if the value of Kp is too high or too low. (2). The 
integral part is used to smooth out prior inaccuracies and 
accelerate the process's progress toward the setpoint. (3). 
The derivative element predicts future errors based on 
previous error variations. Simply adding these three 
variables together yields the final control value. The 
following is the formula: 

 

Fig 5: PID Controller Block Diagram 

Algorithm to adjust Kp, Ki and Kd values: - 

• We modify the value of P after setting the I and D terms to 
0 so that the robot begins to oscillate around the mean 
position. P should be large enough for the robot to move 
about in, but not too large that it hinders smooth movement. 

• When P is correctly recognized, I is increased, causing the 
robot to accelerate more quickly when it is off balance. 

The robot should be able to balance itself for at least a few 
seconds if P and I are adjusted correctly. 

• Next, the value of D is chosen so that the robot may move 
about its balanced position in a more friendly manner. There 
should also be no significant overshoots. 

• If the first attempt does not provide satisfactory results, 
reset the PID settings and repeat the technique above until 
you get a satisfactory result. 

• During fine tuning, the PID values are confined to nearby 
values, and their effects are seen in real-world situations. 

3.2 FEEDFORWARD NEURAL NET APPROACH 

A feedforward neural network is used in our proposed 
approach to control a two-wheeled self-balancing robot. The 
robot is incapable of doing anything other than self-
balancing, and there is no way to regulate its direction. The 
program uses a neural network with a single input node, two 
hidden nodes, and a single output node to get around the 
Arduino Uno's 2K SRAM limitation. The program starts with 
a training procedure that takes just a few seconds and may 
be repeated every time the robot is launched. The bot must 
be kept upright when the backpropagation approach is used 
to teach the neural network routine. The input sensor values 
(the robot's tilt angle) are converted to a number between 0 
and 1. This value is fed into the neural network model, which 
subsequently generates a sigmoid activation layer output 
that ranges from 0 to 1. Finally, we transform these output 
numbers to a useful value for DC motors, in this case from -
255 to 255. 

 

Fig 6: Feedforward Neural Network Architecture 

4. METHODOLOGY 

In order to reverse-engineer the DMP (Digital Motion 
Processing) algorithm of the GY-521 Breakout Board, which 
uses the InvenSense MPU-6050 6-Axis Accelerometer and 
Gyroscope Module, we use the Kalman filter, also known as 
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the Linear Quadratic Estimation (LQR) algorithm, in 
conjunction with the Complementary filter to obtain 
information about the robot's spatial orientation. TheDMP 
procedures are called and used to get precise and accurate 
data for our mechanically unstable system's Yaw, Pitch, and 
Roll. 

The Pitch value is then used to interpret and calculate the 
robot's vertical tilt angle, allowing the robot to restore its 
alignment afterwards. This is accomplished by using Pulse-
Width Modulated Signals (PWM) to control the speed of the 
motors based on the tilt angle. Because PWM signals may be 
sent in the range of -255 to 255, a PIDcontroller is used to 
decide the value to be delivered as PWM. To compute the 
PWM value, we must first submit an input and a Setpoint to 
the PID controller, which will calculate the error (Setpoint – 
Input) and then provide an output that will reduce the error. 
As an input, we provide the robot's tilt angle while keeping it 
upright. Because the input tilt angle varies depending on the 
surface where the robot is housed, we must alter the value in 
the code. 

However, none of these parameters are required in our 
neural network application. We simply use the back-
propagation method and add a single input node, two hidden 
nodes, and a single output node in the neural network. 

Rather of meddling with all of the Kp, Ki, and Kd parameters 
required by the PID Controller, we just call a training 
procedure at the robot's starting during which the bot must 
be kept upright and steady. The bot uses this vertical tilt 
angle as the training set's input angle and calculates the 
error. 

The Sigmoid Activation Function is used for the neural net in 
this situation. The function's graph is as follows: 

 

Fig. 7: Sigmoid Activation Function 

The hyperparameters set for the neural net are as follows 

 

 

Table 1: Optimized Hyperparameter values of FNN 

The value of the option 'Success' has been set to 0.0015. The 
difference between the requisite Set Point (vertical tilt angle) 
and the Current Angle (Real-Time Tilt Angle) is anticipated 
to be less than the value of success in order to keep the robot 
upright, and the neural net provides the necessary output. 
This value is then linearly translated into the 0-255 range. 
The magnitude of the PWM signal is then calculated using 
this number. As a result, the greater the value provided to 
the PWM signal, the greater the torque created by the motor, 
allowing the bot to maintain its upright position. 

5. RESULTS AND DISCUSSION 

We employed both approaches on our constructed robot, in 
order to compare and infer as to which algorithm worked 
better.  

The first approach was the PID Controller approach where 
the following steps were taken-  

 The desired setpoint was set as 6.10 (degrees from the 
vertical).  

 The value of Kp after extensive experimenting, was set 
to 90 as it was optimal and made the bot oscillate about 
the balance position.  

 The value of Ki was set to 250 as it made the balancing 
more efficient and provided more torque to the motors 
at higher tilt angles.  

 The value of Kd was set at 2.15 since any value more 
than that made the robot jitter and any value less than 
that made the robot fall.  

The next approach was the Neural Net approach where the 
following steps were taken-  

 



                    International Research Journal of Engineering and Technology (IRJET)                 e-ISSN: 2395-0056 

                    Volume: 09 Issue: 03 | Mar 2022                         www.irjet.net                                           p-ISSN: 2395-0072 

 

© 2022, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 1060 
 

 The desired setpoint was set as 6.10 (degrees from the 
vertical).  

 The value of Learning Rate was tinkered with, and it 
was found that a value of 0.3 made the bot balance 
perfectly without oscillating at high frequencies and 
causing large deviations.  

 A high learning rate made the output change frequently 
and this caused the motors to frequently change speed, 
thus making the robot oscillate and jitter.  

 The momentum and initial weights were set as 0.9 and 
0.5 respectively based on hit and trial. 

 The Success value was kept at 0.0015 since any number 
higher or lower than that resulted in a significant 
change in the error computation and caused the DMP 
function to be called more often than required, causing 
the robot to jitter excessively. 

In addition, in order to examine and assess the motor control 
signals under wheel synchronization in Fig. 8, we used the 
serial graph plotter included in the Arduino IDE Software. 
The wheel synchronization can clearly be seen to be 
operating. 

 

Fig. 8: PWM Motor Control Signals 

The Serial Graph feature of the Arduino IDE Software was 
also used to create a graph between the tilt angle and the 
time elapsed. These graphs were shown for both approaches, 
and it can be shown in Fig. 9 that PID control has low 
stability. Meanwhile, the Neural Net provides substantially 
more enhanced stability, and the tilt angle deviates far less 
when using the Neural Net. 

 

Fig. 9: Experimentally obtained history of tilt angle: PID 
controller (top), Neural Net (Bottom) 

6. CONCLUSIONS 

Neural Net approaches for self-balancing are not as 
commonly employed as PID controllers, nonetheless based 
on our complete analysis we can deduce that the 
Feedforward Neural Network was able to balance the robot 
much better than the PID Controller. The Kp, Ki, and Kd 
parameters of the PID Controller need to be adjusted 
significantly, as shown by the data. These values are unique 
to a system and vary from one to the next. As a result, the 
identical settings for one robot cannot be used for another. 
The parameters created in the neural net, on the other hand, 
are universal, hence this approach does not need any 
adjustments. Once the neural net code is loaded into the 
Arduino Uno Microcontroller, the robot will begin to balance 
itself. Finally, the Neural Net approach is a fascinating and 
trustworthy way to balance the robot since it causes the bot 
to vary less around the balancing point and so keeps it 
steady for a longer period of time. Meanwhile, when the PID 
controller is subjected to manual disturbances/imbalances, 
it performs better. When the bot is supplied with a tiny push 
and forced to unbalance, the PID controller is able to deliver 
the larger torque required and balances the bot whereas the 
Neural Net often fails to do so, allowing the robot to tumble. 
Finally, using low-cost components, we were able to develop 
a compact and cost-effective two-wheeled selfbalancing 
robot. A fine-tuned PID controller and a 3-layered 
feedforward neural network trained using the 
backpropagation method were used to handle the 
selfbalancing problem, and pertinent comparisons were 
made between them. 
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