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Abstract - This research presents a study of the optimal 
power flow for networked microgrids with multiple 
renewable energy sources (PV panels and wind turbines), 
storage systems, generators, and load. The OPF problem is 
performed using a conventional method and an Artificial 
Intelligence method. In this research, we investigated the 
performance of MGs system with renewable energy 
integration with focus on power flow studies. The 
calculation of the power flow is based on the well-known 
Newton-Raphson method and Neural Network method. The 
power flow calculation aims to evaluate the grid 
performance parameters such as voltage bus magnitude, 
angle, real and reactive power flow in the system 
transmission lines under given load conditions. The standard 
test system used was a benchmark test system for 
Networked MGs with four MGs and 40 buses. The data for 
the entire system has been chosen as per the IEEE Standard 
1547-2018. The results showed minimum losses and higher 
efficiency when performing OPF using NN than the Newton-
Raphson method. The efficiency of the power system for the 
networked MG is 99.3% using Neural Network and 97% 
using the Newton-Raphson method. The Neural Network 
method, which mimics how the human brain works based on 
AI technologies, gave the best results and better efficiency in 
both cases (Battery as Load/Battery as Source) than the 
conventional method. 

Keywords: Optimal Power Flow, Microgrid, Newton-
Raphson, Neural Network. 

1. Introduction 

The electric energy network is a complex and 
interconnected system commonly known as the grid. 
Growing electricity demand requires more sustainable and 
renewable energy sources. Nowadays, a massive 
transformation of the current electric energy system is 
observed. For instance, the energy flow becomes 
bidirectional due to the Distributed Generations (DG) 
plants where the energy is transferred between several 
nodes of the power grid/Microgrid, according to the 
changing demands [1].  

A microgrid is a more intelligent and efficient mini-version 
of the electric grid. The electric grid is made up of 
interconnected sub-systems, namely generation, 
transmission, and distribution. On the other hand, the 
microgrid is a decentralized group of electricity sources 
and loads that are synchronized with the electrical grid but 
can be disconnected and operate autonomously in “Island 
Mode.” It can serve a small localized area to keep the 
power flowing when the electrical grid is down, protect the 
microgrid from power outages by relying only on their 
own, serve the larger grid, and provide clean and green 
energy since they are fueled mainly by renewable energy 
sources (RES) [2].  

Such a new scenario requires new systems that can allow 
the power grid to be smart by managing the bi-directional 
energy flow. Figure 1.1 shows the current plan where 
different distributed generation plants supply the energy 
to customers and the surplus power is injected back to the 
grid [1]. In addition, the improvements in storage 
technologies allow more flexible operation and reliable 
management of energy. Therefore, RES associated with 
storage units is considered as actively distributed 
generators, which is one of the essential elements of the 
“Smart Grid” concept [3]. 

Bulk power generators are complicatedly connected to the 
transmission system, whereas the simple design of 
distribution networks allow many customers to easily 
connect to them and be the prosumers. The Generating 
Companies (GenCos) seek to maximize the utilization of 
the existing generation resources by using the appropriate 
load distribution. However, the Transmission Companies 
(TransCo) tend to keep standard operating conditions in 
terms of low transmission line congestion, high value of 
minimum bus voltage, and low level of transmission loss 
[4]. Loss reduction can be achieved through the 
appropriate control of Distributed Generation (DG) 
resources in the distribution systems, or more generally, 
through the management of dispatchable resources (DG, 
load, storage), which can be effectively assessed using 
Optimal Power Flow problem. 
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1.1. Objective and Methodology  

The employment of the OPF in smart grids is regarded as a 
new development in power system studies. Therefore, this 
work aims to study the optimal power flow problem in 
microgrid by determining the best way to optimize the 
flow of power using the Newton-Raphson approach and 
the Neural-Network approach. The optimization of the 
power flow using the Newton Raphson method and 
Neural-Network method will be performed using 
simulation. In addition, the impacts of the distributed 
generations, renewable energy sources, storage systems, 
and EV Charging stations are investigated.  

1.2. Work Organization  

Section II gives an overview of previous publications 
covering OPF. Section III gives an overview of the Optimal 
Power Flow. Section IV highlights the study of OPF using 
Newton-Raphson method. In Section V, the OPF Study 
using the Neural-Network is analyzed. Discussions and 
conclusions are drawn in Section VI and VII respectively.  

 

Fig - 1.1 Current Scenario of the power grid. 

2. Literature Review 

Lin and shen [5] showed that utilizing renewable 
energy sources to reduce carbon emission and minimizing 
the fuel cost for energy saving in the OPF problem will 
reduce the global warming effect from the power 
generation sector. In this paper, a DPOPF (distributed and 
parallel OPF) algorithm for the smart grid transmission 
system with renewable energy sources was proposed to 
account for the fast variation of the power generated by 
renewable energy sources. The proposed DPOPF algorithm 
combines the recursive quadratic programming method, 
and the Lagrange projected gradient method. The 
proposed algorithm can achieve the complete 
decomposition and be implemented in the smart grid 
transmission system to make distributed and parallel 
computation possible. results confirm that the computing 
speed of the proposed DPOPF algorithm is fast enough to 

cope with the fast variations of the power generated by 
renewable energy sources. A PSO (Particle Swarm 
Optimization) was presented in [6] to find the most 
optimal locations and sizes of DGs, with the objective 
function to minimize the system's total cost, real power 
loss, and the number of the installed DGs. Firstly, a radial 
distribution power flow (PF) algorithm is executed to find 
the global optimal solution. Then, with respect to voltage 
profile, THD and loss reduction and by using the sensitivity 
analysis, PSO is used to calculate the objective function and 
to verify bus voltage limits. To include the presence of 
harmonics, PSO was integrated with a harmonic power 
flow algorithm (HPF). The proposed (PSO-HPF) based 
approach was tested on an IEEE 15-bus radial distribution 
system. According to the authors, these scenarios yield 
efficiency in improvement of voltage profile and reduction 
of THD and power losses; it also permits an increase in 
power transfer capacity and maximum loading. According 
to Pazheri et al. [7], an economic/environmental 
dispatching (EED) problem formulation was presented for 
a hybrid system that comprises thermal units, the solar, 
wind, and storage unit. The study was simulated using 
MATLAB/Simulink. A consistent optimum EED was 
obtained by extracting maximum renewable energy during 
their availability and using them for both available and 
unavailable periods with the aid of their storages. In [8], 
Atwa et al. proposed a probabilistic planning technique to 
allocate various DG types (wind, solar, biomass) in the 
distribution system with an Objective Function to 
minimize the energy loss. The results reveal that 
regardless of the combination of the renewable resources 
used to calculate the optimal fuel mix, there is a significant 
reduction in the annual energy loss. An optimal control 
model of a heat pump water heater (HPWH) supplied by a 
wind-generator-PV-grid system was presented in [9] with 
an OF is to minimize the overall energy cost. This problem 
was solved using a mixed integer linear program. The 
results show a 70.7% cost reduction upon implementation 
of this intervention. Sanseverino et al. [10] showed an 
execution monitoring and re-planning approach to solve 
the optimal generation dispatch problem in smart grids 
with OF to minimize the carbon emissions, production 
costs and improve the quality. The replanning module is 
based on a heuristic multi-objective optimizer able to 
efficiently incorporate constraints. The obtained results 
were encouraging and suggest to incorporate into the 
Microgrids software technology approaches for managing 
uncertainties. A smart energy management system (SEMS) 
was presented in [11] to optimally organize the power 
production of DG sources and energy storage systems and 
minimize the microgrid operational costs. The results 
show that the forecasting model is able to predict hourly 

https://www.hindawi.com/journals/mpe/2014/569109/#the-driver-behavior-characteristics
https://www.hindawi.com/journals/mpe/2014/569109/#key-technologies-for-identification-of-driver-behavior-characteristics
https://www.hindawi.com/journals/mpe/2014/569109/#applications-in-identification-of-driver-behavior-characteristics-for-automotive-control
https://www.hindawi.com/journals/mpe/2014/569109/#conclusion
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power generation according to the weather forecasting 
inputs. 

Similarly, an optimal energy management system of 
storage devices in grid-connected microgrids was 
presented in [12], where the stored energy is controlled to 
balance the loads and renewable sources and minimize the 
total cost of energy at the PCC (Point of Common 
Coupling). Bracale et al. [13] presented an optimal control 
approach for a DC microgrid that included dispatchable 
(micro-turbine) and non-dispatchable (PV generator) 
units, storage system, and controllable/non-controllable 
loads. It was designed to achieve a minimum daily total 
energy cost and it shows that the power provided by the 
dispatchable unit and the storage system allowed the 
minimization of the daily costs of energy. A novel OPF 
algorithm for islanded microgrid was presented in [14], 
where it provides minimum losses and a stable operating 
point with relevant droop parameters used to regulate the 
primary voltage and frequency. Shen et al. [15] presented 
an energy management scheme containing battery storage, 
diesel generators, PV, and wind. As a result, the proposed 
energy management system is effective in engineering 
practice and beneficial for both the microgrid and the 
customers. Hassanzadehfard et al. [16] employed battery 
banks as long-term storage and ultra-capacitors as short-
term storage to control the frequency in a microgrid. The 
simulation results showed that considering interruptible 
loads for the microgrid results in cost reduction for the 
microgrid. 

The development of EVs technology has a significant 
impact on microgrid operations. Yu et al. in [17] analyzed a 
model to find the effect of EV technology on-demand 
response mobility. Numerical results show that EVs 
mobility of symmetrical EV fleet is able to achieve 
synchronous stability of network and balance the power 
demand among different districts. Moreover, Laureri et al. 
[18] presented an optimization technique to integrate the 
EVs into the smart grids. The results prove that the 
integration of electric vehicles in the smart grids can help 
in sustaining the grid processes when parked and so 
playing in costs minimization. Paterakis et al. [19] 
developed an optimization technique to minimize the 
energy procurement costs of a smart household. 
Coordination strategy was proposed in order to satisfy the 
transformer capacity limits while promoting its 
economically fair usage by the households. Lin et al. [20] 
utilized an active power limitation strategy to reduce PV 
power injection during peak solar irradiation to avoid 
deviations in voltage. The results show that the control for 
PV power rejection increases the installation capacity of a 
PV system to make full use of solar energy resources and 

to maximize the net present value of a PV system 
investment. Moreover, a study was conducted in [21] to 
find the optimal design of a PV/Battery hybrid system 
regarding PV modules' numbers, the PV module's tilt, 
batteries numbers, and capacities. Results show that the 
choice of installation place and of the system type can 
significantly affect the optimization results significantly. In 
particular, the optimum PV module tilt angle value changes 
according to electrical energy demand of the domestic 
utility. In [22], an optimization of the power flow of the PV 
system connected to the grid was presented. It was 
performed by calculating the root of the active and 
reactive power equation using Newton's Raphson method. 
Simulation results have shown the maximum value of the 
active power system at 1000 W/m2 irradiation was 408 
W, as the reactive power is needed only 11.82 Var. In [23], 
an application for optimization of the energy flows in 
smart power systems consisting of electric vehicles (EV), 
distributed energy sources (DER), flexible loads, and 
bidirectional storage is proposed, as well as an 
optimization model for energy distribution between 
electric vehicles, electric storage devices, and photovoltaic 
generators. A nonlinear optimization problem with linear 
constraints for optimizing the power flows in the system is 
defined and solved. A multi-objective problem is 
determined to satisfy PV production criteria and maximize 
the power flow to the EVs. An algorithm for finding the 
optimal solution to the multi-objective optimization 
problem is also proposed. The approach is beneficial for 
energy flow control and analysis of DER behavior. The 
algorithm proposed for solving the multi-objective 
problem is applicable when storage and PV generation 
units are used in the DER system.  

Rigo-Mariani et al. [3] investigated different procedures 
for the optimal power dispatching of a grid-connected 
prosumer with energy storage consisting of a high-speed 
flywheel. According to the paper, optimal off-line 
scheduling for the day ahead aims to minimize the cost 
with regard to the daily energy rates and consider the 
forecasts for both consumption and production. That 
dispatching is performed using global optimization 
procedures based on a trust-region method or a niching 
genetic algorithm. Another approach developed by the 
authors in [3] is using step-by-step optimization and 
exploiting an original self-adaptive dynamic programming 
strategy. Kim and Lavrova [24] used an advanced 
optimization method to present optimal power flow and 
energy-sharing among smart buildings. The authors 
claimed that this method could improve the smart grid's 
optimal power flow and energy-sharing stability among 
smart buildings and enhance energy dissipation balance to 
reach stability among many smart buildings in the smart 
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grid. 

Ke et al. [25] presented a new probabilistic OPF (POPF) 
model with chance constraints that reflect the 
uncertainties of wind power generation (WPG). The 
results show the satisfactory accuracy of the PLF 
(Probabilistic Load Flow) method, and the effectiveness of 
the proposed P-OPF model. In [26], a probabilistic AC OPF 
(POPF) was presented, considering the load variation, 
stochastic wind behavior, and variable line's thermal 
rating. It was observed that a reduction on the mean cost 
and also on the probability of reaching higher generation 
costs was obtained when dynamic limits where used. An 
optimization system to calculate the optimal operation of a 
system comprising electric vehicles and offshore wind 
farms connected to the grid through an HVDC link was 
presented in [27]. It has been shown that the uncertainty 
associated with availability of power from wind farm and 
PEVs affects the overall cost of operation of system. Lin 
and Lin [28] proposed a risk-limiting optimal power flow 
(RLOPF) problem for systems with high wind power 
penetration; the aim was to address the issue of possibly 
violating the security constraints in power systems due to 
the instability of wind power generations. 

3. Optimal Power Flow  

3.1. OPF of Conventional Power Grid 

Load flow, also known as a power flow, is a network 
solution that displays currents, voltages, and real and 
reactive power flows at each bus and lines in the power 
system. The calculation of power flow necessitates the 
solution of non-linear equations. It can calculate the 
transmission system's electrical response to a specific set 
of loads and generator power outputs. Carpentier 
presented Optimal Power Flow in 1962 [4]. The OPF is 
typically a non-linear and non-convex problem with 
Objective Function that must be optimized (maximized or 
minimized), a set of equality and inequality constraints 
that must be satisfied, and a problem-solving method. 
Specifically, OPF optimizes a given Objective Function 
controlling power flow throughout an electrical system 
without violating power flow constraints or operational 
limits [4]. In other words, each power plant's actual and 
reactive power should be scheduled so that the total 
operating cost is kept to a minimum. Thus, it can help grid 
operators address various challenges in grid planning, 
operation, and control. OPF can also be used to determine 
prices on the day-ahead market [29]. Some of the extended 
OPF versions are illustrated below [4]: 

 SCOPF: It selects the optimal control settings for 
the base system to minimize the objective function 
while ensuring that no violations occur. 

 DC OPF: The reactive power and transmission 
losses are not taken into account. 

 AC OPF: It has to do with the AC grid and is based 
on the system's natural PF characteristics. As a 
result, the outputs of this type of OPF are more 
precise. 

 Mixed AC/DC OPF: it is related to the OPF in both 
AC and DC grids. 

OPF has been solved using a variety of conventional 
optimization methods such as Linear Programming 
method, Non-linear Programming method, Quadratic 
Programming method, Newton’s method, and Interior 
Point method [30]. However, all of these methods have 
their own set of benefits and drawbacks which will be 
discussed further.  

3.2. OPF Problem Formulation 

 The following is a description of a general 
minimization problem: 

 Minimize: f(x,u) (the objective function) where 
f(x,u) is the objective function. 

 Subject to: hi(x,u) = 0, i = 1,2,3,…. m (equality 
constraints) where hi(x,u) is set of equality 
constraints. 

        gi(x,u) ≤ 0, j =1,2,3, ….  n (inequality 
constraints) where gi(x,u) is set of inequality 
constraints, u represents a set of controllable and 
x represents dependent variables. 

3.3. Objective function 

These objective functions vary from fuel cost generation, 
active and reactive power transmission loss, reactive 
power reserve margin, security margin index, and 
emission environmental index [31].  

3.3.1. Minimization of Generation Fuel Cost 

The key objective of the OPF solution is to reduce the 
system's total operating costs. When there is a light load, 
the cheapest generators are always chosen to run first. 
More expensive generators will be brought in as the load 
increases. As a result, the operational cost plays a critical 
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part in the OPF solution. The amount of fuel or input to a 
generator is usually measured in British thermal units per 
hour (Btu/hr) and the output in megawatts (MW) [30]. 

In all practical cases, the cost of generator i can be shown 
as a function of real power generation, 

Ci = [ai + (bi Pi) + (ci Pi2)] * fuel cost                          (3.1) 

which is expressed in expressed in $/hr 

Where Pi is the real power output of generator i, and ai, bi, 
ci are the cost coefficients. 

The incremental cost can be obtained from the derivative 
of Ci with respect to Pi, 

 dCi/dPi = (bi +2ci Pi)* fuel cost                                  (3.2)  

which is expressed in $/MWhr. 

3.3.2. Minimization of Active Power 
Transmission Loss 

The OPF problem goal is to minimize the power loss. 
The formulation of the real power loss can be represented 
by [31]: 

Minimizing PLoss = ΣPi = ΣPgi – ΣPdi, i = 1, ……., Nb (3.3) 

where PLoss is the total I2R loss in the transmission lines 
and transformers of the network. 

3.3.3. Minimization of Reactive Power 
Transmission Loss 

The total VAR loss is minimized as per the following 
equation [31]: 

Minimizing QLoss = ΣQgi – ΣQdi, i = 1, …., Nb        (3.4) 

3.4. Control and Dependent Variables 

There are two relevant variables in an optimization 
problem: independent/control variables and 
dependent/state ones. Firstly, the optimal value must be 
determined for control variables to help minimize the 
objective function, and then, based on it, state variables 
should be calculated [4]. 

In the OPF problem, control variables may include active 
power generation of all generator buses except slack bus, 
the voltage of all generator buses, transformers tap ratio, 
reactive power injection of shunt capacitor banks, etc. 
Moreover, dependent variables may also include an active 

power output of the slack bus, voltage angles of all buses 
excluding the slack bus, load bus voltages, reactive power 
generation of generators. It should be noted that the 
number of control variables determines the solution space. 
In fact, a problem with n-control variables results in an n-
dimensional solution space [4]. The classification of power 
system buses is shown in Table 3.1 [31].  

Table – 3.1: Classification of Power System Buses. 

Classifications Knowns Unknowns 
Load Bus P, Q V, δ 
Generator Bus P, V Q, δ 
Slack (Swing) bus V, δ P, Q 
 

3.5. Equality constraints 

Both the physicality of the power system and the 
required voltage set points are reflected in the OPF's 
equality constraints. The power system physics is enforced 
by power flow equations that require that actual and 
reactive power injection for each bus amount to zero [30].  

This can be attained by the following analysis: 

Pi = PLoad + PLoss       (3.5) 

Qi = QLoad + QLoss    (3.6) 

where Pi and Qi are the active and reactive power outputs 
respectively. 

             PLoad and QLoad are the active and reactive load 
power respectively.  

             PLoss and QLoss are the active and reactive power loss 
respectively. 

The power flow equations of the network can be given as: 

G(V,δ) = 0 (3.7) 

where 

G(V,δ) = Pi(V,δ) - Pi
net, Qi(V,δ) – Qi

net, Pm(V,δ) - Pm
net (3.8) 

where Pi and Qi are the calculated real and reactive power 
at PQ bus respectively  

           Pi
net and Qi

net are the specified real and reactive 
power for PQ bus respectively  

           V and δ are the magnitude and phase angle of voltage 
at different buses respectively 
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3.6. Inequality constraints 

Components and equipment in the power system have 
operational limitations created to ensure system security 
and minimize the required objective function [30]. 

Inequality constraints: 

Pgi
min ≤ Pgi ≤ Pgi

max                           (3.9) 

Qgi
min ≤ Qgi ≤ Qgi

max                  (3.10) 

ΣPgi – PD – PLoss = 0                (3.11) 

where Pgi is the amount of generation in MW at generator i. 

           Qgi is the amount of generation in MVAR at generator 
i. 

The inequality constraints on voltage magnitude V of each 
PQ bus 

Vi 
min ≤ Vi ≤ Vi

 max                   (3.12) 

where Vi 
min and Vi

 max are the minimum and maximum 
values of voltages at bus i. 

The inequality constraints on phase angle δ of voltages at 
all buses i 

δi
min ≤ δi ≤ δi

max                         (3.13) 

where δi
min and δi

max are the minimum and maximum 
values of phase angle at bus i. 

For a typical Microgrid system, the basic components are 
given in Table 3.2 [12]: 

Table - 3.1 Typical Microgrid components. 

 

Where the PCC corresponds to the “slack” bus. It is always 
indexed as bus 1. 

3.7.  Conventional Vs Recent Optimization Methods 
for OPF 

The Conventional methods are based on linear Objective 
Functions that apply sensitivity analysis and gradient-
based optimization algorithms. The conventional 
optimization methods are illustrated below [32]: 

3.7.1. Linear Programming method 

LP method is one of the fully developed methods now in 
common use. It easily handles inequality constraints. Non-
linear objective functions and constraints are handled by 
linearization [33]. LP method is used for linearizing the 
problems of non-linear system optimization; it is reliable. 
It has a good convergence feature, but the main 
shortcoming is that errors may occur due to digital 
computer rounding, especially under constraints.  

3.7.2. Non-Linear Programming method 

NLP is a process of solving an optimization problem where 
the constraints and the OF are non-linear. It helps to find 
the best solution to a problem using constraints that are 
not linear. The non-linear method (NLP) is more precise 
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than the linear method, where non-linear objective 
functions and constraints can be applied. The NLP 
techniques use the Lagrange multiplier to use the reduced 
gradient method. The significance of this method is that it 
can be applied in a large-scale system, whereas the 
disadvantages are that some system components are not 
taken into consideration [32]. 

3.7.3. Quadratic Programming method 

A particular nonlinear programming approach can be seen 
in quadratic programming (QP), where the objective 
function is quadratic, and the constraints are linear. The 
determination of gradient steps is not necessary for this 
method. The solution that has been obtained using the QP 
Method is more accurate compared to the previous 
methods. In addition, it has fast convergence 
characteristics [32].  

3.7.4. Newton’s method 

The Newton Method is commonly used in power flow 
problems by applying second-order partial derivatives to 
create the Lagrangian. It is a high-speed convergence 
method, but it may give problems with inequality 
constraints. It was proved that Newton-Raphson 
converged in many cases. Moreover, most Newton-
Raphson power flow problems converge in less than ten 
iterations. The disadvantages are that the Newton-
Raphson method requires high computer storage and 
computation time, and it is very much sensitive to the 
selection of initial conditions [33]. 

3.7.5. Interior Point method 

IP method is one of the fully developed and widely used 
methods for OPF. The IP method is generally used for large 
problems to solve the optimal power problem [32]. 
However, the results achieved by IP results are better and 
require fewer iterations than LP. It easily handles 
inequality constraints [33]. 

The conventional methods are not always appropriate for 
optimizing the power flow since the optimal power flow is 
a non-linear (non-convex) problem. Therefore, new 
optimization methods are introduced to solve the OPF. The 
advantages of these recent methods are the following [32]: 

1. They can be applied in small and large scale 
systems 

2. It has a high reliability  

3. They converge rapidly compared to the 
conventional methods. 

The recent optimization methods can be classified as 
follows [32]: 

 Swarm and Bio-inspired Optimization Techniques 

The natural and bio-inspired algorithm is an emerging 
approach based on the inspiration of the moving and 
looking behavior of animals or birds for food sources.  

 Human-Inspired Optimization Techniques 

Various techniques of optimization simulate human 
behavior, particularly when it comes to thinking or making 
decisions. 

 Physics-Inspired Optimization Techniques 

Algorithms based on physics are conceptualized in space 
through physics laws or natural phenomena. 

 Evolutionary-Inspired Optimization Techniques 

Evolutionary optimization algorithms come from natural 
selection mechanics and genetics or living bodies or 
animals. 

 Hybrid Optimization Techniques 

Several algorithms have been proposed for hybrid 
optimization to gain advantages of multiple techniques 
and obtain better results than single techniques. 

 Artificial Neural Network (ANN) and Fuzzy Logic 
Approach 

Artificial neural networks (ANNs) are computational 
methods that emulate the operation of biological neural 
networks. At the same time, the fuzzy set theory is a 
natural and appropriate tool for inaccurate relations. 

4. Networked Microgrid Test System 

A Microgrid can connect with the main grid by a 
DG control entity to serve local loads. The balance between 
the generation and load must be kept under all operating 
conditions to keep the frequency and voltage of MGs 
within operating limits. These DGs may be dispatchable or 
non-dispatchable. For example, the power generation from 
PV panels and wind turbines is usually non-dispatchable. 
In contrast, the power output from the microturbines, fuel 
cells, combined heat and power (CHP), and diesel 
generators are fully dispatchable. The grid, which serves as 
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the MG's slack bus, handles this balance in grid-connected 
mode. While in an islanded mode, dispatchable DG must 
have sufficient capacity to balance load and generation and 
avoid load shedding.  

 

 

 

 

 

Figure 4.1 shows the electrical single-line diagram of the 
test system with comprehensive buses, loads, and 
generation. A three-digit number is used to identify each 
bus in the system. All lines, including the tie lines, are 
underground cables. Table 4.1 shows more details on the 
four microgrids [34]. 

The first bus of each microgrid (101, 201, 301, and 401) 
serves as the slack bus of that microgrid, and its equipped 
with two or three units of conventional Synchronous 
Generators to allow the microgrid to function effectively in 
isolated mode, with load balancing and reactive power 
supported. While in grid-connected mode, the slack bus of 
microgrid 1 (101) is the slack bus on the complete system 
[34]. Load and generation balance is performed through 
this bus.  

As shown in Table 4.1, microgrid 1 consists of 6 buses, 11 
underground cables, and three standby Synchronous 
Generators, each of 5000 kVA connected to bus 101. 
Moreover, 3 PV panels are installed at buses 102, 103, and 
104. microgrid 2 consists of 9 buses, eight underground 
cables, and three standby Synchronous Generators at bus 
201. Additionally, 3 PV panels (at buses 202, 203, and 204) 
and 2 Wind Turbines (at buses 206 and 209) are always 
available to generate power to the network. microgrid 3 
has 18 buses and 17 underground cables. Bus 301 has 
three standby Synchronous Generators and 6 PV panels (at 
buses 303, 304, 305, 306, 307, and 315) and 2 Wind 
Turbines (at buses 314 and 317). Finally, microgrid 4 has 
seven buses and eight underground cables, 3 PV panels at 
(at buses 405, 406, and 407), and two standby 
Synchronous Generators installed at bus 401. All these 
standby SGs are of equal capacity and have self-starting 
capability [34].  

The networked microgrid system is designed to operate on 
11 kV three-phase underground cables. The utility feeder 
is a 33 kV three-phase single circuit overhead line. In 

addition, there are three 20 MVA parallel step-down 
transformers to maintain the voltage of 11 kV at bus 101. 

 

Fig - 4.1 Single-line diagram of the Networked MGs test 
system. 

As shown in Figure 4.1, microgrid 1 can share power with 
microgrid 2 through PCC1 and microgrid 3 through PCC2. 
While microgrid 2 can share power with microgrid 3 
through PCC4 and microgrid 4 with PCC3. microgrid 3 and 
microgrid 4 can exchange power through PCC5. If a failure 
occurs in microgrid 1, microgrid 2 and 3 can be connected 
to the utility grid directly to ensure the continuity of 
supply. 

Table - 4.1 Details of Microgrids of the test system. 

Components MG 1 MG 2 MG 3 MG 4 

Buses 6 9 18 7 
Lines 11 8 17 8 
SGs 3 3 3 2 
PV Systems 3 3 6 3 
WT Systems 0 2 2 0 

Slack Bus 101 201 301 401 
MG Type Meshed Radial Radial Meshed 

 
The line and bus data are necessary to perform out an 
optimal power flow analysis. The data from the networked 
microgrid system lines such as resistance, reactance, and 
cable length is presented in Table 4.2 [34]. Moreover, 
Table 4.3 shows the tie-cable data between the microgrids 
[34]. 
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Table - 4.2 Line Data of the Networked MG System. 

S. 
No. 

From 
Bus 

To 
Bus 

Length 
(km) 

Resistance 
(P.U) 

Reactance 
(P.U) 

1 101 102 3 0.7661 1.18  

2 101 103 2.4 0.7715 0.991 

3 101 104 3 0.7661 1.18 

4 101 105 1.6 0.514 0.6604 

5 101 106 1.6 0.514 0.6604 

6 102 103 2 0.6429 0.825 

7 102 105 1.5 0.4822 0.619 

8 103 104 2 0.6429 0.825 

9 103 105 1.2 0.3857 0.495 

10 103 106 1.2 0.3857 0.495 

11 104 106 1.5 0.4822 0.619 

12 201 202 1.4 0.4500 0.577 

13 202 203 1.6 0.5143 0.660 

14 202 206 1.5 1.9710 1.338 

15 203 204 2.2 0.7072 0.908 

16 203 207 1.4 1.8396 1.249 

17 204 205 1.8 0.5786 0.743 

18 204 208 1.2 0.3857 0.495 

19 208 209 0.8 1.0512 0.714 

20 301 302 1.2 0.3857 0.495 

21 302 303 1.8 0.5786 0.743 

22 302 309 1.5 0.4822 0.619 

23 302 311 1.4 1.8396 1.249 

24 303 304 1.2 0.3857 0.495 

25 303 313 1.5 1.9710 1.338 

26 304 305 1.4 0.4500 0.577 

27 304 314 1.4 1.8396 1.249 

28 305 306 1.6 0.5143 0.660 

29 305 315 1.4 1.8396 1.249 

30 306 307 1.5 0.4822 0.619 

31 306 317 1.4 1.8396 1.249 

32 307 308 1.5 1.9710 1.338 

33 307 318 1.7 0.5465 0.701 

34 309 310 1.5 0.4822 0.619 

35 311 312 1.2 1.5768 1.071 

36 315 316 1.2 1.5768 1.071 

37 401 402 0.6 0.3148 0.260 

38 401 405 1 0.5247 0.433 

39 401 406 1.8 0.9446 0.780 

40 402 403 2 1.0495 0.867 

41 403 404 0.6 0.3148 0.260 

42 404 407 1 0.5247 0.433 

43 405 406 1.5 0.7871 0.650 

44 406 407 1.5 0.7871 0.650 

 

Table - 4.3 PCC/Tie-cables Data. 

S. 
No. 

From 
bus 

To 
Bus 

Length 
(km) 

Resistance 
(P.U) 

Reactance 
(P.U) 

T1 102 201 1 0.2553 0.394 
T2 104 301 1.5 0.3830 0.591 
T3 208 401 2 0.6429 0.825 
T4 205 310 2.5 0.8037 1.032 
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T5 318 404 1 0.3214 0.412 

 

A one-year dataset has been provided in this system. Table 
4.4 provides the load data for the Networked Microgrids 
[34]. Table 4.4 indicates that the overall system loads are 
30.802 MW and 6.374 MW, including critical loads of 6.16 
MW and 1.27 MVAR. In addition, the table lists three types 
of buses: 1) Type 1 bus: Slack bus; 2) Type 2 bus: 
Generator bus; 3) Type 3 bus: Load bus (PQ bus). 

Table - 4.4 Load Data of the Networked MG System. 

Bus  
ID 

Bus  
Type 

Total Bus Load  Critical Load Bus 
Load % 
of 
System 
Load 

kW kVAR kW kVAR 

101 1 0 0 0 0 0 
102 2 2125 336 450 68 6.9 
103 2 3329 1023 650 124 10.81 
104 2 2050 555 200 50 6.66 
105 3 1257 310 200 35 4.08 
106 3 1056 240 200 35 3.43 
201 2 600 100 0 0 1.95 
202 2 1250 487 500 80 4.06 
203 2 1203 410 500 80 3.91 
204 2 1366 443 650 138 4.43 
205 3 764 36 0 0 2.48 
206 2 503 21 0 0 1.63 
207 3 345 11 0 0 1.12 
208 3 629 8 0 0 2.04 
209 2 642 12 100 25 2.08 
301 2 580 150 0 0 1.88 
302 3 650 85 250 50 2.11 
303 2 673 96 0 0 2.18 
304 2 439 135 0 0 1.43 
305 2 600 128 250 50 1.95 
306 2 560 112 0 0 1.82 
307 2 851 145 385 50 2.76 
308 3 420 25 0 0 1.36 
309 3 500 45 0 0 1.62 
310 3 637 33 0 0 2.07 
311 3 788 95 350 83 2.56 
312 3 125 50 0 0 0.41 
313 3 169 20 0 0 0.55 
314 2 200 43 0 0 0.65 
315 2 250 32 125 25 0.81 
316 3 213 12 0 0 0.69 
317 2 133 25 0 0 0.43 
318 3 200 38 0 0 0.65 
401 2 426 80 0 0 1.38 
402 3 318 78 125 20 1.03 

403 3 356 81 125 20 1.16 
404 3 459 88 0 0 1.49 
405 2 820 91 0 0 2.66 
406 2 2500 635 850 150 8.12 
407 2 816 60 250 44 2.65 

Total 
Load 

 30802 6374 6160 1127 100 

Base voltage: 11 kV; Specified voltage at all buses: 1 p.u. 

Table 4.5 presents details of DERs installed at different MG 
locations. Excess power is saved in energy storage systems 
installed with each PV system to use the stored energy 
when the PV solar is unavailable. Also, the details of the 
Synchronous Generators are presented in Table 4.6 [34]. 

Table - 4.5 Installed Capacity of PV and WT in MGs. 

Bus  
ID 

DG  
Type 

PG 
(kW) 

QGmin 
(kVAR) 

QGmax 
(kVAR) 

Network 
Area 

102 PV 2000 0 400 MG1 
103 PV 2400 0 480 MG1 
104 PV 2000 0 400 MG1 
202 PV 1600 0 320 MG2 
203 PV 1600 0 320 MG2 
204 PV 2400 0 480 MG2 
206 WT 800 -250 250 MG2 
209 WT 500 -200 200 MG2 
303 PV 2000 0 500 MG3 
304 PV 400 0 100 MG3 
305 PV 800 0 160 MG3 
306 PV 800 0 160 MG3 
307 PV 800 0 160 MG3 
314 WT 500 -250 250 MG3 
315 PV 800 0 160 MG3 
317 WT 1200 -600 600 MG3 
405 PV 1600 0 320 MG4 
406 PV 2400 0 500 MG4 
407 PV 1600 0 320 MG4 

 

Table - 4.6 Standby Synchronous Generators Data in MGs 

Bus 
ID 

Unit 
Capacity 
(kVA) 

Number 
of Units 

QGmin 
(kVAR) 

QGmax 
(kVAR) 

Network  
area  

101 5000 3 -3000 5000 MG1 
201 2000 3 -1500 2000 MG2 
301 2000 3 -1500 2000 MG3 
401 2000 2 -1000 2000 MG4 

      
The Energy Storage Systems are installed at different 
buses, which are Lithium-ion batteries. With 80% of DOD. 
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The SoC of batteries is assumed to be 20% of their total 
capacity. The details of the ESS are shown in Table 4.7 
[34]. 

Table - 4.7 Energy Storage Capacity. 

Location 
(Bua ID) 

Battery 
Storage 
Capacity 
(kWh) 

Peak Power 
Supply 
(Kw) 

Network 
Area 

102 3000 2000 MG1 
103 4000 2400 MG1 
104 3000 2000 MG1 
202 4000 1600 MG2 
203 4000 1600 MG2 
204 4000 2400 MG2 
303 3600 2000 MG3 
304 800 400 MG3 
305 2000 800 MG3 
306 2000 800 MG3 
307 2000 800 MG3 
315 2000 800 MG3 
405 3000 1600 MG4 
406 6000 2400 MG4 
407 3000 1600 MG4 

 

5. OPF in Microgrids using Newton-Raphson 
method 

For the networked microgrids illustrated in the previous 
chapter, an Optimal Power Flow study will be performed 
using Newton-Raphson method. 

5.1. Principle of Newton-Raphson method 

A nonlinear equation in a single variable can be expressed 
as: 

f (x) = 0            (5.10) 

For solving this equation, select an initial value x0. The 
difference between the initial value and the final solution 
is Δx. Then x1 = x0 +Δx is the solution of nonlinear 
equation (5.10). That is [35]: 

f (x0 +Δx) = 0                (5.11) 

Expanding the above equation with the Taylor series yields 
[35]: 

f (x0 +Δx) = f (x0) + f ′(x0) Δx + (f ′′(x0)(Δx)2)/2! + · · · + (f 
(n) (x0)(Δx)n)/ n! + · · · = 0  (5.12) 

where f ′(x0), … , f (n) (x0) are the derivatives of the 
function f (x). 

If the difference Δx is very small (meaning that the initial 
value x0 is close to the solution of the function), the terms 
of the second and higher derivatives can be neglected. 
Thus equation (5.12) becomes a linear equation as below 
[35]: 

f (x0 +Δx) = f (x0) + f ′(x0) Δx = 0                         (5.13) 

Then: 

Δx = − f (x0)/f ′(x0)                                                   (5.14) 

The new solution will be: 

x1 = x0 +Δx = x0 − f (x0)/f ′(x0)                                (5.15) 

Since equation (5.13) is an approximate equation, the 
value of Δx is also an approximation. 

Thus the solution x is not a real solution. Further iterations 
are needed. The iteration equation is [35]: 

xk+1 = xk +Δxk = xk − f (xk)/f ′(xk)                                 (5.16) 

The iteration can be stopped if one of the following 
conditions is met: 

|Δxk|< 𝜀1 or |f (xk)|< 𝜀2          (5.17) 

where 𝜀1, 𝜀2, which are the permitted convergence 
precisions, are small positive numbers. 

The Newton method can also be expanded to a nonlinear 
equation with n variables. 

f1(x1, x2, … , xn)= 0 

f2(x1, x2, … , xn) = 0           

· · · 

fn(x1, x2, … , xn) = 0 

For a given set of initial values x1, x2, … , xn, we have the 
corrected values Δx1,Δx2, … ,Δxn. Then: 

f1(x1 +Δx1, x2 +Δx2, … , xn +Δxn)= 0 

f2(x1 +Δx1, x2 +Δx2, … , xn +Δxn) = 0 

· · · 

fn(x1 +Δx1, x2 +Δx2, … , xn +Δxn) = 0 



                      INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET)                                 E-ISSN: 2395-0056 

                       VOLUME: 09 ISSUE: 03 | MAR 2022                         WWW.IRJET.NET                                                                       P-ISSN: 2395-0072 

 

© 2022, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 1795 
 

Similarly, expanding the above equations and neglecting 
the terms of second and higher derivatives, a matrix can be 
formed to find the solution at kth iteration [35]:  

 

 

 

xk+1i = xki +Δxki     i = 1, 2, … , n           (5.18) 

The above two equations can be expressed as  

F(Xk) = −JkΔXk              (5.19) 

X k+1 = Xk +ΔXk             (5.20) 

where J is an n × n matrix called a Jacobian matrix. 

5.2. Power Flow Solution  

The complex voltage, real and reactive powers of each bus: 

                         
(5.21) 

                      
(5.22) 

                        
(5.23) 

where 𝜃ij = 𝜃i − 𝜃j, which is the angle difference between 
buses i and j. 

For each PV or PQ bus, we have the following real power 
mismatch equation: 

 

 

(5.24) 

For each PQ bus, we also have the following reactive  

 

power equation: 

 (5.25) 
 

where Pis, Qis are the calculated bus real and reactive 
power injections, respectively. 

According to the Newton method, the power flow 
equations (5.24) and (5.25) can be expanded into Taylor 
series and the following first-order approximation can be 
obtained [35]: 

 

 

                                                         

where  

        

The steps for calculation of the Newton-power flow 
solution are shown in the following flowchart: 

(5.26) 

(5.27) 
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Fig - 5.1  FlowChart of Newton-Raphson method. 

5.3. Power Flow Results using Newton-Raphson 
method 

After applying the Newton-Raphson method to the 
networked microgrids, the results are shown in the 
following sections: 

5.3.1. Using Storage as a load: 

Using the line and bus data provided in the 
previous chapter for the networked microgrids, the power 
flow solution is obtained using the Newton-Raphson 
method with MATLAB computations. This yields the 
results shown in Table 5.1. Note that for more accessible 
dealing with numbers, the three-digit numbers for buses 
from 101 to 407 are described as 1 to 40 buses.  

Table - 5.1 Power Flow Results using Newton-Raphson – 
Storage as Load. 

 

In the first case where the storage systems are considered 
as loads, the ESS, which is installed next to each PV system, 
will absorb the generated power and store it in the 
batteries—assuming that from 6 A.M to 6 P.M, the energy 
from the sunlight is absorbed by the PV cells in the panel 
to produce electricity. Wind Turbine, the PV system, and 
the synchronous generators units are operating, the 
batteries are charged from the PV system. The calculations 
through MATLAB Software has convincing results: 
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 A constant voltage for nodes such as 1 and 7, and a 
particular variation limit for others. 

 The balance of the system is ensured as the loads 
should be equal to the generated power from the 
sources. As shown in Table 5.1, the load is 
designed to be 54.002 MW, while the generation is 
56.062 MW. 

 The losses are calculated to be 2.065 MW/ 2.582 
MVAR due to cable length, resistance, and 
reactance. 

 The execution time is 1.263629 seconds. 

 The number of iterations is 11. 

 Maximum Power Mismatch = 1.15132e-05. 

5.3.2. Using Storage as a source: 

In the second case, from 6 P.M to 6 A.M, the ESS is 
considered to be a source that can generate power to 
maintain system balance and reliability when the PV 
system is not operating while wind turbines and 
synchronous generators units are operating. The batteries 
are discharging with a DOD of 80%. Table 5.2 illustrates 
the power flow results when the batteries are discharging. 

The following are observed from the power flow output: 

A constant voltage for multiple nodes and a certain 
variation limit for others. 

As shown in Table 5.2, the load is designed to be 30.802 
MW, while the generation is 31.697 MW. 

The losses are calculated to be 0.896 MW/1.149 MVAR due 
to the cable length, cable resistance, and reactance 

The execution time is 1.032611 seconds. 

The number of iterations till convergence is 10. 

Maximum Power Mismatch = 1.98777e-06. 

 

 

Table - 5.2 Power flow Results using Newton-Raphson - 
Storage as Source. 

 

 

6. OPF in Microgrids using Neural-Network 
method 

After applying the Neural-Network method to the 
networked microgrids, the results are shown in the 
following sections: 

6.1.  Principle of Neural Network method 

The evolutionary computing of Artificial Intelligence is 
solely entering the world and spreading the idea that it is 
easier and more intelligent than the conventional methods 
in performing complex tasks. The Neural Network displays 
spatial capacities based on human logic. 

Neural networks are a subset of machine learning and are 
the heart of deep learning algorithms, also known as 
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artificial neural networks(ANNs) or simulated neural 
networks (SNNs). Their name and structure are inspired 
by the human brain, imitating the working strategy of the 
brain using mathematical methods to match the biological 
neuron [36]. 

Neurons are the simplest processing element of an ANN. 
ANNs consist of node layers, including an input layer, one 
or more hidden layers, and an output layer, as shown in 
Figure 6.1 [36]. Each node is linked to another and has 
several elements such as weight, activation function, and 
threshold. The nodes represent computational units and 
need inputs that should be processed in neurons to 
present the output. Weights are multiplied with inputs and 
then added in the summing function, then the sum is 
processed in the activation function. The output is then 
passed via an activation function to determine the output. 
If the output exceeds a threshold, the node is activated, 
and the data is passed into the next network layer. This 
results in the output of one node, which becomes the input 
of the next node. This data transmission procedure from 
one level to the next characterizes this neural network as a 
feedback network. The output is generated as shown in 
Figure 6.2 and the equations (6.10) and (6.11) [37]. 

Depending on the nature of the NN's system, the hidden 
network layers can be set in numerous ways. When 
weights are generally calibrated on the branched hidden 
layers, a relatively sophisticated approach called 
backpropagation was considered.  

 

Fig - 6.1 Neural Network Architecture. 

 

Fig - 6.2 Neuron Mathematical Function. 

yj = x1·w1 + x2·w2 + x3·w3 + xn·wn             (6.10) 

yj = ∑         
                    (6.11) 

There are a few different forms of learning/training based 
on operation or system in which the neural network, the 
most generally used and known learning approach, is 
applied [37].  

 Supervised Learning: the NN is fed with labeled 
datasets to find the correct decision at the test 
stage; the more this training/learning process, the 
more the accuracy [37]. 

 Unsupervised Learning: the NN is fed with 
unlabeled datasets (containing only the input 
data). The ANN will be able to categorize the data 
by clustering the data according to the distances 
and finding the patterns [37]. 

 Reinforcement Learning: it is a kind of Learning 
that involves the surrounding environment, 
starting by getting a state, taking action to change 
the state, and sending that action to either get a 
penalty or reward, to learn from its experience 
and reach the goal [37]. 

The steps of how the Neural Network works is shown in 
the following flowchart in Figure 6.3. 
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Fig - 6.3 FlowChart of Neural Network method. 

6.2. Neural Network Training Algorithms  

6.2.1. Feed-Forward Propagation  

The input data is forwarded throughout the network in the 
feed-forward network. Every hidden layer accepts, 
processes, and passes the input data in accordance with 
the activation function. In other words, the information 
moves only in one direction – forward- from the input 
nodes, through the hidden nodes and to the output nodes, 
there are no cycles or loops in the network. The feed-
forward network helps in forward propagation.  

The processing takes place in two steps at each neuron in 
the hidden or output layer: 

a. Preactivation: it is a weighted sum of inputs. 
Based on this aggregated sum and activation 
function, the neuron decides whether to pass this 
information or not. 

b. Activation: the calculated weighted sum of inputs 
passed to the activation function. The activation 
function is a mathematical function which adds 
non-linearity to the network. There are four 
commonly used and popular activation functions – 
sigmoid, hyperbolic tangent (tanh), ReLU, and 
Softmax. 
 

6.2.2. Backpropagation 

The backpropagation is an efficient algorithm for training 
feedforward neural networks; it computes the gradient of 
the loss function concerning each weight by the chain rule, 
one layer at a time. Then, it iterates backward from that 
last layer and adjusts the weights between the input and 
the neuron to reduce the cost function and minimize the 
loss, as shown in Figure 6.4 [38]. 

 

Fig - 6.4 Backpropagation. 

6.2.3. Gradient Descent  

The Gradient Descent is an algorithm for finding a local 
minimum of a differentiable function. It is used in machine 
learning to find the values of a function’s 
parameters/coefficients that minimize a cost function. The 
idea of this algorithm is to take repeated steps in the 
opposite direction of the gradient of a function at the 
current point (direction of the steepest descent). While if 
the steps were taken proportional to the positive of the 
gradient, the local maximum of a function would be 
approached, this is so-called Gradient Ascent as shown in 
Figure 6.5 [39]. 

 

Fig - 6.5 Gradient Descent. 

To perform the training phase in MATLAB for the optimal 
power flow problem, the learning algorithm used was the 
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Levenberg–Marquardt (LM) backpropagation. 
The Levenberg-Marquardt algorithm is designed to work 
specifically with loss functions which take the form of a 
sum of squared errors. It works without computing the 
exact Hessian matrix. Instead, it works with the gradient 
vector and the Jacobian matrix. 

Levenberg-Marquardt is a combination of two other 
methods: The Gradient Descent and Gauss-Newton. Both 
methods are iterative algorithms, which means they use a 
series of calculations to find a solution. The gradient 
descent differs in that at each iteration, the solution 
updates by choosing values that make the function value 
smaller. In other words, the sum of the squared errors is 
reduced by moving toward the direction of steepest 
descent. Whereas, the Gauss-Newton is more accurate and 
faster than the gradient descent when close to the 
minimum error [40]. 

6.3. Power Flow Results using Neural Network 
method 

To get the power flow results for the Networked 
Microgrids when the storage is either operating as a load 
or as a source using Neural Network, the tool which is used 
in MATLAB is the ‘nntool’ which opens the Network/Data 
manager window, which allows for importing, creating, 
using, and exporting Neural Networks and data. 

6.3.1. Using Storage as a Load: 

The custom neural network when the batteries are 
charging during the day is shown in Figure 6.6, Input (P) 
which is the input matrix that represents power demands 
and generation from the bus data as shown in Table 6.1. 

 

Fig - 6.6 Custom Neural Network – Storage as Load. 

Table - 6.1 Input Matrix - Storage as Load. 

 

Target (T) represents the desired output resulted from 
Newton-Raphson method shown in Table 5.1. 

Using Feed forward backpropagation network, and the 
learning was performed according to the Levenberg-
Marquardt algorithm (trainlm).  

The simulation gives the following results: 

Network Regression 

https://www.neuraldesigner.com/learning/tutorials/training-strategy#LevenbergMarquardtAlgorithm
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Fig - 6.7 Training, Validation, and Test Regression - 
Storage as Load. 

The Network Regression figure displays the output of the 
network versus the target sets for training, validation and 
testing. To have the best results, the regression line should 
be fit at 45 degrees where all the outputs are equal to the 
targets. As shown in Figure 6.7, the R value equal to 
0.96017, so the fit is extremely good as the value is close to 
‘1’where it is 100% precise.  

Neural Network Training Performance  

 

Fig - 6.8 Training Performance - Storage as Load. 

The performance is calculated using the mean squared 
error. It minimizes the sum of squared errors between the 
network output and the targets according to epochs. The 
MSE is measured on the training, validation and testing 
sets. 

Neural Network Training State 

 

Fig - 6.9 Training State - Storage as Load. 

The Training state represents the current progress/status 
of the training at a specific time while training is in 
progress. 

Output (Y) 

The output matrix of the neural network method: 
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Table - 6.2 Power Flow Results using Neural Network – 
Storage as Load. 

 

 Number of iterations: 18 iterations 
 Execution time: Less than one second 
 Total Losses: 1.6508 MW/5.5460 Mvar 

 
6.3.2. Using Storage as a Source: 

The custom neural network when the batteries are 
discharging during the night is shown in Figure 6.10, Input 
(P) which is the input matrix that represents power 

demands and generation from the bus data as shown in 
Table 6.3. 

 

Fig - 6.10 Custom Neural Network – Storage as Source. 

Table - 6.3 Input Matrix - Storage as Source. 

 

Target (T) represents the desired output resulted from 
Newton-Raphson method shown in Table 5.2. 

Using Feed forward backpropagation network, and the 
learning was performed according to the Levenberg-
Marquardt algorithm (trainlm).  
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The simulation gives the following results: 

Network Regression 

 

Fig - 6.11 Training, Validation, and Test Regression - 
Storage as Source. 

As shown in Figure 6.11, the R value equal to 0.93546, so 
the fit is extremely good as the value is close to ‘1’where it 
is 100% precise.  

Neural Network Training Performance 

 

Fig - 6.12 Training Performance - Storage as Source. 

The performance is also calculated using the mean squared 
error. It minimizes the sum of squared errors between the 
network output and the targets according to epochs. The 

MSE is measured on the training, validation and testing 
sets. 

Neural Network Training State 

 

Fig - 6.13 Training State - Storage as Source. 

Output (Y) 

The output matrix of the neural network method: 
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Table - 6.4 Power Flow Results using Neural Network – 
Storage as Source. 

 

 

 Number of iterations: 10 iterations 
 Execution time: Less than one second 
 Total Losses: 0.214 MW/3.018 Mvar. 

 

7. Discussion and Conclusion 

7.1. Discussion 

Power flow or load-flow studies are essential for 
planning the future expansion of power systems and 
determining the best operation of existing systems. The 
principal information obtained from the power flow study 
is the magnitude and phase angle of the voltage at each bus 
and the real and reactive power flowing in each line. 
Therefore, it is essential for the reliable and efficient 
operation of electrical networks. In this paper, optimal 
power flow is obtained for a networked microgrids system 
involving loads, decentralized sources of renewable energy 
(Solar PV panels and Wind turbines) and batteries as 
storage unit, using a conventional method (Newton 
Raphson method) and compared to a modern method 
(Neural Network method or Artificial Neural Network 
(ANN)). According to the results obtained above from 
MATLAB optimization and deep learning toolbox. The 
efficiency of the two methods is shown in Table 7.1 and 
Table 7.2. 

In the first case where the batteries are operating as load, 
the losses efficiency are described in Table 7.1: 

Table - 7.1 Comparison between NR and NN methods - 
Storage as Load. 

Optimization Method Losses and Efficiency  

Newton-Raphson method 2.065 MW – 96% 
efficiency 

Neural Network method 1.6508 MW – 97% 
efficiency  

 

In the second case where the batteries are operating as 
source, the losses and efficiency are illustrated in Table 
7.2: 

Table - 7.2 Comparison between NR and NN methods - 
Storage as Source. 

Optimization Method Losses and Efficiency  

Newton-Raphson method 0.896 MW – 97.1% 
efficiency  

Neural Network method 0.214 MW – 99.3% 
efficiency  
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It is clearly shown that losses when the Neural Network 
was applied are lower and could produce more efficient 
results than the Newton-Raphson method. Also, the 
execution time is less when the OPF is performed using the 
Neural Network method, even though the iterations are 
more. For the Newton-Raphson method, the execution 
time takes more than one second in both cases. Still, 
Neural Network, a rapid convergence method, takes less 
than a second to convergence. The regression value is 
0.93-0.98, approximately equal to 1, indicating that the 
results are good and have high accuracy and precision. 
According to the results obtained from both methods, it is 
clearly shown that the Neural Network method gave more 
accurate results and achieved the balance between load 
and generation to minimize the losses as much as possible. 
In other words, the generated active power from each bus 
was more accurate, and it was sufficient to supply the load 
with minimum losses. Furthermore, both methods did 
almost the same in producing other values, such as the bus 
voltages and angles. 

7.2. Conclusions 

This research focuses on studying the optimal power flow 
using a conventional method (Newton-Raphson) and AI 
method (Neural Network) for a networked MG test system. 
The load flow analysis considered two cases, when the 
storage units are charging from the generation sources 
during the day and when the storage units are supplying 
power at night to compensate the power when the PV 
panels can’t generate power. Both methods were 
performed using Optimization and Deep Learning 
toolboxes in MATLAB. The Neural Network method based 
on AI represents more efficient results with minimum 
losses compared to the conventional method. 

In future work, there are various technologies to be added 
to the microgrids architecture such as multiple energy 
storage systems (flywheels, electrolyzer-fuel cell), 
different energy rates related to the cost of the grid power 
depending on the target load (storage charge or consumer 
feeding), integrating the EVs to the microgrids which can 
help in global warming concerns and other grid services 
such as peak shaving and load shifting to increase the 
reliability of the system. The networked MG can also be 
used to validate other studies in the extended work, 
including reliability and resiliency analysis, economic 
dispatch, control and stability studies, and protection 
analysis. 
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