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Abstract - In the chemical industry, vapor-liquid 
equilibrium (VLE) data are essential for the design, analysis, 
control, and modeling of process equipment such as 
distillation columns, absorbers, and reactors. The usually 
employed feed-forward neural network, the multi-layer 
perceptron (MLP), was used to develop MLPNN-based 
models for VLE prediction in this study. The MLPNN 
approximates nonlinear relationships that exist between the 
variables in an input data set and the output data set 
associated with it. Experimental data was used to develop 
MLPNN-based VLE models for predicting the vapor phase 
composition of a ternary system (benzene + cyclohexane + 
anisole). A physical property of pure components (acentric 
factor) and thermodynamic parameters (equilibrium 
temperature, liquid phase composition) are included as the 
input space for the model development. An error-back 
propagation (EBP) approach is used to train the proposed 
MLPNN-based model. The experimental data was split at 
random, with 75% of the data used as the training set for 
constructing the models and 25% of the data used as the 
test set for evaluating the models generalization ability. The 
predicted values are in good agreement with the 
corresponding experimental values, indicating that the 
proposed models have good prediction accuracy and 
generalization ability. 

Key Words:  Vapor-liquid equilibrium; Artificial neural 
network; Data prediction; Thermodynamic models. 

1. INTRODUCTION  

 Vapor-liquid equilibrium data are necessary for 
the design, analysis, control, and development of various 
chemical processes [1, 2]. Phase equilibrium and in 
particular vapor-liquid equilibrium (VLE) is an important 
factor for the designing and modeling of separation 
processes like distillation, extraction, absorption and 
adsorption [3]. VLE is a condition where a liquid and its 
vapor state are in equilibrium with each other. In other 
words, a state where the rate of evaporation of liquid 
mixture equals the rate of condensation of vapor mixture 
on a molecular level [4]. Accurate measurements of VLE 
through experimentation for ternary or higher order 
systems are time-consuming, tedious, and expensive. It is 

not always feasible to conduct VLE experiments at all 
ranges of pressures and temperatures practically. 
Consequently, conventional thermodynamic models are 
used for the estimation of vapor-liquid equilibrium.  

 Although, conventional thermodynamic models 
such as the equation of state (EoS) and activity-coefficient 
models are used to estimate VLE data, these models 
necessitate a thorough understanding of the 
physicochemical phenomena that underlie the process [5]. 
Thermodynamic models used to predict VLE becomes 
trickier for system of non-ideal components because it 
involves determination of the number of thermodynamic 
parameters such as various adjustable parameters, binary 
interaction parameter (BIP), etc. Estimation of these 
parameters in order to get the best set by iterative 
methods is often tedious and time consuming exercise [6]. 

 Second (i.e. empirical) approach for VLE modeling 
is data-driven for which detailed knowledge of physico-
chemical phenomena is not required. These models use 
linear or nonlinear regression methods in developing the 
models. Although, linear regression method is applicable 
for the systems containing linear VLE behavior (ideal 
systems), most of the real systems exhibit nonlinear VLE 
behavior which depends on operating parameters. Thus, 
selection of an accurate data-fitting function (nonlinear) is 
difficult. Subsequently, to overcome above mentioned 
difficulties for conventional thermodynamic models and 
use of regression methods for VLE modeling, there is need 
to explore alternative nonlinear modeling technique. 

 As an alternative to conventional thermodynamic 
models and regression-based modeling, an artificial 
intelligence (AI) based nonlinear modeling formalism, 
particularly artificial neural networks (ANNs) [7] is 
employed. In the study of thermodynamics, this approach 
is often used to predict vapor-liquid equilibrium [8]. 
Besides, several researchers have been used artificial 
neural networks (ANN) for modeling of realistic 
phenomena in various scientific fields. The ANN technique 
has been used, for instance, in the prediction of high 

pressure VLE of binary systems [9], prediction of     
mole fraction in liquid and vapor phase for binary system 
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[10], predictions of bubble point pressure and  vapor 
phase composition of binary systems [11], prediction of 
VLE data for binary and ternary systems using radial basis 
function network [12], Prediction of VLE data for binary 
systems containing propane [13], explored artificial neural 
networks for the modeling of  intermolecular and 
interatomic potential energy surfaces [14], prediction of 
oAPI gravity of crude oils [15], prediction of gasification 
performance parameters by using AI-based formalisms 
[16,17]. 

 In the present study, feed-forward artificial neural 
network namely, multi-layer perceptron (MLP) has been 
utilized to develop the models to predict mole fraction of 

benzene (  ) and cyclohexane (  ) in vapor phase for 
ternary system (benzene + cyclohexane + anisole). An 
exhaustive literature search indicates that, this is first 
instance where in MLPNN-based models are developed for 
VLE prediction for the avowed ternary system. 
Experimental VLE data reported in literature [18] is used 
to develop the proposed MLPNN-based models, the input 
space and outputs to be predicted are specified in Table 1. 
The predicted values were compared with its 
corresponding experimental values which give good 
prediction accuracy and generalization ability for the 
developed model. 

 The structure of this paper is as follows. In Section 
2, titled "Conventional thermodynamic models," different 
thermodynamic models exploited for VLE predictions are 
briefly explained. The next Section, “Artificial intelligence 
(AI) based modeling techniques” presents an overview of 
artificial neural networks and multi-layer perceptron. The 
data utilized in the MLPNN-based modeling of vapor phase 
composition are detailed in Section 4. The section, named 
"Results and Discussion," discusses the MLPNN-based 

models for predicting the mole fraction of benzene (    

and cyclohexane (    in vapor phase. The study’s 

principal findings are reported in the "Conclusion" section. 

Table-1: Inputs and outputs of the two MLPNN-based 
      models developed in this study 
 

Model No. of 
inputs 

Model Inputs Model 
outputs 

I 6 Temperature (T); mole 
fractions of benzene (  ), and 
cyclohexane (  ) in liquid 
phase; acentric factors of 
benzene (  ), cyclohexane 
(  ) and anisole (  ) 

Mole 
fraction of 
benzene in 
the vapor 
phase (  ) 

 

II 6 Temperature (T); mole 
fractions of benzene (  ), and 
cyclohexane (  ) in liquid 
phase; acentric  factors of 
benzene (  ), cyclohexane 
(  ) and anisole (  ) 

Mole 
fraction of 
cyclohexan
e in the 
vapor 
phase (  ) 

 

2. CONVENTIONAL THERMODYNAMIC MODELS 

2.1 Equation of State Models 

  Vapor-liquid equilibrium data are usually 
estimated using thermodynamic models which are based 
on the criterion of phase equilibrium i.e. the chemical 
potentials of each of the components in each of 
the phases are equal. A conventional method used to 
predict the VLE is the equation of state (EoS). It is a 
competent tool for calculating phase equilibrium and 
thermodynamic properties of systems in pure or mixture 
form. Equation of state (EoS) are widely used in various 
practical and theoretical studies such as the petroleum 
industry, chemical process design, reservoir fluids, etc., 
further these can be applied to systems containing 
hydrocarbons, but it is difficult for systems that contain 
polar compounds. Since it is the first equation used to 
predict vapor-liquid coexistence, Van der Waals equation 
is the basis for prediction of VLE by equation of states 
[19]. Next, Redlich-Kwong equation of state [20] improved 
the Van der Waals equation by adjusting Van der Waals 
attractive pressure term that improves the prediction of 
vapor phase physical properties. Soave proposed 
significant changes to the Redlich-Kwong equation in 
order to improve the accuracy of phase behavior 
predictions in the critical zone [21], For tackling both 
liquid and vapor properties near-equilibrium conditions, 
the Peng-Robinson equation of state was proposed [22].  
This equation is good for improving the accuracy of the 
prediction of liquid densities [23]. Since design, operation, 
control, and modeling of various chemical processes are 
based on the thermodynamic models and VLE predictions, 
it is most essential that they are easy to use and needs less 
number of inputs, and able to give accurate predictions. 

2.2 Activity Coefficient Models 

 There are various methods available for the 
prediction of VLE such as, analytical solution of groups 
method (ASOG) [24], universal functional-group activity 
coefficients (UNIFAC) method, Van Laar, two constant 
margules, universal quasi-chemical (UNIQUAC) equation, 
non-random two-liquid (NRTL), Wilson [25]. All of the 
previous mentioned thermodynamic VLE models are 
applied for moderately non-ideal systems. For non-polar 
solvents such as hydrocarbons, alcohols, ketones 
UNIQUAC, Wilson and NRTL models gives good 
predictions. UNIFAC method is used in the design 
calculations of distillation columns [26]. 

3. ARTIFICIAL INTELLIGENCE (AI) BASED                                  
MODELING TECHNIQUES 

 Artificial Intelligence (AI) is a branch of computer 
science, intended for the development of computers to 
employ in human like thought processes such as learning, 
reasoning, and self-correction. AI is basically concerned 
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with the development of techniques and algorithms, which 
allow computers to “learn” and utilize this knowledge to 
solve problems such as function approximation and 
classification. Machine learning (ML) based modeling 
formalisms, such as support vector regression (SVR) [27], 
and AI-based modeling formalisms, such as artificial 
neural networks (ANNs) and genetic programming (GP) 
[28], are commonly employed as alternatives to 
regression-based modeling. They found various 
applications in the field of thermodynamics. A widely used 
AI-based modeling technique named artificial neural 
network is described briefly in the next section. 

3.1 Artificial Neural Networks (ANNs) 

 Artificial neural networks originate from the 
study of methods for information processing in the 
biological nervous system, especially the human brain. 
They are based on the concept that obscure nonlinear 
interrelationships exist between dependent and 
independent variables can be learned by highly 
interconnected networks of simple processing units 
(artificial nodes). Learning takes place in the human brain 
in a network of neurons connected by dendrites, axons, 
and synapse. Dendrites are signal receiving connections of 
a neuron and the axon is its transmitting connection. The 
junctions where axon branches are connected to dendrites 
of numerous other neurons is called as synapses. An 
artificial neural network may be classified according to 
direction of information flow in it. Three types of 
connectivity patterns exists i.e. feed-forward, feed-back 
and recurrent. Once the model is trained with ANN 
architecture, then the developed model is ready to predict 
the outputs for new input data set, which is not utilized to 
train the model.29 ANN has specific applications such as 
data processing, pattern recognition, and the nonlinear 
control through the learning process.30 Feed-forward 
neural network (FFNN) architecture namely, multi-layer 
perceptron (MLP) and radial basis function network 
(RBFN) are most widely used to build a model.  

3.2 Multi-layer Perceptron Neural Network 

 A multi-layer perceptron neural network 
(MLPNN) has a feed-forward structure i.e. flow of 
information is only in forward (one) direction, it 
approximates nonlinear relationships existing between 
variables of an input and the associated output data set 
[31]. The MLPNN architecture with one hidden layer is 
depicted in Fig. 1. Its structure normally consists of three 
layers: an input layer, a middle layer known as the hidden 
layer, and an output layer, each with N, M, and S 
processing units. Each layer contains a number of neurons 
(nodes). The number of neurons (n) in the input layer 
equals the number the inputs given to the MLP neural 
network, and the number of neurons (s) in the output 
layer equals the number of outputs in the MLP neural 
network. The number of hidden layers and the number of 

nodes in the hidden layer are adjustable parameters, and 
these are chosen heuristically on the basis of good output 
prediction accuracy and generalization ability of the 
model. Each node is linked to all nodes in the next layer 
through connection weights i.e. between input and hidden 
layers and between hidden and output layers. An MLP 
neural network also has a bias node in hidden and input 
layers which has a fixed output of +1. 

 

Fig-1: Schematic of one hidden layer multiple input-
multiple output (MIMO) MLP Network 

 A single hidden layer MLP neural network is 
shown in the Fig.1, each input node in the input layer 
passes the information to each hidden node in the hidden 
layer and the hidden nodes pass the net activation through 
the appropriate nonlinear transfer function (also called as 
squashing function) to compute their outputs [28]. When 
input vector     is applied to the input-layer, each hidden 

layer neuron first computes the activation according to the 
weighted-sum of its inputs using the following equation. 

     
     

        
  ∑    

    

 

   
   

  

 
    

         
          

       
              

                                                                                   (1) 

where,      
  represent activation of     hidden layer 

neuron. The vector   
  denotes the weights of the 

connections linking the input layer nodes to the      
hidden node, and   

  represents the strength of the link 
between the bias and      hidden node. The output of     
hidden unit,  ̂  

  when      input vector is applied to the 

network, is evaluated using a nonlinear transfer function. 
The outputs of the processing nodes in first hidden layer 
form inputs to the nodes in the subsequent layer; this 
layer could be another hidden layer, or an output layer. 
The outputs of these nodes are computed similarly as 
shown in Eq (2). It may, however, be noted that output 
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layer neurons can use either linear or a nonlinear transfer 
function to compute their outputs. The output layer units, 
indexed as s (=1,2,…,S) determine their activation as the 
weighted-sum of the hidden layer outputs  ̂  

  (j 

=0,1,2,…,m) as, 

     
       

     ̂ 
    

  ∑    
   ̂  

 
 

   
 

    
    ̂  

      
   ̂  

       
   ̂  

    
             

               (2) 

Different types of transfer functions have been used, such 
as linear, step threshold, ramp threshold, logistic sigmoid, 
hyperbolic tangent, and Gaussian [29]. In the present 
study, logistic sigmoid and pure linear transfer functions 
are used to compute the output of the hidden and output 
layer, respectively and are represented as below:  

Logistic sigmoid function, 

       
 

                 (3) 

Linear function, 

                              (4) 

The training of an MLP neural network is accomplished by 
using the error-back propagation (EBP) algorithm [32], 
which is based on a nonlinear version of the Windrow-
Hoff rule known as the generalized delta rule (GDR). The 
error-back propagation algorithm is a supervised method 
of learning with two phases: propagation and weight 
update. The input variables are given and transmitted 
through the network to calculate the output values during 
the first phase. The value of some preset error-function is 
computed by comparing calculated output values to the 
correct answer. The error is then fed back through the 
network using various mechanisms. The method modifies 
weight of each connection in the second phase to reduce 
the error functions value by a small amount. The training 
has been continued until the networks performance is 
satisfactory. The trained network will next be verified 
using the test data set, which was not included in the 
training process. The root mean squared error (RMSE) is a 
commonly used error function that is calculated as 
follows,  

      √
∑                

 
   
   

   
                          (5) 

Where     denotes the number of data patterns in the 

example set; i is the pattern index;       
 is the     

experimental value;        is the corresponding MLPNN-

predicted output. The detailed method to obtain an 

optimal MLP neural network model can be found in 
various researches [30, 31]. 

4. DATA 

 In the present study, to develop MLPNN-based 
VLE models, experimental VLE data has been collected 
from the literature.18 Source and ranges of experimental 
conditions such as temperature, pressure, liquid and vapor 
phase composition are given in Table 2. The Z-
transformation method is used to normalize the 
experimental data utilized for this modeling study. The 
experimental data set was split at random, with 75% of 
the data used as the training set for constructing MLPNN-
based models and 25% of the data used as the test set for 
evaluating the generalization ability of the constructed 
models. The normalized variables were obtained by 
following method: 

                    ̂ 
 
 =  

  
 
  ̅ 

  
 ;   j = 1, 2,...,              (6) 

Where,     represents the number of data patterns in the 

experimental data set;  ̂ 
 
 (n=1, 2,..., N; N=6) denotes the 

normal score (standardized variable) pertaining to the 

values of six inputs listed in Table 1.   
 
 represents the     

value of     un-normalized input variable,   ;   ̅  
represents the mean of   , and    refers to the standard 
deviation of   . Similar to the model inputs, the outputs 
were normalized as follows: 

       ̂ 
 
 = 

  
 
  ̅ 

   

;   j = 1, 2,...,                                              (7) 

Where,  ̂ 
 
 (q=1,..., Q; Q=2) denotes the normal score 

(standardized variable) pertaining to the values of two 

outputs listed in Table1.   
 
 represents the     value of     

un-normalized output variable,   ;   ̅  refers mean of   , 

and    
 refers standard deviation of   . The inputs for 

MLPNN-based model-I and II are same but outputs are 
different. The mean and standard deviation values used in 
the Eqs.(6) and (7) are given in Table 3, where 
 ̅   ̅    ̅   ̅   ̅    ̅  and   ,   ,   ,   ,   ,    respectively, 
represents the mean and standard deviation values of  
temperature (T), mole fraction of benzene (  ) and 
cyclohexane (  ) in liquid phase, and  acentric factors of  
benzene (  ), cyclohexane (  ), and anisole (  ). 
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Table-2: Source and ranges of experimental data used for the development of MLPNN-based model I and II 
 

System Temperature 
(T) (K) 

Pressure 
(P) (kPa) 

Mole 
fraction of 
benzene in 

liquid phase 
(  ) 

Mole 
fraction of  
cyclohexan
e in liquid 
phase (  ) 

Mole 
fraction of 
benzene in 

vapor phase 
(  ) 

Mole 
fraction of 

cyclohexane 
in vapor 

phase (  ) 

    

Benzene (1) 
Cyclohexane (2) 
Anisole (3) 

351.03-421.09 101.32 0.019-0.980 0.008-0.959 0.023-0.990 0.010-0.974 11
7 

 
 𝑑  is the number of data patterns 
 

Table-3: Mean and standard deviation magnitudes in respect to inputs and outputs of two MLPNN based models 
 

Model 
Model Inputs Model Outputs 

Mean Standard deviation Mean Standard deviation 

I 

 ̅   354.12 (K); 

 ̅   0.401; 

 ̅   0.408; 

 ̅   0.209; 

 ̅   0.212; 

 ̅   0.353 

    30.984 (K); 

    0.241; 

    0.254; 

   2.79 ×     ; 

   1.95×     ;     8.92×      

 ̅           
       

II 

 ̅           
       

 

5. RESULT AND DISCUSSION 

5.1 MLPNN-based Vapor-Liquid Equilibrium                                          
 Modeling 

 RapidMiner studio [33] software were used to 
develop MLPNN-based models. It has a number of 
operators, including 'normalize' for preprocessing input-
output data and 'retrieve' for retrieving stored input-
output data from the repository and loading them into the 
process panel. The next operator is 'feed-forward neural 
net,' which is trained by using an error-back propagation 
algorithm; 'apply model,' which applies a model to a given 
set of examples; and 'performance (regression),' which is 
used to assess statistical measures like root mean squared 
error (RMSE) and correlation coefficient (CC). The 
statistical measures RMSE and CC are used to analyze the 
prediction accuracy and generalization performance of 
MLPNN-based models. The values of RMSE and CC were 
evaluated for both training and test set data by using 
experimental and corresponding MLPNN-based model 
predicted values of dependent variables (outputs). The 
MLPNN-based optimal model was selected based on high 
CC and lower RMSE magnitudes for both training and test 
data sets.  

 The objective of this present study is to develop 
two MLPNN-based model I and II, for the prediction of the 
mole fraction of benzene (  ) and cyclohexane (  ) in 
vapor phase, respectively. A total of 117 isobaric VLE  

 

experimental data patterns of the ternary mixture 
(benzene-cyclohexane-anisole) reported in the literature 
[18] have been used in this study. This data consisting of 
the experimental conditions (temperature, and liquid and 
vapor phase compositions) and physiochemical properties 
(acentric factor) are given in Tables 2 and 4, respectively. 
The experimental data set of 117 input-output patterns 
has been randomly divided in a 3:1 ratio into the training 
(88 patterns) and the test (29 patterns) sets for the 
purpose of creating and analyzing the generalization 
ability of these model [34]. Although the former set was 
used to train MLPNN-based models across the entire range 
of experimental conditions, the latter was used to test 
their generalization ability. 

Table-4: Physical properties of pure components involved 
    in the study 

Component Acentric Factor (ω) 

Benzene    = 0.209 

Cyclohexane   = 0.212 

Anisole   = 0.353 
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5.2 MLPNN-based Model-I for Prediction of Mole 
    Fraction of Benzene in Vapor Phase (  )  

 The MLPNN-based model-I contains six inputs 
nodes (N=6), namely, mole fraction of benzene (  ), and 
cyclohexane (  ) in liquid phase, temperature (T), and 
acentric factors of benzene (  ), cyclohexane (  ), and 
anisole (  ). Single output node represent mole fraction of 
benzene (  ) in vapor phase. The algorithm specific 
parameters, namely,  learning rate (η), momentum (µ), 
number of hidden layers, and number of nodes in each 
hidden layer were all methodically speckled in order to 
obtain an optimal MLPNN model-I. MLPNN architectural 
and specific parameters have the following magnitudes: (i) 
hidden layer = 1, (ii) nodes in the hidden layer = 6, (iii) 
learning rate (η) = 0.5, and (iv) momentum (µ) = 0.05. 
Table 5 contains the design specifics of the optimal 
MLPNN-based model-I. Figure 2 depicts a schematic 
illustration of MLPNN-based model-I for predicting 
benzene vapor phase composition (  ). For both the 
training and test data sets, the MLPNN models good 
prediction accuracy and generalization ability were 
assessed using CC and RMSE values; these magnitudes are 
given in Table 6. For the training and test data sets, the CC 
magnitudes with respect to    predictions by the MLPNN-
based model-I and the associated desired (experimental) 
values are 0.974 and 0.984, respectively, and the related 
RMSE magnitudes are 6.92 ×10-2 and 6.6 × 10-2, 
respectively. It can be observed that the MLPNN model–I 
has performed admirably in predicting and generalizing 
the mole fraction magnitudes of benzene in the vapor 
phase, based on the high (low) and comparable values of 
CC (RMSE) for both the training and test set data. The 
parity plot of the MLPNN-based model-I predicted values 
of the mole fraction of benzene in the vapor phase (    and 
their experimental equivalents are shown in Fig. 3. The 
MLPNN-based model-I prediction accuracy and 
generalization ability are shown by the close agreement 
between model predicted    and experimental values 
corresponding to both the training and test data sets. 

  
Fig-2: Schematic of MLPNN-based model-I for the 

prediction of vapor phase composition of benzene (  ) 

 

Fig-3: Parity plot of the experimental versus MLPNN-
model-I predicted mole fractions of benzene in the vapor 

phase (  ) 
 

5.3 MLPNN-based Model-II for Prediction of Mole   
 Fraction of Cyclohexane in Vapor Phase (  ) 

 The MLPNN-based model-II predicting the mole 
fraction of cyclohexane in the vapor phase (  ) was 
developed using same inputs as employed in the 
development of MLPNN-based model-I (see Tables 2 and 
4). Overall, the best fit structural and training algorithm 
specific parameters such as (i) hidden layer = 1, (ii) nodes 
in hidden layer = 7, (iii) η = 0.5, and (iv) µ = 0.05 were 
used to develop MLPNN-based model-II. Table 5 shows the 
details of the optimal MLPNN-based model-II architecture. 
The MLPNN-based model-II prediction accuracy and 
generalization performance were assessed using CC and 
RMSE magnitudes for both training and test data sets, 
these are listed in Table 6. MLPNN-based model-II 
predictions reported high and comparable magnitudes of 
the coefficient of correlation (     =0.971;      =0.981), 
as well as low and comparable values of the root mean 
squared error (        =7.32×10-2;         = 7.94× 10-2) 
for both the training and test set data. A comparison of 
experimental values of a mole fraction of cyclohexane (  ) 
in the vapor phase with predictions obtained by MLPNN-
based model-II is shown in Fig. 4. As can be seen, for both 
training and test data, there is a good agreement between 
predicted values and their corresponding experimental 
values, demonstrating the MLPNN-based model-II has 
good prediction accuracy and generalization ability. 
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Fig-4: Parity plot of experimental versus MLPNN-model-II 
predicted mole fractions of cyclohexane in the vapor phase 

(  ). 

 
Table-6: Statistical analysis of MLPNN-based models for 

predicting vapor phase composition. 

Model 
No. 

Training set Test set 

                            

I 0.974 6.92 × 10-2 0.984 6.6 × 10-2 

II 0.971 7.32 × 10-2 0.981 7.94× 10-2 

 
 

6. CONCLUSION 

 The widely used feed-forward ANN, multi-layer 
perceptron (MLP), is being used in the study to develop 
MLPNN-based models for ternary system, benzene – 
cyclohexane -anisole, for predicting vapor-liquid 
equilibrium over a wide temperature range 351.03 -
421.09 K using experimental data collected from the 
literature. The input space in these models include 
temperature (T), mole fraction of benzene (  ) and 
cyclohexane (  ) in liquid phase, and acentric factors of 
benzene (   , cyclohexane (    and anisole (   . The 
output space contains mole fraction of benzene (    and 
cyclohexane (    in vapor-phase. An error-back 
propagation algorithm was utilized to train the models. 
The developed MLPNN-based models for the prediction of 
vapor phase composition have excellent output prediction 
accuracy and generalization ability as indicated by high CC 
and low RMSE magnitudes for both training and test data 
sets. The result shows good agreement between model 
predicted values and its corresponding experimental 
counterparts. So, artificial neural networks such as 
MLPNN can be a successful tool to represents complex 
nonlinear systems effectively as a prediction of VLE data, if 
developed efficiently. The MLPNN-based VLE modeling 
methodology described here can be used to develop 
similar models for a variety of different binary and ternary 
systems that are useful in industry. 
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Table-5: Details of the architecture of the optimal MLPNN-based models and the corresponding EBP algorithm parameter 
value 

Model 

No. 

Output 

variable 

Input 

nodes 

Number 

of hidden 

layers 

Number 

of hidden 

nodes 

Transfer 

function for 

hidden nodes 

Transfer 

function for 

output nodes 

Momentum Learning 

rate 

I    6 1 6 Logistic sigmoid Linear 0.5 0.05 

II    6 1 7 Logistic sigmoid Linear 0.5 0.05 
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