
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | Apr 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2428

Democratization of NOSQL Document-Database over Relational Database

 Comparative Case Study: Cloud Kitchen

Kaushik Ganguly1, Souvik Ghosh2, Aditya Tripathi3

1,2,3MTech Candidates, Data Science & Engineering, Birla Institute of Technology and Science, Pilani, India
---***---
Abstract - The online food delivery market revenue is
expected to reach $140 Million+ worldwide. As a result, the
new model of dining has already taken a paradigm shift to
capture this extravagant market. Consumers are now
shifting from dining to delivery/take-away model. Here takes
birth the concept of Cloud Kitchen – orders placed, meals
cooked, packed and then dispatched immediately to the
respective delivery locations by the assigned fleet, E.g.
Swiggy, Zomato, UberEats. Apart from Lower Real Estate
costs, saving overhead costs, convenience, etc., one should
also consider what it takes to setup a proper datastore
infrastructure to cater to the need of these cloud kitchens.
With respect to that need, we intend to perform a
comparative analysis on database(s) (NOSQL Vs. SQL) one
needs to choose for faster data access, order placement, bill
generation, delivery notification settings, standard feedback
loops and customer sentiment analysis for better service. We
have done a detailed analysis based on expected/possible
database CRUD operations that could get performed
throughout one order cycle – right from placement till
delivery and post-delivery customer feedbacks and have
given our proposal of database choice based on that mode
and complexity of operation.

Key Words: Infrastructure, Cloud Kitchen, Delivery,
Feedback Loop, Database Operations, NOSQL VS SQL

1. INTRODUCTION

Currently, India has got 3500+ cloud kitchens serving

dishes from all over the world. With increase in demand,
new cloud kitchens and SMB’s – big or small are being
opened almost every day resulting in intense competition
to attract foodies. During June 2020 when the COVID-19
pandemic was at it’s peak in India, with restaurants being
shut for months due to the nation-wide lockdown imposed
by India in late March, the demand for food delivery has
surged and revenue share has jumped from around 18%
pre-COVID-19 to almost 100% by May 2020.

This is the perfect time to go for the big break for existing
food delivery business chains or entrepreneurs by
innovating with Data and Data Store infrastructures to
cater to this ever-increasing demand for authentic
cuisines. Data driven decision making infrastructures with
faster and smarter setups for data storage and utilization
are going to be the new trend setters.

As the next step, maximum data companies and tech
wizards would want to invest into the data platform that
will help them to come up with a recommendation engine
solution that will provide the cloud kitchens suggestions
to the registered customers. For that purpose, the first
step would be data acquisition, exploration and using it in
remaining stages of the data processing.

From Data Architecture perspective, the crucial question
we must ask is whether to use a SQL or NoSQL database
for application. SQL has had a large lead over the non-
relational alternatives for decades, but NoSQL is quickly
closing the gap with popular databases such as MongoDB,
Redis, and Cassandra. SQL still holds 60% with rising
demand for systems such as PostgreSQL. They are taking
help of this report further to decide upon the database that
they can harvest to fulfill their requirements.

On this initial prototyping stage, we need to explore the
various SQL/ NoSQL database options available for the
storage and querying the customer data mainly based on
performance.

2. PROPOSED APPROACH

The first step that we must perform is to explore the
various, commonly used NoSQL/SQL databases such as

• MongoDB

• MSSQL/MySQL

Our simulation will involve loading the given data in the
above-mentioned databases and do a performance
comparison against the below mentioned database

CRUD operations. Based on this result, we will recommend
the database option and then the vendor can deploy the
application infrastructure in their data pipeline.

2.1 PERFORMANCE CONSIDERATIONS

The database operations that need to be considered are:

• Write - If a given record / key-value pair is
not found in the database storage, then the
pair is added to the storage. Otherwise, it
updates the value for the given key in the
storage. This operation therefore combines

https://scalegrid.io/blog/2019-database-trends-sql-vs-nosql-top-databases-single-vs-multiple-database-use/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | Apr 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2429

“Create” and “Update” operations of the CRUD
model.

• Read - Reads the value corresponding to a
given record / key from storage. This is the
same as the Read operation of the CRUD
(Create, Read, Update, and Delete) model
commonly used to describe database
operations.

• Delete - This deletes the record (i.e. key-value
pair) corresponding to a given key from the
key-value pair storage. This is the same as the
Delete operation of the CRUD model.

• GroupBy and OrderBy – This operation
involves grouping of the records and ordering
by certain criteria.

2.2 EXPECTED OUTCOME

At the end of this simulation exercise, we will generate a
report clearly giving the recommendation of database
choice as per the Cloud-Kitchen business model.

The outcome will involve the following:

 The exact queries used for each of the operation
with respect to each database.

 Various performance parameters considered
(with reasons) while executing the queries and
their analysis.

 Visualizations based on the performance
parameters used for the queries and their
interpretation.

 Tabular comparison summary of the prototyping
exercise.

 Finally - The Recommendation

3. METHODOLOGY

3.1 TECHNOLOGY STACK USED

• Mongo DB 4.4 (NO-SQL DB)

 Mongo DB Atlas

 Mongo DB Compass 1.29.5

 Mongo DB Command-Line Shell

• MSSQL (SQL DB)

 MSSQL on SQLite

3.2 ENVIRONMENT USED

• Cloud Provider - AWS, Region - N. Virginia (us-
east-1)

• Cluster Tier - M10 (2 GB RAM, 10 GB Storage)
1,000 IOPS, Encrypted, Auto-expand Storage

• Version - MongoDB 4.4

• MS SQL Server Express – 2019

3.3 DATASOURCE AND LOADING

We have considered Restaurant Recommendation
customer data from Kaggle(https://www.kaggle.com) for
this study. Data loaded from the csv file using MongoDB
compass GUI and connected the same compass application
with MongoDB cloud Atlas.

3.4 Workflow Operations - Cloud Kitchen

4. EXPERIMENTAL RESULT

1. Write Operation: MongoDB query statement:

If a mentioned record (customer_id: 'TCHWP7BT') was not
found in the DB, then the item is added to the DB with the
update command as below. This is create operation within
the CRUD model.

Atlas atlas-5nkwcu-shard-0 [primary] customerDB>

db.customer_data.update({ customer_id: 'TCHWP7BT'},{$set:{

gender: 'Female', dob: '1988', status: '121', verified: '1',

language: 'EN', created_at: '2018-05-07 23:57:21', updated_at:

'2018-05-07 23:57:21' }},{upsert:true})

https://www.kaggle.com/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | Apr 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2430

2. Read Operation: MongoDB query statement:

We can easily read any record using the find command
using any unique attribute value as customer_id is a
unique attribute for this data.

Read Operation: MSSQL equivalent statement:

Where in MSMSQL we can run the below command to the
same job.

3. Delete Operation: MongoDB query statement:

To delete any particular record, we can use remove
command in MongoDB as below.

Also, we can use deleteOne command for deleting any
particular record as below:

We can use deleteMany command to delete multiple
records same time as below. We have deleted 300 records
for the customer id ‘'TCHWPBT'.

Delete Operation: MSSQL equivalent statement:

We can run the delete command to do the same job.

Atlas atlas-5nkwcu-shard-0 [primary] customerDB>

db.customer_data.update({customer_id: 'TCHWP7BT'},{$set:{

gender: 'Male', dob: '1988', status: '121', verified: '1',

language: 'EN', created_at: '2018-05-07 23:57:21',

updated_at: '2018-05-07 23:57:21' }},{upsert:true})

if EXISTS (SELECT * FROM train_full WHERE customer_id LIKE
'TCHWP7B3T') BEGIN UPDATE train_full set status_x = 10 ,
updated_at_x = SYSDATETIME(), updated_at_y =
SYSDATETIME() where customer_id LIKE 'TCHWP7B3T'
END
ELSE
BEGIN
INSERT INTO train_full
(customer_id,gender,updated_at_x,updated_at_y)
VALUES('TCHWP7B3T','FEMALE',SYSDATETIME(),SYSDATETI
ME())
END;

SELECT * FROM train_full WHERE customer_id LIKE
'TCHWP7B3T'

if EXISTS (SELECT * FROM train_full WHERE customer_id LIKE
'TCHWP7B3T') BEGIN UPDATE train_full set status_x = 10 ,
updated_at_x = SYSDATETIME(), updated_at_y =
SYSDATETIME() where customer_id LIKE 'TCHWP7B3T'
END
ELSE
BEGIN
INSERT INTO train_full
(customer_id,gender,updated_at_x,updated_at_y)
VALUES('TCHWP7B3T','FEMALE',SYSDATETIME(),SYSD
ATETIME())
END;

Atlas atlas-5nkwcu-shard-0 [primary] customerDB>
db.customer_data.find({customer_id:'TCHWPBT'}).pretty()

SELECT * FROM train_full WHERE customer_id LIKE

'TCHWPBT'

Atlas atlas-5nkwcu-shard-0 [primary] customerDB>

db.customer_data.remove({_id:

ObjectId("61bdbc13d515988b3aba6ab3")}

Atlas atlas-5nkwcu-shard-0 [primary] customerDB>

db.customer_data.deleteOne({_id:

ObjectId("61bdbc13d515988b3aba6ab7")})

Atlas atlas-5nkwcu-shard-0 [primary] customerDB>

db.customer_data.deleteMany({customer_id:'TCHWPBT'})

DELETE FROM train_full WHERE customer_id like
'TCHWP7B3T';

SELECT * FROM train_full WHERE customer_id LIKE
'TCHWP7B3T';

SELECT * FROM train_full WHERE customer_id LIKE
'TCHWP7B3T'

Next again when we run the below update query for the
same record (customer_id: 'TCHWP7BT'), as the record
has already existed it got updated this time, The gender
value got modified from Female to Male. This is an Update
operation in the CRUD model.

 Write Operation: MSSQL equivalent statement:

The csv data has been uploaded to the table train_full with
MSSQL DB. As the mentioned customer id was not
available in the table, a new record has been created with
the below update query statement.

Query to find the customer record:

While again we run the same query statement again it just
updates the record as that record already existed.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | Apr 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2431

4. OrderBy Operation: MongoDB query statement:

In MongoDB, OrderBy operation can be done using sort()
command. Items are sorted/OrderBy created_at filed value
ascending order as below.

To sort/OrderBY with descending value for created_at_x
field we can use -1.

OrderBy Operation MSSQL equivalent statement:
Same operation can be done easily using below select
query statement in MSSQL

5. GroupBY Operation: MongoDB query statement

GroupBy operation in MongoDB can be done using
aggregate function as below. Below queries were used to
find average preparation time for vendor tag and group by
vendor_tag_name and order by preparation time.

GroupBY Operation: MSSQL equivalent statement:

4.1 QUERY TIME VISUALIZATION – MONGODB VS
MSSQL

4.2. DATA MODEL COMPARISON – MONGODB VS
MSSQL

 RDBMS Data Model: Relational Database
Management Systems (RDBMSs) have been
around for ages MySQL is the most popular
among them Data stored in tables Schema-based,
i.e., structured tables Each row (data item) in a
table has a primary key that is unique within that

Atlas atlas-5nkwcu-shard-0 [primary] customerDB>
db.customer_data.find().sort({created_at:1}).pretty()

Atlas atlas-5nkwcu-shard-0 [primary] customerDB>
db.customer_data.find().sort({created_at_x:-1}).pretty()

SELECT * FROM train_full ORDER BY created_at_x;

Atlas atlas-5nkwcu-shard-0 [primary] customerDB>
db.train_full.aggregate([{$group:{_id:"$vendor_tag_name",avg
PrepTime:{$avg:"$prepration_time"}}}])

SELECT vendor_tag_name, AVG (prepration_time) AS
Prepration_Time FROM train_full GROUP BY vendor_tag_name

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | Apr 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2432

table Queried using SQL (Structured Query
Language) Supports joins.

 Key-value/NoSQL Data Model: NoSQL = “Not
Only SQL” Necessary API operations: get(key) and
put(key, value) Tables “Column families” in
Cassandra, “Table” in HBase, “Collection” in
MongoDB Like RDBMS tables, but … May be
unstructured: May not have schemas Some
columns may be missing from some rows don’t
always support joins or have foreign keys can
have index tables, just like RDBMS.

4.3 PERFORMANCE PARAMETERS COMPARISON

MongoDB MSSQL
1. Server Status: This
parameter is used in
MongoDB performance
monitoring to check the
server status. This helps
us check the details of
the connections running
on the database server
on that instance/shard.
db.serverStatus()

2. Locks: This is used
along with the server-
status command to check
all the lock status in the
DB.
db.serverStatus().conne
ction

3. Connection: To check
the number of
connections from the DB
server which are
currently running.
top
*This is also used to check
the memory and CPU
utilization.
4. Create Index: To
create index on a specific
field for optimizing query
performance.
db.customer_data.creat
eIndex({"id":1},{unique:
true})

5. Field Name: This is
the name of the field
which is used to create
the index to improve the
performance of the

1. CPU and Memory
Usage:
MIN_MEMORY_PERCENT
and
MAX_MEMORY_PERCENT
parameters signify the
amount of memory
assigned per resource pool.

2. Disc I/O Operation:
Used to control the physical
I/O operation per resource
pool.

3. Disc queue length:
Average number of read
and write requests per Disc.

4. Memory Pages/Sec:
Helps to identify the faults
causing system-wide
delays.

5. Indexing: Used for faster
data retrieval.

query.
db.customer_data.creat
eIndex({"id":1},{unique:
true})

6. Name of the
collection: Collection
name based on which we
must create the index.

7 Find & Sort Method:
These are used to
retrieve the document
from the collection.

8. Monitor Replication
State: Check whether
replication is working
properly, and the server
nodes are synced with
each other.

6. Page Split/Sec: While
creating indexes if the page
becomes full, page split
occurs.

4.4 RDBMS (MYSQL) Vs Key-value Stores
(MongoDB) w.r.t Cloud Kitchen Data Model

Query MYSQL/MSSQL MongoDB
Create
Schema

In MySQL, we can
create schema or
database using
CREATE SCHEMA
customerDB

The below command
would create a new
schema (if it's not
already created) else
switch to the existing
schema
use customerDB

Create
Table

CREATE TABLE
customer(id INT
PRIMARY KEY,
age INT, name
VARCHAR(100),
city
VARCHAR(100));

No specific create
script/query required

Primary
Key

Explicitly
mentioned (as
part of the
create)

By default, assigned
by the server - which
is named as `_id`. For
a user-defined key -
we can create Unique
Index, and use the
same when data is
accessed

Creating
Index

MySQL by default
creates an index
on the PRIMARY
KEY defined in

db.customer_data.cr
eateIndex({"id":1},{u
nique:true})

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | Apr 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2433

the table creation
script. For
additional
Indexes, CREATE
INDEX command
can be used.

CREATE INDEX
index_name on
table_name(colu
mn_name(s));

Inserting
Record

If not exist it will
create a new
record else, it
will update an
existing one.

if EXISTS
(SELECT * FROM
train_full
WHERE
customer_id
LIKE
'TCHWP7B3T')
BEGIN UPDATE
train_full set
status_x = 10 ,
updated_at_x =
SYSDATETIME(),
updated_at_y =
SYSDATETIME()
where
customer_id
LIKE
'TCHWP7B3T'
END
ELSE
BEGIN
INSERT INTO
train_full
(customer_id,
gender,updated_
at_x,updated_at_
y)
VALUES('TCHWP
7B3T','FEMALE',
SYSDATETIME(),
SYSDATETIME())
END;

If not exist it will
create a new record
else, it will update an
existing one.

db.customer_data.up
date({customer_id:
'TCHWP7BT'},{$set:{
gender: 'Female',
dob: '1988', status:
'121', verified: '1',
language: 'EN',
created_at: '2018-05-
07 23:57:21',
updated_at: '2018-
05-07 23:57:21'
}},{upsert:true})

Query
Record

SELECT * FROM
train_full
WHERE
customer_id
LIKE
'TCHWPBT';

db.customer_data.fin
d({customer_id:'TCH
WPBT'}).pretty()

Explain
Query

EXPLAIN
ANALYZE
SELECT * FROM
train_full where
customer_id
LIKE
'TCHWPBT';

db.customer_data.fin
d({customer_id:'TCH
WPBT'}).explain()

List Indexes
SHOW INDEX
FROM train_full;

db.customer_data.ge
tIndexes()

Delete
Record

DELETE FROM
train_full
WHERE
customer_id like
'TCHWP7B3T';

db..remove({_id:
ObjectId("61bdbc13
d515988b3aba6ab3"
)}

db.customerData.del
eteOne({_id:
ObjectId("61bb8a2d
4853e8333ee41aba"
)})

Delete
Table

DROP TABLE
train_full

db.customer_data.dr
op()

5. CONCLUSION/RECOMMENDATION

In our restaurant use case, depending on how complex the
ordering application is and the architecture of the
application, it seems:

 The benefits for row and column and table and
foreign key table of MSSQL is great for some of the
functionality, other parts will really benefit from
the ability to store items as documents in
MongoDB and some other parts as key-value
pairs.

 So, for this use case, the structured information
such as users, restaurants can be stored in
MySQL/MSSQL and information related to menu,
orders and others can be stored in NoSQL
(MongoDB).

Hence, we recommend the firm to deploy both
databases into their data pipeline.

Please Note: We did not test the databases for more
complex operations. The database performance rankings
we noted may not hold when it comes to complex
operations.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 04 | Apr 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2434

REFERENCES

[1] “BIG DATA AND ANALYTICS” – Seema Acharya,
Subhashini Chellappan

[2] “A performance comparison of SQL and NoSQL
databases”

https://www.researchgate.net/publication/2610792
89

[3] “The 6 Cloud Kitchen Business Models and How They
Work”-Niharika Maggo
https://limetray.com/blog/cloud-kitchen-business-
model/

[4] “Serving Food From the Cloud” - Naveen Sharda

https://www.toptal.com/finance/growth-
strategy/cloud-kitchen

[5] “All-in-One Food Order Management System for
Restaurants, Takeaways and Cloud Kitchens”

https://delivety.com/?gclid=Cj0KCQjwjN-
SBhCkARIsACsrBz7uvt30CMdswkgj3hDvX9UR4gaDgI
BqtwAOXZHDpFul1yA3pw6oQl0aAiedEALw_wcB

[6] “Cloud kitchens to dominate India’s food-tech
industry” - https://kr-asia.com/cloud-kitchens-to-
dominate-indias-food-tech-industry

[7] “Why cloud kitchens need to scale up smart, not fast” -
RAGHAV JOSHI

https://www.forbesindia.com/article/new-year-
special-2022/why-cloud-kitchens-need-to-scale-up-
smart-not-fast/72951/1

[8] “Everything You Need to Know About Cloud Kitchens”

https://www.oracle.com/in/industries/food-
beverage/cloud-kitchens/

[9] “With Food Delivery Startups Backing Cloud Kitchens,
Do Restaurants Stand A Chance?”- Kopal Cheema
https://inc42.com/features/with-food-delivery-apps-
backing-cloud-kitchens-do-restaurants-stand-a-
chance/

[10] “Monitoring MongoDB performance metrics

(WiredTiger)” - Jean-Mathieu Saponaro

https://www.datadoghq.com/blog/monitoring-
mongodb-performance-metrics-wiredtiger/

[11] “MongoDB Performance Tuning: Everything You Need
to Know”

https://stackify.com/mongodb-performance-tuning/

https://www.researchgate.net/publication/261079289
https://www.researchgate.net/publication/261079289
https://limetray.com/blog/cloud-kitchen-business-model/
https://limetray.com/blog/cloud-kitchen-business-model/
https://www.toptal.com/finance/growth-strategy/cloud-kitchen
https://www.toptal.com/finance/growth-strategy/cloud-kitchen
https://delivety.com/?gclid=Cj0KCQjwjN-SBhCkARIsACsrBz7uvt30CMdswkgj3hDvX9UR4gaDgIBqtwAOXZHDpFul1yA3pw6oQl0aAiedEALw_wcB
https://delivety.com/?gclid=Cj0KCQjwjN-SBhCkARIsACsrBz7uvt30CMdswkgj3hDvX9UR4gaDgIBqtwAOXZHDpFul1yA3pw6oQl0aAiedEALw_wcB
https://delivety.com/?gclid=Cj0KCQjwjN-SBhCkARIsACsrBz7uvt30CMdswkgj3hDvX9UR4gaDgIBqtwAOXZHDpFul1yA3pw6oQl0aAiedEALw_wcB
https://kr-asia.com/cloud-kitchens-to-dominate-indias-food-tech-industry
https://kr-asia.com/cloud-kitchens-to-dominate-indias-food-tech-industry
https://www.forbesindia.com/article/new-year-special-2022/why-cloud-kitchens-need-to-scale-up-smart-not-fast/72951/1
https://www.forbesindia.com/article/new-year-special-2022/why-cloud-kitchens-need-to-scale-up-smart-not-fast/72951/1
https://www.forbesindia.com/article/new-year-special-2022/why-cloud-kitchens-need-to-scale-up-smart-not-fast/72951/1
https://www.oracle.com/in/industries/food-beverage/cloud-kitchens/
https://www.oracle.com/in/industries/food-beverage/cloud-kitchens/
https://inc42.com/features/with-food-delivery-apps-backing-cloud-kitchens-do-restaurants-stand-a-chance/
https://inc42.com/features/with-food-delivery-apps-backing-cloud-kitchens-do-restaurants-stand-a-chance/
https://inc42.com/features/with-food-delivery-apps-backing-cloud-kitchens-do-restaurants-stand-a-chance/
https://www.datadoghq.com/blog/monitoring-mongodb-performance-metrics-wiredtiger/
https://www.datadoghq.com/blog/monitoring-mongodb-performance-metrics-wiredtiger/
https://stackify.com/mongodb-performance-tuning/

