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Abstract: 

Arrhythmia identification plays an important role in 
treating cardiovascular diseases. Electrocardiogram is used 
to study the heartbeats clinically. ECG signals acquired may 
contain noise in them which misleads the identification of 
arrhythmia. In this work, an automatic signal denoising 
method using denoising autoencoders based on long short-
term memory named LDAE is proposed to remove the noise 
from signals. The collected noisy ECG signals and processed 
clean signals are used to train the denoising model to 
reconstruct the input signals without noise. Then the 
reconstructed ECG signals are given as input to deep 
multilayer perceptron algorithm to identify different types 
of arrhythmias. Root mean square error and signal to noise 
ratio are used to evaluate the performance of reconstructed 
signals. An average SNR and RMSE of 27.5 and 0.037, 
respectively was achieved. Results indicate that for MLP, 
accuracy, precision, recall, and F1 score obtained are 98%, 
98.57%, 97.25%, and 97.45%, respectively. 
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1. Introduction 

Numerous cardiovascular diseases (CVDs) are 
growing, especially after being infected with the COVID-19, 
becoming the leading cause of death globally, constituting 
around 32% of all global deaths [1]. As per the world health 
organization (WHO), 7.5 million people are killed in 2015 
due to CVDs, and most of the deaths occurred in 
underdeveloped counties [1]–[5]. The best way to manage 
risk factors associated with these CVDs is to monitor the 
heart rhythms. The vital diagnostic tools used to monitor 
heart rhythms are tracing the heart's electrical activity 
known as electrocardiography (ECG) waveform. Tracing a 
typical ECG signal for each cardiac cycle generally consists 
of tracing P-wave, a QRS complex, and a T-wave 
representing atrial depolarization process, ventricular 
depolarization process, and ventricular repolarization, 
shown in Fig. 1. The remaining portions of the ECG signal 
include the ST, PR, and QT intervals. Abnormal cardiac 
rhythms known as arrhythmias occur due to a strange 
sequence of heart electrical impulses. These irregular 
sequences can be observed in ECG change in the waveform 

sequence [6], [7]. Four general types of arrhythmia are 
supraventricular tachycardia, extra beats, bradyarrhythmia, 
and ventricular arrhythmias [8]–[10]. The ECG signals of 
different cardiac arrhythmia conditions are Arrhythmias may 
occur in any heart chambers, atriums, and ventricles. This 
fatal CVD, Arrhythmia, may lead to sudden cardiac arrest, 
bradycardia, or tachycardia leading to death [1], [5]. Hence 
frequent monitoring of arrhythmia plays a significant role in 
CVDs diagnosis and prevention.  

 

Fig.1: General ECG signal waveform 

The classification of arrhythmias based on ECG signals' 
varying and complex nature amid different subjects is time-
consuming and challenging [11]. The rapid advancement of 
deep learning algorithms and the wide availability of digital 
ECG data presents improvements in automated ECG 
classification. The neural network (NN) outperformed 
various applications and is more widely used in automated 
ECG classification. Research on automated ECG classification 
with NNs is presented in [12]–[22]. Various classifying 
algorithms are proposed and implemented by researchers 
for the classification of ECG signals with high accuracy 
support medical professionals. Kiranyaz et al. [12] fused the 
classification process and feature extraction by 
implementing 1-D Convolutional neural networks (CNNs). 
This fusion resulted in better efficiency in both computation 
and speed, which can be beneficial. By using empirical mode 
decomposition (EMD) and discrete wavelet transform (DWT) 
features and radial basis function neural network (NN) 
classifier, the accuracy of 99.88% was reported by Shaoo S et 
al. [13] in classifying six types of ECG signals.  
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F Khalaf et al. [14] proposed an SVM classifier and a CAD 
system based on principal component analysis (PCA) using 
statistical features and spectral correlation. An accuracy of 
98.61% in spectral correlation classifying five-beat types is 
obtained. Geometry-based features resulted in improved 
accuracy. An algorithm with an average accuracy of 95.91% 
for detecting shockable rhythms using the Support vector 
machine (SVM) model is presented by M Nguyen et al. [15]. 
A powerful computerized system using a composite 
dictionary (CD) is introduced by M Raj et al. [16]. This CD 
consists of the sine, Stockwell, and cosine analytical 
functions to efficiently show ECG signals. This approach 
decomposed the ECG signal into non-stationary and 
stationary components with a high detection accuracy of 
99.23%. A novel three-layer deep genetic ensemble of 
classifiers (DGEC) is proposed by Pławiak et al. [17] to 
detect 17 types of ECG arrhythmia using cardiac ECG 
signals. The proposed model obtained an accuracy of 
99.38%. This DGEC model has a complex structure and 
requires features extraction compared with other deep 
learning models. Tuncer et al. [18] employed a novel 
hexadecimal ternary pattern method to detect heart 
arrhythmia. Seventeen types of ECG arrhythmia are 
classified using multilevel wavelet feature extraction, and an 
accuracy of 95% on ECG signal is achieved.  

A novel principal component analysis network 
(PCAN) system with a linear SVM method is proposed for 
classification by W Yang et al. [19]. The novel classifier 
system identified heartbeats with an accuracy of 97.78%. M 
Rai et al. [20] presented a hybrid feature extraction 
technique using multiresolution DWT and multilayer- 
probabilistic neural network (PNN) classifier in detecting 
only right bundle branch block (RBBB) and the left bundle 
branch block (LBBB) types of arrhythmias. The proposed 
system showed 99.07% overall accuracy. Using the MIT-BIH 
arrhythmia database and employing nonlinear 
morphological features and a voting-based scheme known 
as ICEEMED, Kandala R et al. [21] presented a method for 
feature extraction and classification of cardiac ECG signals 
different classes of cardiac arrhythmia. The proposed model 
achieved a classification accuracy of 100.00% and 90.40% 
on unknown and fusion classes. However, the performance 
of a few heartbeats like an aberrated atrial, atrial premature 
contraction, junctional premature beats class, and 
supraventricular is still low compared to the other classes 
where the improvements are to be done. A novel deep 
genetic ensemble of classifiers (DGEC) with a three-layer is 
designed by Pławiak et al. [22] to detect heart arrhythmia 
using ECG signals. The developed model obtained an 
accuracy of 99.38% with classification in detecting 
seventeen types of ECG arrhythmia. The disadvantages of 
this DGEC model are its complex structure and require 
features extraction compared to the other deep learning 
models. 

Most of the studies from the existing literature 
needs prior domain knowledge and are mathematically 
extensive. Such methods depend on the parametric inputs 

given by the user and are prone to errors. A well-developed 
automatic noise reduction method can overcome these 
limitations. Thus, the novelty of the work is to develop an 
automatic signal denoising method using denoising 
autoencoders (DAE) based on long short-term memory 
(LSTM) named LDAE to remove the noise from the ECG 
signals. First, the collected noisy ECG signals and processed 
clean signals are used to train the denoising model. Upon 
training, the proposed denoising model will be able to 
reconstruct the input signals without noise. Then the 
reconstructed ECG signals are given as input to the deep 
learning classification algorithm to identify different types of 
arrhythmia. Finally, the denoising and classification 
performances are reported. 

2. Data acquisition and methodology 

In this work, a methodology is proposed to denoise 
the noisy ECG signals and classify the normal and arrhythmic 
ECG signals. The ECG signals are acquired from different age 
groups using 12-leads. A public data set from Chapman 
university and Shaoxing hospital [23] is used in this work. 
The ECG recording are obtained from 10,646 subjects, of 
which 55.95% males, from 4 to 98 age groups. The ECGs are 
recorded for 10 seconds at 500 Hz sampling rate using 12-
leads with 32-bit resolution over a 4.88 mV range. Each ECG 
signal consists of 5000 samples. The acquired 12-dimension 
ECGs features 11 cardiovascular rhythms. Two licenced 
physicians independently annotate the datasets to make 
them more reliable for data driven studies. The 11 
cardiovascular rhythms in the dataset are: atrial fibrillation 
(AFN), atrial flutter (AFT), atrial tachycardia (ATA), 
atrioventricular reentrant tachycardia (ART), 
atrioventricular node reentrant tachycardia (ANRT), sinus 
bradycardia (SBA), sinus irregularity (SIY), sinus rhythm 
(SRM), Sinus Tachycardia (STA), supraventricular 
tachycardia (ST), and sinus atrium to atrial wandering 
rhythm (SAAW). Since the dataset contains rare rhythms 
with less data [23], the 11 rhythms are merged into 4 groups 
according to the guidelines [24]–[26]. Table 1 gives the 
details of the merged groups. Butterworth low pass filter are 
used in this dataset to obtain clean ECG signals.  

Table 1. Details of merged data. 

S. No. Merged to Merged from 
1 AF AFT, AFN 
2 SB SBA 
3 SR SRM, SIY 
4 SVT STA, ST, ATA, ART, ANRT, SAAW 

  
A signal denoising method using denoising autoencoders 
(DAE) is proposed to remove the noise from the ECG signals. 
First, the collected noisy ECG signals and processed clean 
signals are used to train the denoising model. Upon training, 
the proposed denoising model will be able to reconstruct the 
input signals without noise. The reconstructed ECG signals 
are given as input to the deep learning classification 
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algorithm to identify different types of arrhythmia. Fig. 2 
represents the proposed methodology. The detailed process 
of signal denoising is explained in the next section. 

 

Fig. 2. Proposed methodology block diagram 

3. Signal denoising 

 The ECG signals acquired may contain noise due to noise 
sources like muscle contraction, electrode contact noise, 
baseline wandering, power interference, motion artifacts, 
and random noise. Noise in the signals lead to 
misclassification due to presence of unwanted peaks in the 
signals. In this work, a signal denoising method using 
denoising autoencoder based on long short-term memory 
(LSTM) named LDAE is proposed. LDAE takes the corrupt 
signal as input and gives denoised signals as output. During 
training, both clean ECG signals and corrupted ECG signals 
are given as input to the LDAE. The clean ECG signals are 
generated using Butterwoth filtering with local polynomial 
regression smoother and non-local means, detailed by 
Zheng et al. [23]. An autoencoder is an unsupervised 
artificial neural network model that consists of input layer, 
encoder, and decoder layers. ECG signals are given as input 
to the input layer. The encoder codes the inputs and at the 
same time the decoder learns the features from the encoded 
inputs and further reconstructs the given original input. Fig. 
3. gives the structure of LDAE proposed in this work. 

 LDAE proposed in this work effectively learns the 
ECG time series characteristics and denoises the signals.  
LDAE consists of input layer, encoder, and decoder layers as 
shown in Fig. 3. The encoder consists of five layers of LSTM 
networks. The first LSTM layer is the input ECG signal 
transformation tensor with 1024 as the dimension of the 
hidden layer. The dimension of second LSTM layer was set to 
512 and it is the transformation tensor of first LSTM layer 
output. Output from the second layer is given as input to the 
third LSTM layer and third layers’ output is given as input to 
the fourth LSTM layer. Each LSTM layer is a transformation 
tensor of output from its pervious layer and this process 
continuous till the fifth LSTM layer in the encoder. The 
dimensions of the third, fourth, and fifth LSTM layers are set 
to 256, 128, and 64, respectively. An activation function is 
defined at each stage to sequentially process the input ECG 
signals. The hidden layers reduce the dimension of the input 
ECG signal data by compressing it and by extracting hidden 
time-series features through LSTM network. The compressed 
data from the fifth LSTM layer of the encoder is passed 
through gateway and is given as input to the decoder. 

Table 2. Details of each layer of LDAE. 

Layer 
no. 

Layer 
name 

Activation 
function 

Output 
size 

Encoder 
1 LSTM Tanh 1024 
2 LSTM Tanh 512 
3 LSTM Tanh 256 
4 LSTM Tanh 128 
5 LSTM Tanh 64 

Decoder 
6 LSTM Tanh 64 
7 LSTM Tanh 128 
8 LSTM Tanh 256 
9 LSTM Tanh 512 

10 LSTM Tanh 1024 
11 Linear Tanh 1024*5000 

 

 The decoder part of LDAE contains six layers with 
five LSTM layers and a linear layer that are connected step-
by-step with each other. The five LSTM layers in the decoder 
are the transformation tensors of their pervious layers and 
the sixth layer is a conversion tensor of the output from the 
fifth LSTM layer. The encoded data is decompressed in the 
decoder using LSTM layers and the linear layer transforms 
the output from the fifth LSTM layer into standard ECG signal 
data. The details of the different layers in the LDAE are given 
in Table 2. As ECG signal consists of times-series data, a 
single group of ECG data sequence with size of 1*5000 was 
given as input to the LDAE. The LSTM layers, 1-5, compresses 
the input data from 1*5000 to 1*64 and extracts and learns 
time series features from the data. Reconstruction of the 
compressed data to original size of 1*5000 is done using 
layers 6-11. The output of the LDAE is a denoised signal of 
the input ECG signal. The model parameters are updated 
using back-propagation to reduce the error between input 
data and expanded data. 

 

Fig. 3. Structure of LDAE 
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Fig. 4. Reconstructed signal for ECG with high and low 
frequency noise record no. 100 

 

Fig. 5. Reconstructed signal for ECG with baseline 
wandering record no. 2000 

 The denoising is performed on 10,646 ECG records 
using LDAE to get the reconstructed noise-free signals. As a 
representation, the reconstructed signals for the ECG record 
no. 100 and 2000 are shown in Fig. 4 and Fig. 5, 
respectively. ECG record no. 100 consists of both low and 
high frequency noise which is processed using LDAE to get 
the denoised signal, Fig. 4. Baseline wandering is the source 
of noise for ECG record no. 2000. The denoising 
performance of the proposed LDAE is evaluated using 
widely used performance metrics, root mean square error 
(RMSE) and signal to noise ratio (SNR) [27]–[29]. The RMSE 
gives the variance between the model output and the actual 
output, given by Eq. 1. A smaller value of RMSE represents 
better performance of the model. The amount of noise 
energy in the signal introduced due to compression and 

decompression of the signal is given by SNR, Eq. 2, and is 
measured in decibels (dB). SNR greater than 1 represents 
more signal than noise. A higher value of SNR represents 
good signal quality. 
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where     and   
  represents the original signal and 

reconstructed signal respectively, and  ̅ gives the mean value 
of the original signal. The SNR and RMSE values for different 
ECG record numbers are given in Table 3. Later, these 
denoised signals are used to classify the heartbeat conditions 
using deep learning algorithm that is discussed in the next 
section. 

Table 3. Denoising performance of LDAE. 

ECG record no. RMSE SNR (dB) 

100 0.023 27.67 

1000 0.036 22.31 

2000 0.021 27.73 

3000 0.029 26.54 

6000 0.052 20.89 

8000 0.047 21.07 

10000 0.033 23.27 

 
4. Classification and result analysis 

The reconstructed signals by LDAE through 
processing the raw ECG signals are used to classify the types 
of arrhythmia using a deep multilayer perceptron (MLP). 
MLP is an unsupervised deep learning algorithm and is a feed 
forward type of artificial neural networks (ANN). It has 
interconnected neurons that transfers information among 
each other. MLP consists of an input layer, hidden layers, and 
output layer. Fig. 6 shows the architecture of the MLP used in 
this work. MLP proposed in this work consists of four hidden 
layers. Each hidden layer has a fully connected layer with 
100 nodes. Batch normalization is introduced in the first 
hidden layer of the MLP. Rectified linear activation unit 
(ReLu) is used as the activation function in each of the 
hidden layer. Hyperparameter tuning is the selection of 
optimal hyperparameters whose value controls the learning 
process. It minimizes a predefined loss function to give better 
results. The wrapper is used to connect the scikit learn 
python library to Keras for hyperparameters tuning, and 
GridSearchCV (10-fold cross-validation) is used to find 
different hyperparameters. Dropout is a regularization 
technique of MLP to avoid overfitting, thus generalizing the 
model. Model is likely to result in better performance when 
dropout is used on a larger network, allowing the model to 
learn independently. Table 4 gives the values of the 
hyperparameters. 
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Fig. 6. MLP architecture used in arrhythmia classification 

Table 4. MLP hyperparameters. 

Hyperparameter MLP 

Batch size 128 

Dropout 0.2, 0.2, 0.2, 0.2 

Learning rate 0.001 

No. of epochs 300 

Hidden layers 4 

Optimization algorithm Adamax 

Neuron activation function ReLU 

No. of neurons 100, 100, 100, 100 

 
Table 5. Arrythmia dataset. 

Class 
nam

e 

Trainin
g data 
(80%) 

Testin
g data 
(20%) 

Tota
l 

Sample ECG 

 
 

AF 

 
 

3111 

 
 

778 

 
 

3889 

 
 
 

SB 

 
 

1780 

 
 

455 

 
 

2225 

 
 
 

SR 

 
 

1780 

 
 

455 

 
 

2225 

 
 
 

SVT 

 
 

1846 

 
 

461 

 
 

2307 

 
 

 Arrhythmia classification is performed using the 
reconstructed signals obtained from the previous section 
using MLP algorithm. The classification algorithm is trained 
using 80% data, and the remaining 20% is used as test data. 
Training data (80%) is further divided into training and 
validation datasets, and the remaining 20% data is test data 
used to evaluate the performance of the trained model. The 
details of the dataset are given in Table 5. In the training 
process, k-fold cross-validation is used, so that model is 
trained on different subsets of train data, resulting in a more 
generalized model further minimizing the chances of 
overfitting. In the present study, 10-fold cross-validation is 
used on the data sets. In the MLP model, four hidden layers 
are present in between the input and output layers. Before 
training the model, GridSearchCV is used to find the optimum 
hyperparameters on the training data set. During training, 
the model is evaluated on a validation dataset after each 
epoch. If the performance of the model on the validation 
dataset starts to degrade (e.g., loss begins to increase or 
accuracy begins to decrease), then the training process is 
terminated at that point. Accuracy, precision, recall, and F1 
score are used to evaluate the classification performance. 
The higher the values of these metrics, the higher will be the 
fault classification performance. For MLP, accuracy, 
precision, recall, and F1 score obtained are 98%, 98.57%, 
97.25%, and 97.45%, respectively. Confusion matrix for the 
MLP that shows the classification accuracy among different 
classes is shown in Table 6.  

Table 6. Confusion matrix for MLP. 

 AF SB SR SVT 

AF 10433 213 426 746 

SB 107 10008 532 638 

SR 0 105 9156 532 

SVT 106 320 532 8730 

 

5. Conclusion 

Arrhythmia identification plays an important role in 
treating CVDs. ECG signals acquired may contain noise in 
them which misleads the identification of arrhythmia. In this 
work, an automatic signal denoising method using denoising 
autoencoders (DAE) based on long short-term memory 
(LSTM) named LDAE is proposed to remove the noise from 
the ECG signals. First, the collected noisy ECG signals and 
processed clean signals are used to train the denoising 
model. Upon training, the proposed denoising model will be 
able to reconstruct the input signals without noise. Then the 
reconstructed ECG signals are given as input to deep 
multilayer perceptron (MLP) algorithm to identify different 
types of arrhythmia. Root mean square error (RMSE) and 
signal to noise ratio (SNR) are used to evaluate the 
performance of the reconstructed signals. Reconstructed 
signals showed an average SNR and RMSE of 27.5 and 0.037, 
respectively. Results indicate that for MLP, accuracy, 
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precision, recall, and F1 score obtained are 98%, 98.57%, 
97.25%, and 97.45%, respectively. 
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