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Abstract - The study reviews the characteristics of ultra-

high-performance fiber reinforced concrete with admixtures. 

The historical background and workability actions of steel 

fibres in plain and ultra-high-performance fiber-reinforced 

concrete (UHPFRC) is investigated in this research. This 

research improves the strength and workability with help of 

admixture and steel fiber 1%,2% and 3%. As a result, the next 

sections offer extensive results from diverse studies on the 

effects of mineral admixtures and fibre on the behavior of 

fresh UHPC. 

Key Words: Steel fiber, UHPFRC, mineral admixture, 
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1. INTRODUCTION  
 
Due to unanticipated societal demands, such as high-rise 
buildings, long-span bridges, and high earthquake-resistant 
concrete constructions, among others, the properties of 
concrete have been upgraded. Concrete must perform 
admirably in terms of freshness, mechanical strength, and 
durability to satisfy these desires. Ultra-high-performance 
concrete (UHPC) and ultra-high-performance fiber-
reinforced concrete (UHP-FRC)/ultra-high-performance 
hybrid fiber-reinforced concrete (UHP-HFRC) are currently 
being developed to achieve the aforementioned 
specifications.[1]UHPC has a high compressive strength 
(more than 150 MPa), tensile strength (greater than 10 
MPa), and strong tensile strain hardening and softening 
behaviour, as well as a low permeability that allows harmful 
compounds like water and chlorides to pass through. In 
addition, conventional concrete equipment can be used to 
cast structural parts made of self-compacting UHP-FRC 
[2].As a result, UHPC has improved resistance to harsh 
environmental conditions, can withstand lateral loading, and 
has a long service life. In order to depict the evolution of 
concrete from its beginning to the present, the authors used 
an inverted triangle, as shown in Figure 1. The introduction 
of concrete in a society accelerated infrastructure 

development, as indicated by the lower tip of the inverted 
triangle. The researchers were pushed to develop more 
resilient and long-lasting concrete because of the limitations 
of ordinary concrete. The developed concrete had a poor 
microstructure and had limitations in terms of durability at 
an early stage. Mineral admixtures (such as fly ash, slag, 
silica fume, and metakaolin) and chemical admixtures 
(plasticizers) were used in the concrete to help overcome 
these limitations to some extent. Table 1 lists examples of 
the addition/replacement of several types of mineral 
admixtures as well as cement content to build the UHPC. The 
use of smaller particle sizes in mineral admixtures was found 
to promote the chemical reaction due to the increased 
surface area, with a lower water-to-cement ratio promoting 
the formation of calcium silicate hydrate (C–S–H) gel, leading 
to the development of high-strength concrete. Concrete, on 
the other hand, gets more brittle as its strength increases. 
 

 
 
 
Figure1. History of development of concrete from ordinary 

concrete to UHP-HFRC[1] 
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Table.1.Mineral admixture used to produce UHP 

REFERENCE TYPE 

OFADMIXTURE 

ADDITIONOF 

ADMIXTURE 

CEMENT 

CONTENTIN 

REFERENCE 

(Kg/m3) 

[3] Nano silica Addition by 1%, 2%, 

3%, 4% and 5 wt% 

of cement 

439.5 

[4] Silica fume Addition by 25 wt% 

of cement 

788 

[5] Nano silica Addition by 1%, 2%, 

3%, and 4 wt% of 

cement 

950 

   [6] Class F fly ash Replaced by 10%, 
20%, 30% and 40% 

of cement 
 

657 

[7] Class F fly ash Replaced by 20%, 

40%, 60% and 70% 

of cement 

935 

[8] Rice husk ash Replaced by 16.66%, 

33.33%, 50%, 

66.66%,83.33 and 

100% with silica 

fume 

920 

[9] Rice husk ash Replaced by 16.66%, 

33.33%, 50%, 

66.66%,83.33 and 

100% with silica 

fume 

800 

 

Steel fiber-reinforced concrete, slurry-infiltrated concrete 

(SIFCON), dense silica particle (DSP) concrete, and macro-

defect-free (MDF) concrete/paste were all developed in the 

1980s to improve concrete qualities. Steel fibre concrete and 

SIFCON were introduced in studies by Hoff [10]and 

Lankard[11]. Following that, numerous studies were 

conducted to increase the strength and failure behaviour of 

concrete and to transition it from high-strength concrete 

(HSC) to high-performance concrete (HPC) (HPC). The 

introduction of dense silica particle (DSP) concrete and 

macro-defect-free (MDF) concrete/paste [12,13]. 

Compressive strengths of DSP and MDF paste/concrete 

range from 120 to 270 MPa and greater than 200 MPa, 

respectively. Furthermore, in the 1990s, a technological 

breakthrough was made with the creation of reactive 

powder concrete (RPC), which has a compressive strength of 

more than 200 MPa.and perhaps up to 800 MPa, with 40 

kJ/m2 fracture energy [13-15]. Ordinary Portland cement 

(OPC), silica fume (SF), very fine granulometry aggregates, 

sand with an average grain diameter of 250 m, crushed 

quartz (average grain diameter of 10 m), and metallic fibre 

make up the RPC composition [16]. RPC is typically 

produced using strict curing regimes (200°C autoclave 

curing or 90°C thermal curing) that result in low efficiency 

and significant energy consumption [17,18]. Ultra-high-

performance concrete (UHPC) is a type of RPC that has a 

dense matrix microstructure[19],[20],[21],[22] high 

mechanical strength[23-25]and superior workability. UHPC 

is also acknowledged as a viable material due to its 

exceptional features[26-28]. 

2.WORKIBILITY OF CONCRETE:  
 

                 The quality that defines the effort necessary to handle a 
freshly mixed quantity of concrete with minimal loss of 
homogeneity (uniformity) is known as workability [29]. The 
early-age processes of putting, compacting, and completing 
are all included in the term manipulate [30]. The workability 
of concrete is influenced by the addition of finer mineral 
admixtures and fibres to improve the 
properties/performance of the concrete. The viscosity of 
UHPC is generally higher than that of ordinary concrete [31]. 
The viscous flow of UHPC is due to the radically different 
design mix composition (tight packing of fine components) 
compared to standard concrete, the characteristics of the 
materials, and the exceptionally low water-to-binder 
ratio.Furthermore, the mechanical and durability 
characteristics of UHPC are governed by its performance in 
the fresh state [31]. As a result, the next sections offer 
extensive results from diverse studies on the effects of 
mineral admixtures and fibre on the behaviour of fresh 
UHPC[32,33]. 
 
   2.1 Effects of the usage of mineral admixtures: 
 
Researchers have tried a variety of additives to improve the 
performance of concrete and produce UHPC, including nano-
silica (NS), RHA, ultra-fine palm oil fuel ash (UPOFA), SF, MK, 
and fibres, among others. In the green stage of UHPC, NS and 
RHA in concrete absorb a substantial amount of water due to 
their higher surface area. As a result, the amount of lubricant 
water available is reduced. As a result, UHPC's workability 
(slump flow values) has decreased significantly [26,34] 
commented on the potential of red mud (RM) for UHPC in a 
recent study. A modified Andreasen & Andersen (MAA) 
model is used to create the UHPC mix design. At the time of 
replacement, the cement content was replaced with RMthere 
are three stages (20 percent , 40 percent , and 60 percent ). 
In the control UHPC mix, a maximum slump flow of 260 mm 
was achieved. The integration of RM, on the other hand, 
reduces workability by 49.23 percent, 57.69 percent, and 
59.62 percent, respectively, at RM mix levels of 20 percent, 
40 percent, and 60 percent. 
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                        Figure.2 Silica fume and Fly ash 
 
The effects of adding UPOFA on the workability of ultra-high 
strength concrete (UHSC) have also been investigated in the 
hunt for a suitable mineral admixture to increase the 
workability of UHPC. It has been reported that incorporating 
UPOFA into UHPC increases its usability. Because UPOFA has 
a lower specific gravity, the increased binder paste volume 
obtained at a higher replacement percentage improves 
concrete workability. Furthermore, because UPOFA has a 
larger surface area, increasing the replacement percentage 
raises the viscosity of the UHPC. [35]UPOFA covers 
aggregate particles and fills gaps between aggregate 
particles effect. The workability of fresh concrete is 
improved when SF is used instead of cement.This could be 
because SF contains fine spherical particles that function as 
lubricants. When more than 20% of the cement is replaced 
by SF, however, the workability drops considerably [36]. 
Amanjean et al.[36]  investigated the effects of mineral 
admixture particle morphologies (SF and MK) on the fresh 
characteristics of UHPC. The authors found that the regular, 
round shape of silica fume influences the slump more 
favourably than the irregular kind and platelet form of MK. 
In addition, the viscosity of the plastic does not dramatically 
increase during the test. The elongated, angular, and platelet 
types of metakaolin might result in a greater viscosity value; 
also, the presence of fibres boosts the mix's structuration 
capability.[37]Kim et al.In comparison to the usual UHPC 
mix, binary states of industrial by-products (GGBFS and 
REOS) boost flow by 45.6 percent, according to the author. 
The synergistic effect was found to be more beneficial to 
improve workability. 
 
As a result, it can be inferred that the workability of UHPC is 
mostly determined by physical properties, SCM material 
addition/replacement %, mono or dual-type SCM particle 
use. SCMs modify the flow behaviour of UHPC by changing 
the viscosity and yield stress of fresh concrete. SCMs that are 
responsible for limiting workability limit the use of UHPC to 
structures that require a higher workability of the mix, such 
as tunnels and super-high-rise buildings [38]. 
 
 2.2 Effects of the usage of fiber: 
 
One or more types of fibre, as well as mineral admixtures, 
are added to the traditional constituents of concrete during 
the UHP-FRC/UHP-HFRC manufacturing process. The 
workability of UHP-FRC and UHP-HFRC is influenced by the 
fibre geometry, surface area, volume percentage, and form 

[39-41]. In the fresh stage of UHPC, the addition of fibres 
reduces the relative droop and increases the air content. The 
detrimental impacts of adding fibres to UHPC can be 
mitigated by lowering the cement content and using proper 
particle packing. The addition of steel fibres reduces the 
workability of UHP-FRC by increasing the cohesive force 
between the paste and the fibres [41]. A better 
understanding of steel fibre cohesion and 
distribution.Knowledge of the rheological characteristics of 
UHPC is required in the matrix. The influence of ultra-high-
performance mortar rheology features on fibre distribution 
was investigated by Wang et al. [39]. When compared to the 
viscosity of the fresh mix, the yield stress is the crucial 
rheological parameter for a uniform distribution of fibre and 
depth.In a mix with high yield stress and plastic viscosity, 
fibre dispersion becomes difficult, whereas too low yield 
stress and plastic viscosity might result in significant 
segregation during the casting process. As a result, the 
author recommended a yield stress range of 900–1000 Pa, 
700–900 Pa, and 400–800 Pa for UHPC mixtures with 1 
percent, 2 percent, and 3 percent fibre volume fractions, 
respectively. 
 
The workability of UHP-HFRC can be determined using a 
factor dubbed the 'fibre factor,' according to Kwon et al. [42]. 
The equation f = Vf lf/df can be used to calculate the 'fibre 
factor,' where Vf is the volume of fibre, f is the fibre factor, lf 
is the fibre length, and df is the fibre diameter. Straight fibres 
(S) and hooked fibres (H) each get their own f value, which is 
summed together. Table 6 shows the fibre factor range for 
UHPC development. With an upper limit of 'fibre factor' in 
the range of 2–2.5, the results indicate that as the fibre factor 
grows, the slump of UHP-FRC decreases.References [43,44] 
made a similar observation. Micro-steel fibre at 2% by 
volume in UHPC is the best dosage for consistent fibre 
distribution, according to Meng and Khayat [45]. When the 
optimal small V-funnel flow time of suspended mortar is 
utilised, i.e., 46 2s, equal to the optimal plastic viscosity (53 
3s), a uniform fibre dispersion is ensured. Furthermore, 
Ferrara et al. [46], Kang and Kim [47]discovered that the 
type of fresh UHPC insertion in the mould, rather than the 
casting technique used, has a substantial impact on fibre 
distribution uniformity. Fresh UHPC is placed from one edge 
of the mould and let to flow to the other end in a longitudinal 
direction, demonstrating a more advantageous fibre 
orientation for achieving the desired result the References 
[48,49]made a similar observation.  

3. CONCLUSIONS 
 
This paper exhaustively reviewed the workability of UHPFRC 
with steel fiber. Because of writing review, a few significant 
discoveries were acquired, and the accompanying ends could 
be drawn from the above conversations. 
 
The viscosity of the matrix is raised and a rapid loss of 
workability is observed in UHPC due to the smaller particle 
size and higher superplasticizer concentration, which limits 
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the use of UHPC in practical applications[50]. When fibre is 
added to the matrix, this loss of workability becomes scary. 
Due to the absence of high workability necessary for 
structures such as tunnels and super-high-rise buildings, a 
stiff mix of UHPC/UHP-FRC and UHP-HFRC restricts the 
usage of this material. More advanced rheology studies 
demonstrate that the viscosity yield stress, rather than the 
viscosity of UHPC, is a better reflection of fresh behaviour. 
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