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Abstract - Human pose estimation (HPE) depicts the 
posture of an individual using semantic key points on the 
human body. In recent times, deep learning methods for 
HPE have dominated the traditional computer vision 
techniques which were extensively used in the past. HPE has 
a wide range of applications including virtual fitness 
trainers, surveillance, motion sensing gaming consoles 
(Xbox Kinect), action recognition, tracking and many more. 
This survey intends to fill in the gaps left by previous surveys 
as well as provide an update on recent developments in the 
field. An introduction to HPE is given first, followed by a 
brief overview of previous surveys. Later, we’ll look into 
various classifications of HPE (single pose, multiple poses, 
2D, 3D, top-down, bottom-up etc.) and datasets that are 
commonly used in this field. While both 2D and 3D HPE 
categories are mentioned in this survey, the main focus lies 
on pose estimation in 2D space. Moving on, various HPE 
approaches based on deep learning are presented, focusing 
largely on those optimised for inference on edge devices. 
Finally, we conclude with the challenges and obstacles faced 
in this field as well as some potential research opportunities.  
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1.  INTRODUCTION 
 

Human pose estimation (HPE) attempts to locate 
spatial key points or landmarks on images containing 
humans. With applications in healthcare mentioned 
in [1] such as detecting early movement-based 
disorders, another application in sports where teams 
use pose estimation to monitor or analyse training 
footage to help improve sports players has recently 
come to light and many more are discussed in detail 
later in the survey.  

HPE has been part of extensive computer vision [1] 

research for quite some time, and in the past decade 

has seen multiple deep learning approaches 

[2,3,4,5,6,7,8,9,10] attempting to provide more 

optimised and accurate solutions. For pose 

estimation to truly have an impact on human life, it 

needs to be easily deployed on edge devices and 

accessible to the common man. This is why, more 

recently, deep learning approaches [9,10] are being 

tailored and optimised to be deployed on edge 

devices. 

HPE, like all domains of research, has its own 

challenges and hurdles that come with it. Many deep 

learning based methods require expensive hardware 

for training, thus increasing costs. Along with 

hardware expenses, gathering and maintaining 

human pose datasets is not a menial task. One of the 

biggest challenges for HPE today is optimising 

models to be deployed on edge devices, this supports 

real time applications. 

HPE methods have various classifications based on 

the manner of the input images supplied and the 

architecture of the algorithm or model developed. 

1.1 Previous Surveys and Contributions 
 
Many surveys in the field of human pose estimation 
have been documented in the past, all contributing 
greatly in their own ways to recapitulate recent 
developments in the field. One notable survey, 
written by Zheng et al. [11], provides an intensive 
review of the most important topics in HPE at the 
time of publication. This review focused on 
explaining the taxonomy (classification) of HPE in-
depth and also mentions important datasets and 
performance metrics used by researchers. Another 
review by Munea et al.[27] briefly introduces HPE 
nuances and majorly focuses on describing deep 
learning architectures designed to solve problems in 
this field. Although past surveys are very well 
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documented, we found certain gaps in surveys that 
we discuss in this survey. The majority of deep 
learning architectures designed for HPE are data-
hungry and require expensive hardware for training. 
Such hardware is not available in edge devices that 
are used by consumers, this makes applying HPE to 
applications difficult as running heavy models on 
servers presents latency problems in applications 
deployed on edge devices. In this literature, we 
discuss recent developments and optimizations 
which allow lighter models to be developed. These 
models may be run on edge devices thus eliminating 
the problem of latency between a client and the 
servers. These advancements are crucial in making 
HPE accessible and deployable on edge devices. 
 
2.  HUMAN BODY MODELLING 
 
The human body has a non-rigid structure with 
numerous variations in texture, poses and 
orientation. Human body modelling allows us to 
visualise the key points or landmarks extracted by 
HPE and thus, understand the pose of the individual 
or individuals in the frame. There are three major 
types based on the dimensionality used to model the 
human body, namely, skeleton-based model, planar 
model, and volumetric model 
 

 
Fig -1: Types of human body modelling 

 
 

2.1 Skeleton-based model 
 
The skeleton model, commonly referred to as the 
kinematic model [11], visualises the pose by using 
the joint key points and the subsequently formed 
edges representing limbs in a one-dimensional space 
as shown in Fig.1(a). This computationally light 
approach is widely used for both 2D [1] and 3D HPE 
but falls short in scenarios where texture 
representation is required. 
 

2.2 Planar model 
 

The planar model, as opposed to the kinematic 
model, roughly provides structure and width 
information regarding the limbs of the body. Planar 
models use approximate rectangular shapes to 
represent the limbs as shown in Fig.1(b).  An 
example is the cardboard model by Ju et al.[14], 
which showed promise in lower body tracking for 
activities such as walking and running. 
 

2.3 Volume-based model 
 
Volume-based models visualise in 3D space using 
geometric shapes or meshes. This approach provides 
rough estimations of the structure, width and texture 
of the human body. These models are useful for pose 
estimation in  3D space. Some examples of 
volumetric models [11] include the skinned multi-
person linear model (SMPL) [12] and the tensor-
based human modelling [13]. 

 

3. TAXONOMY OF HPE 
 
In this section, we explore the various approaches 
and pipelines of HPE. Classifications of HPE are based 
on the spatial dimension the predicted key points 
and pose are in (2D/3D), the flow of the algorithm or 
method being used (top-down or bottom-up), the 
number of individuals, whose pose is to be 
approximated (single pose or multi-pose). 
 
3.1 2D HPE 
 
2D human pose estimation locates the landmarks of 
body joints on monocular images (images captured 
by single lens sensors). These joints are represented 
by a stick figure or skeleton model representation. 
Traditional HPE methods [1] on monocular images 
required handcrafting features and intense computer 
vision processing to determine the pose of the 
individual(s) in the frame. In this survey, we will 
focus on newer deep learning approaches to HPE. 
 

3.2 3D HPE 
 
3D HPE finds the pose of the individual(s) present in 
the frame in 3D space. It gives more information 
about the orientation and structure of the body 
compared to 2D HPE methods. This additional 
information is useful for the application of HPE in 
domains like 3D movies, animation, and even certain 
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military training areas. Although this field has had 
remarkable progress in recent years, 3D HPE has its 
own challenges, starting with the availability of 
datasets, while annotating joints in 2D images is 
trivial, doing so in the 3D space is not. While 3D pose 
estimation on monocular images has been successful, 
images taken from multiple perspectives (e.g. 
binocular camera images), are more suitable for the 
task as they provide a sense of depth in the image. 
Other sensors like LiDAR, make use of pulsed light 
waves, which bounce off of objects in the 
environment and are collected by the sensor. LiDAR 
sensors use the time taken for these light waves to 
return to estimate the positions of objects in the 
environment. This process is done millions of times, 
which ultimately produces an accurate 3D 
representation of the surroundings of the sensor. 
 

3.3 Single/Multi Person HPE 
 
This classification of HPE is based on the number of 
individuals who pose the model estimates. Single 
Person HPE detects poses for images that contain 
only one human in the frame. In frames where 
multiple bodies are present, the one in focus may be 
manually cropped out. Multi-person HPE as the name 
suggests is capable of localising the body joints of 
multiple individuals in the frame. While the latter 
type does require more compute power, it is useful 
since most real-world applications will consist of 
images with multiple  humans in the frame. Most 
recent deep learning-based solutions are capable of 
performing both single and multiple person HPE. 
 
3.4 Top-Down HPE 
 
Top-down pose estimation consists of two main 
steps, human body detection and localization (using 
bounding boxes) and single person HPE. This method 
first finds all human bodies in the frame and then 
applies single person HPE to every detected 
individual. While this approach is simple, it is 
computationally expensive. This is because HPE is 
done once for everybody in the image, whereas the 
bottom-up approach is more efficient (discussed in 
3.4). This approach also heavily relies on the human 
body detector; if it fails, joints will not be localised 
for those individuals. 

 
 
 

3.5 Bottom-Up HPE 
 
Bottom-up HPE as mentioned in section 3.3, is 
efficient, especially for multi-person pose estimation. 
Bottom-up HPE solutions first localise all joints in the 
entire frame and then proceed to associate and group 
body parts into their corresponding bodies. In 
certain situations, bottom-up approaches may fail to 
identify individuals by grouping the localised joints 
and limbs. 
 

4. DATASETS 
 
Deep learning-based HPE models are data-hungry 
and require correctly annotated, large datasets 
during training. Collecting suitable images and then 
properly annotating them is tasking and presents its 
own challenges. Datasets for HPE can be divided into 
those made for 2D HPE and those made for 3D HPE. 
Datasets made for 2D HPE generally consist of 
monocular images; certain 3D HPE methods that are 
capable of running on monocular images may use 
these datasets as well. 
 

4.1 Datasets for 2D HPE 
 

The MPII Human Pose Dataset gathered by 
Andriluka et al.[15] contains over 40,000 images of 
people taken from Youtube. The dataset has two 
hierarchies, the first level classifies the images in a 
broader space with groups like, “sports”, “Lawn and 
garden”, “Home”, etc. While the second hierarchy 
level narrows the classification down to groups like, 
“rock climbing” and “picking fruit”.  Adriluka et. al. 
proposed a new evaluation metric which is a slight 
variation of the percentage of correct key-points 
(PCK) metric called PCK. PCK measures the accuracy 
of the localised key points and uses a threshold 
which is a fraction of the size of the bounding box on 
the body. PCKh changes this threshold to 50% of the 
size of the head segment length. Bulat et al. [7] in 
2020 achieved a 94.10% score on the PCKh metric 
using the MPII dataset. This dataset is used widely as 
a benchmark for evaluating HPE models. 
 
FLIC Dataset 
 
The Frames Labelled in Cinema (FLIC) dataset 
composed by Ben Sapp and Ben Taskar [16], contains 
5003 frames from 30 Hollywood movies and 
contains annotations of 10 upper body joints. A 
human body detector was used on every 10th frame 
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of a movie to extract images. Frames in which 
humans were detected with high confidence were 
sent to Amazon Mechanical Turk (MTurk) for 
annotation. MTurk is a platform to crowdsource 
tasks to individuals or organisations online. For 
evaluation, Sapp et al. use a metric similar to PCK 
explained in [16]. While this dataset does not quite 
have the volume that the MPII dataset does, it still 
remains a popular dataset used for benchmarking. 
 
COCO Dataset 
 
The COCO dataset [17] contains almost 330,000 
images made for object detection. While the original 
COCO dataset is not specifically made for HPE, COCO 
Keypoints 2016 and COCO Keypoints 2017 are 
datasets for HPE originating from the original COCO 
dataset. The difference between the two lies in the 
train, test and validation split used. 
 

4.2 Datasets for 3D HPE 
 
HumanEva Dataset 
 
The HumanEva dataset [18] by Sigal et al. contains 7 
video sequences that provide 3D body poses of the 
subjects being recorded. It has two versions, namely, 
HumanEva-1 and HumanEva-2. The difference 
between the two is the number of subjects 
participating in recording, and the actions performed 
by these subjects. 
 
HumanEva-1 used 4 subjects performing 6 actions 
in 3 repetitions each. The actions done were walking, 
jogging, gesturing, throwing and catching a ball, 
boxing, and combos. The dataset contains 74,600 
frames extracted from videos taken by 7 
synchronised video cameras. Motion capture 
(MoCap) systems from ViconPeak and video capture 
cameras from IO Industries and Spica Tech make up 
the hardware that was used in this version of 
HumanEva. 
 
HumanEva-2 used 2 subjects (both who were part of 
HumanEva-1), performing a sequence of actions. 
Starting by walking along an elliptical path, then 
proceeding to jog around the same path and finally 
having the subject balance on each of his/her two 
feet in the centre of the frame. Training and 
validation data between the two versions of 
HumanEva remain the same, while HumanEva-2 

contains a lower number of test frames (2,460 as 
opposed to 24,000 in HumanEva-1). 
 
Human3.6M 
 
The Human3.6M [19] dataset contains 3.6 million 
images of 3D human poses. The recording took place 
with 5 females and 6 males and the experimental 
setting consisted of 4 video cameras, 1 time-of-flight 
sensor, and 10 motion cameras.  Reflective markers 
were attached to every subject's body which let the 
motion capture (MoCap) system track them. The 
dataset provides bounding boxes around humans in 
the frame, useful for top-down pose estimation 
methods. 

 
4. PERFORMANCE EVALUATION METRICS 
 
To determine how accurate and usable an HPE model 

is in real-world scenarios, various metrics are used 

by researchers. Different performance metrics are 

used for 2D and 3D HPE. The next sections describe 

some of these metrics. 

 

5.1 2D Evaluation Metrics 
 

Percentage of Correct Parts (PCP) [20] measures 

the percentage of localised body parts that match the 

ground truth to a certain extent. A localised body 

part is said to be correct if the segment endpoints lie 

within a fraction of the length of the truth segment. 

This fraction is also known as the PCP threshold and 

is varied for different tests. Decreasing the threshold 

leads to stricter criteria and decreases the chances of 

a predicted part being labelled as correct. 

 

Percentage of Detected Joints (PDJ) [4] is similar 

to PCP but addresses a drawback of PCP where it 

penalises shorter limbs such as lower arms (since the 

length of the segment is small, the PCP threshold 

results in a fine margin for correct part evaluation). 

PDJ works around this by using the diameter of the 

torso to calculate the threshold for correct 

evaluation. This way, it overcomes the problem of 

overly strict evaluation of shorter limbs. A joint is 

said to be correctly predicted if it falls under the 
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length of a fraction of the torso diameter. This 

fraction can be varied for finer precision. 

 

Percentage of Correct Key-Points (PCK) proposed 

by Yang et al. in [21], states that their evaluation 

metric overcomes a drawback of PCP where the 

metric does not penalise false-positive errors, giving 

an unfair advantage to models which localise a large 

number of joint keypoints. PCK accepts a keypoint as 

correct if the predicted keypoint is within a distance 

of 𝞪.max(h,w). Here, h and w are the height and 

width of the bounding box surrounding a keypoint. 𝞪 

is a threshold value that determines the strictness of 

evaluation, a lower value of 𝞪 requires more 

precision in keypoint prediction compared to a 

higher value. 

 

5.2 3D Evaluation Metrics 
 

Mean Per Joint Position Error (MPJPE) [11] is an 

evaluation metric used for 3D HPE which uses the 

mean Euclidean distance between the predicted joint 

keypoint and the truth value for the joint. 

 

3D Percentage of Correct Keypoints (3DPCK) is an 

adaptation of the original PCK metric [21] to a 3D 

space. It labels a localised joint as correct if the 

distance between it and the truth value joint is less 

than a certain threshold. 

 

6. MAJOR APPROACHES TO HPE 
 
In this section, we discuss various solutions 

discovered by researchers in this field. For each 

model, we discuss important topics like the model 

architecture, the dataset used, the performance 

metric applied and its results, etc. 

 

6.1 Convolutional Pose Machines 
 

Convolutional pose machines (CPM) proposed by 

Wei et al. [3], use a sequence of iterative 

convolutional network processing which finally 

outputs a belief map for each joint keypoint to be 

detected. These belief maps tell us the probability of 

each pixel in the image being part of that joint and 

can later be visualised using heatmaps. The 

prolonged use of convolutional networks may 

potentially cause the problem of vanishing gradients 

[22], the authors solved this problem by adding 

supervision in intermediate layers of the network. 

 

The algorithm consists of two stages, stage one 

consists of only the first iteration of the algorithm. 

Here, only the input image is used and a classifier 

outputs a belief map for the image. The second stage, 

which deals with all iterations after the first (>=2), 

uses the input image passed through a convolutional 

feature extractor and the belief map from the 

previous layer.  

 

The authors tested their model on benchmarks such 

as FLIC [16], LSP, and MPII [15]. 

 

Using the PCKh-0.5 metric on the MPII dataset, Wei 

et al. achieved a score of 87.95%. The ankle, which is 

the most challenging joint to detect in HPE according 

to [3], achieved a score of 78.28%, which was 

10.76% higher than the closest competitor at the 

time of publication (recently, more advanced models 

have been brought about which have better scores 

on similar tests). 

 

The model also achieved 84.32% on the Leeds Sports 

Pose (LSP) dataset and 97.59% and 95.03% score on 

the elbows and wrists respectively, of the FLIC 

dataset using the PCK metric. 

 

6.2 Stacked Hourglass Networks for HPE 
 

The stacked hourglass model proposed by Newell et 

al. [8], is based on the hourglass architecture shown 

in Fig.2 The hourglass design allows networks to 

capture information at different scales of the image. 

A smaller scale is required for identifying features 

such as faces and limbs, whereas spatial information 

such as orientation and the arrangement of the limbs 

requires a larger scale of the image.  
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Fig -2: Representation of a stacked hourglass model 

 

The hourglass architecture consists of a sequence of 

downsampling and upsampling operations along 

with the heavy use of residual networks. The design 

uses convolutions along with residual connections to 

pass on information to later layers, and max pooling 

to down sample the feature to a low resolution. After 

reaching the lowest resolution in the design, the 

nearest neighbour method for upsampling. Since 

both spatial (orientation and arrangement of limbs) 

and lower level features (limbs) are both important 

for HPE, skip connections are used to preserve 

spatial information from earlier layers in the latter 

layers of the network. 

 

In the final model, these hourglass networks are 

stacked sequentially, this allows outputs of previous 

hourglass networks to be evaluated and processed 

again to achieve better results. Heatmaps are 

generated after every hourglass and passed onto the 

next hourglass network. This allows for intermediate 

supervision, to alleviate the network from the 

problem of vanishing gradients. 

 

The stacked hourglass model was evaluated on the 

FLIC and MPII datasets using the PCKh@0.5 and 

PCK@0.2 metrics, respectively. Newell et al. achieved 

99% PCK accuracy on the elbow and 97% accuracy 

on the wrist. On the MPII dataset, scores of 91.2% 

and 87.1% on elbows and wrists, respectively, using 

the PCKh@0.5 metric. 

 

6.3 HPE via Soft-Gated Skip Connections 

 

Bulat et al. in this literature question the use of 

residual connections in most state of the art deep 

learning approaches to HPE [8]. The authors 

proposed a new design that helps better both the 

accuracy and the efficiency of HPE models. 

 

Firstly, Bulat et al. propose the use of gated skip 

connections, with learnable parameters which help 

control the flow of data across the network. These 

parameters learn how much information from 

previous stages should be passed onto the next. 

 

The authors also use a hybrid structure which is a 

combination of the Hourglass [8] and U-Net [23] 

wherein they introduce skip connections between 

the encoder and decoder sections of the U-net 

architecture. 

 

Evaluation of the model was done on the MPII 

dataset based on the PCKh metric, achieving an 

overall score of 94.1%. The authors used the PCK 

based metrics on the Leeds Sports Pose (LSP) dataset 

and achieved an overall score of 91.1%. The 

surprising part of these results is that, despite being 

a shallower (uses only 4 stacks as opposed to the 

SOTA 8 stacks) and computationally lighter model, it 

outperforms most heavy models trained on large 

datasets. 

 

6.4 Movenet 

 

Movenet, developed by researchers at Google, is 

tailored for applications that require low latency 

HPE. Movenet provides this by being an extremely 

lightweight and accurate model for pose estimation. 

Movenet is divided into two variants, namely, 

lightning and thunder. The lightning variant is 

optimised to decrease latency (from inference), i.e. 

runs faster than its alternative. The thunder variant 

is made for use cases requiring more accuracy.  

 

Moving to the architecture of the model, movenet is a 

single person, bottom-up pose estimation model. The 

model is based on the MobileNetV2 [10] and 

CenterNet [24] architectures. It consists of two major 

components, the feature extractor (based on 

MobileNetV2) and the prediction heads (based on 

CenterNet). The feature extractor is attached to a 
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feature pyramid network [25], followed by the 

prediction heads. The four prediction heads give the 

following outputs: A person centre heatmap, 

keypoint regression field, person keypoint heatmap 

and a per keypoint offset field. 

 

The model has been trained on the COCO [17] and an 

internal Google dataset called Active. Evaluation 

metrics used include keypoint mean average 

precision (mAP) and the inference time taken for a 

single image. This quick inference and low latency 

make Movenet perfect for applications such as real-

time motion tracking in fitness use cases. 

 

6.5 Posenet 

 

Posenet developed and researched by Kendall et al. 

[6], is a pose estimation model which heavily makes 

use of convolutional neural networks and is a result 

of transfer learning using GoogleLeNet [26] as a base 

model. 

 

The authors altered the original model by replacing 

all 3 softmax layers with regressors to output a 7-

dimensional vector. Before the regressors, a fully 

connected layer of size 2048 is inserted to obtain a 

feature vector to be used in the latter stages. 

 

An in-house dataset was used consisting of images 

from 5 scenes named Cambridge Landmarks from 

training and testing. 

 

6.6 BlazePose 

 

Blazepose, [9] developed by Google researchers, is a 

new lightweight model built for inference on edge 

devices similar to Movement. The model consists of 2 

main sections, the detector and the estimator. The 

detector finds the human in the frame and returns a 

cropped portion of the original image to the 

estimator. The estimator then outputs the 33 

localised keypoints.  

 

The estimator uses a heatmap for training, but not 

during inference to reduce latency (time taken for 

inference). BlazePose is based on an encoder-

decoder architecture to obtain heatmaps for the body 

joints.  The architecture starts with a heatmap and 

offset maps; these two are used only in training and 

removed during inference. The model also uses skip 

connections to send information of high-level 

features from the shallow layers of the network to 

the latter layers. 

 

BlazePose achieved a score of 97.2% on a re-

annotated version of the AR dataset using the 

PCK@0.2 metric. Just like Movenet, BlazePose is built 

for deployment and inference on edge devices that 

do not have the hardware capabilities to run larger 

models. This on-device inference leads to lower 

latency and makes the model suitable for fitness-

related applications where real-time analysis is 

required. 

 

7 APPLICATIONS 

7.1 Activity recognition 

 

Activity recognition tracks the body for a certain 

amount of time to detect the action or activity being 

performed by the individual.  

 

Some use cases where activity recognition can be 

applied include monitoring of ill or old age patients. 

In the event of the patient falling over, the model can 

alert the appropriate people about the incident.  

 

Activity recognition can also be used in fitness 

applications such as workouts and dancing. 

Monitoring the pose of individuals in the frame 

allows for analysis and correction of posture in 

activities such as exercises and dance, where 

improper practice can lead to injuries. 

 

7.2 HPE in CGI and Animation 

 

Animation and computer graphics use HPE to pre-

determine the pose of the actor on whom the 

animations are to be applied. Instead of manually 

applying the graphics to the actor, using a motion 

tracking bodysuit, the movement and posture of the 
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individual can be tracked and graphics will be fitted 

accordingly. 

 

7.3 Motion tracking for gaming consoles 

 

Most notably, the Xbox Kinect console has a 

collection of games that require the player to move in 

real-time, using a motion sensor provided by 

Microsoft. The user is required to perform actions 

such as swinging a bat, jumping, etc. These actions 

are detected by pose estimation models in the Kinect 

module, allowing for more interactive games that 

involve physical exercise. 

 

8 FUTURE RESEARCHES 

 
Most state of the art (SOTA) models and solutions to 

HPE are data-hungry and require expensive 

hardware to perform training and inference. This 

limits the application of HPE to servers and cloud 

computing machines that possess the appropriate 

hardware for the task. Extending the previous point, 

more recently, models optimised to be run on edge 

devices (hardware such as phones, laptops and 

wearable devices which can not perform heavy 

computation). Some models mentioned in this survey 

[9], are examples of development in this area of HPE. 

To allow the full potential of HPE to be unlocked and 

applied in real-world applications, further 

optimization and research can be conducted in the 

coming years. 

 

8. CONCLUSIONS 
 
In this survey, we provided a review of 2D and 3D 
HPE and the various other classifications that exist in 
current solutions such as single/multiple poses and 
top/bottom-up approaches. Popular datasets used as 
benchmarks are described, and later on, models and 
their performance on these benchmarks are 
mentioned. The most recent research area in this 
field pertains to models being optimised for 
deployment on smaller edge devices such as mobiles 
and wearable gear. Despite a large number of 
researchers working in this domain, developers still 
face many challenges in this field. We hope that 

future research helps humanity use the full potential 
of HPE in critical applications. 
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