IDENTIFYING AND ASSESSING WASTE MANAGEMENT INFLUENCE FACTORS AND CHECK LEVEL OF PERFORMANCE FOR BUILDING CONSTRUCTION PROJECT

DALBEER SINGH¹, ADITYA KUMAR AGARWAL²

¹M.tech student of Madhav Institute of Science and Technology, Gwalior ²Assistant Professor, Dept. Of Civil Engineering, Madhav Institute of Science and Technology, Gwalior ***

Abstract - Environmental sustainable development has major target for building construction project, and waste management is very important in construction industry. India has promoted the many policies to control waste generation but still ineffective to waste management for building construction project. The lack of quantitative evaluation methods and good guidance by project practitioner are Due to lack of knowledge and experience .the main aim purpose of this research to identifying and assessing influence factor and check the level of performance for building construction project. In this paper 59 factors were identified and all the factors are divided into five category such as man power, material and equipment, construction method management practice, industry policy. All the factors are help to waste minimize and recycling for building construction site and also help to develop waste management method for particular area of construction site. Every day life construction industry increases, this method effectively help to minimize and recycle construction waste and check the level of performance for building construction project. This tool gives the result in the form of total index

Key Words: Construction Management, Sustainable Environment, Waste Management, Recycling and Reuse.

1. INTRODUCTION

Resource depletion, global warming, climate change are caused due to excessive waste generation by the construction industry. These wastes are hazardous to our environment and human beings, the pollution which are generated by building construction industry such as air, dust, noise pollution and construction and demolition waste generation. Many countries try to minimize this waste by promoting many policies and awareness program in building construction site. However, most building environmental assessment is focused on the level of performance resulting from building design strategy. They still fail to cover environmental issues related to waste generation; these are not able give to proper guidance to control waste generation. The objective this research paper to identifying influence factor and development of

assessment tool and check level of performance for building construction project for Gwalior (mp) area, it is a case study for particular area. In this paper six major sections are involved such as introduction section, methodology, overview, questionnaire survey, question response format sheet and score collection, calculation of total index. The country like India growth of population is high, this increase of population are also responsible for the rapid industrialization of building construction project, people migrated from village to urban area, surrounding urban area which is used for agriculture purpose right now, which is covered by building construction industry. Due to this rapid industrialization waste generation increases day by day and natural resources are depleted, this is uneconomical for our environment. We have to need preinstallment of recycling and minimizing waste management equipment. we are discuss about area like Gwalior, here area of availability is more for dumping construction, we can throw the waste easily because area of availability is more. But in future after 10-20 year all the area covered by multistory high rise building in that situation, we have no space available for throwing of the waste in that situation this research very effective in waste minimization and recycling for building construction project. By this method, we can check the level of performance for building construction project. And improve the level of performance by change the methodology, equipment, material and policies

1.1 OBJECTIVE

- Identifying waste management influence factors same through the questionnaire survey.
- Evaluation of waste management factors by total index formula through which suitability of that factor are analyzed.
- Check the level of performance different building construction sites in Gwalior areas.
- Reflecting trend or cause and effect relationships.

1.2 METHODOLOGY-

- Technical approach and management policies and face to face interview were conducted with construction site managers. Almost the high rise residential building area located near Gwalior, India were targeted for this investigation with these sources a preliminary listing of factors that might improve the waste management practice has developed.
- The factors were finalized and categorize into five areas including manpower, construction method, material and equipment, management practice and industry policy.
- It's a case study for a particular area all these identified waste management influence factors help to assess the waste management performance at construction site also helpful to reduce, reuse to individual construction sites.
- Complete set of 59 factors were identified these all the factors were divide into five categories. These factors are those whose help to recycling, minimize and reuse the waste management.
- These all 59 factors are listed in chart; these factors are distributed among all the construction site of Gwalior, India. In this paper all the sites are consider Gwalior and surrounding area.
- To investigate the magnitude of all the 59 factors, the questionnaire survey has been conducted. In this questionnaire survey identified influence factors are distributed among the entire individual construction site and respondents are requested to select the best option between 0 and 10 in terms of relative importance. A score of "10" represent the most significance on decreasing waste and increasing recycling whereas a score of "0" represent no influence on decreasing waste and increasing recycling
- The survey participants were selected among all the construction site of Gwalior area. These all site specially selected high rise building construction project. Entire 59 influence factors were distributed individual sites of Gwalior area these factors are distributed more than 60 site, 40 respondent are give the response score in between 0 and 10, out of 40 site manager, 9 project manager are give unbelievable reading data. They excluded from them. Only 31 responses are valid for calculation point of view. The average work experience of the individual respondents turned out to the approximately more than six years.

- After collection of valid response sheet from different building construction site
- Calculation of mean and standard deviation of all the waste management factors by the help of Microsoft excel and select optimum number of waste management influence factor.
- After selection of optimum number of waste management influence factors, entire factors have converted into question response formats.
- Find out total index value by the empirical equation and relate with waste management performance for building construction project.

2. IDENTIFIED INFLUENCE FACTORS

٨	S.N	Factor	Factor			
Category	0.	Name				
	1 A1		Commitment of contractor's			
			representative of a site			
	2	A2	Appointments of laborers only for			
			wastes disposal			
ER	3	A3	Organization breakdown structure			
M			involved in waste management			
MANPOWER	4	A4	Cooperation of subcontractor's			
AN	5	A5	Education of the contractor's staff (
Μ			engineer's)			
	6	A6	Education of the subcontractor's staff			
			(laborer's)			
	7	A7	Preventing waste of material by			
	-		laborer's			
	8	B1	Minimizing rework on a construction			
	0		phase			
	9	B2	Design and construction using			
	10	DO	standardized materials			
	10 B3		Collecting packed materials back by			
Γ	11	B4	supplier's Prefabrication materials			
IIA						
ER.	12	B5	Use of recycle materials			
MATERIAL	13	B6	Preventing easily fragile materials			
Σ	14	B7	from being used			
	14	D/	Minimizing loss of material during carrying and storing			
	15	B8	Preventing from excess order			
	10	DO	material's			
	16	B9	Recycling of temporary materials			
	10	70	used once in general			
	17	C1	Setting up separated bins by waste			
	1/	UI.	type			
IOI	18	C2	Providing bins for collecting waste for			
TF	10	02	each subcontractor's			
		Sorting out individual waste by type				
			from mixed waste			
L						

//International Research Journal of Engineering and Technology (IRJET)

e-ISSN: 2395-0056 p-ISSN: 2395-0072

IRJET	Volume:	09	Issue:	04	Apr 2	2022

www.irjet.net

	20	C4	Setting up temporary bins at each
			building zone
	21	C5	Notice recyclable materials to
			laborers
	22	C6	Storing waste at an easily accessibly
	22	67	areas
	23	C7	Designate a place of storing waste in early stage of construction
	24	C 8	Notice on waste type responsible staff
	21	co	etc. to waste bins.
	25	C9	installing equipment for recycling in a
			site.
	26	C10	informing methods to deal with rest
			waste after recycling
	27	C11	installing an information board to
			notice categories for separating waste
	28	C12	preventing mixing waste with soil
	29	C13	prohibiting use of pipes for dumping
<u> </u>	30	D1	down mixed waste rules on dealing with wastes by waste
	30	וע	generators
	31	D2	contractual clauses for
	51	02	subcontractor's in dealing with
			wastes
	32	D3	positive incentive for decreasing or
			recycling by subcontractors
	33	D4	keeping a record about waste
			management (amounts, kinds, etc
	34	D5	contractual clauses about the latest
			method for a waste disposal agency to
	35	D6	treat waste shortening a period of collecting
	55	00	wastes in a site
T	36	D7	establishing a waste management
EN			plan in early stage of construction
EM	37	D8	checklist on executive detailed waste
AGEMENT			management plan
MAN	38	D9	shortening a period of taking waste
M			out of a site
	39	D10	check list for document to writing out
	40	D11	and submit
	40	דות	deciding an objective rate for recycling waste
	41	D12	confirming capability of a firm which
			treats the waste
	42	D13	keeping a record about recycling
			waste
	43	D14	informing recycling methods and uses
			in a site
	44	D15	checking a route periodically for a
	4 -	D14	waste agency to carry wastes
	45	D16	checking the last status for a waste
	46	E1	agency to treat wastes obligatory cost estimating cost for
OLI CY	40	БТ	waste treatment in a bill of quantity
P(C	47	E2	incentive in bidding for a contractor
L	- '		

		having a plan about decreasing waste
		and increasing recycle
48	E3	tax free for equipment treating waste
49	E4	supervising waste management by a
		residential officer
50	E5	enhancing punishment of illegal
		treatment of waste
51	E6	establishing criteria for quality and
		safety of recycled materials
52	E7	simplifying legal procedure to install
		equipment treating waste
53	E8	constructing marketing structure for
		recycled material
54	E9	activating development of technique
		to treat recycled waste
55	E10	raising charge for mixed waste
56	E11	changing the subject of a legal report
		from an owner to contractor who
		manages waste in practice
57	E12	reducing charge for separated waste
58	E13	data base management system for
		constructing waste
59	E14	managing data for waste by a head
		office

Table-1 Identified waste management factors

2.1 **QUESTIONNAIRE SURVEY:**

To investigate all 59 factor on their relative importance based on questionnaire survey has been conducted. In this survey, the response sheet in which all the factor mentioned are distributed at various construction sites of Gwalior area and respondent are requested to select the best preference in between 0 to 10 .if response 0 is given by respondent it means that this factor has no significance for waste minimization and recycling for a particular building construction project. If response 10 is given by respondent it means that this factor has more significance to waste minimization and recycling for particular building construction project. The survey participants are selected.

2.2 ASSESSMENT OF MEAN AND STANDARD **DEVIATION DIFFERENT FACTORS**

RANK	FACTOR IDENTIFICATION	MEAN	STANDARD DEVIATION
1	B2	8.0645	.9638
2	A1	7.5320	1.4314
3	B1	7.4190	1.5763
4	A3	7.0906	1.2980
5	С7	6.9033	1.6952
6	E1	6.9032	1.9554
7	A5	6.8870	1.2761
8	E4	6.8484	1.1772
9	E3	6.8387	1.6349

Page 361

International Research Journal of Engineering and Technology (IRJET)

IRIET Volume: 09 Issue: 04 | Apr 2022

www.irjet.net

10	B3	6.7581	2.2318
11	С8	6.6774	1.8865
12	B8	6.6451	1.7136
13	B7	6.5484	1.7528
14	D5	6.5419	1.2252
15	C12	6.5161	2.0227
16	E14	6.4354	1.7259
17	D6	6.4354	1.5955
18	D3	6.3871	1.7209
19	C1	6.3709	1.5756
20	E2	6.3065	1.3334
21	D4	6.3063	1.5093
22	В9	6.2838	1.5038
23	A7	6.2580	1.7975
24	D9	6.2420	1.6425
25	D16	6.2419	1.7023
26	A2	6.2260	2.4570
27	C2	6.2258	1.7408
28	D1	6.2256	2.4961
29	C6	6.1935	1.5741
30	E11	6.1774	1.3137
28 29	D1 C6	6.2256 6.1935	2.4961 1.5741

TABLE-2 Mean and Standard Deviation

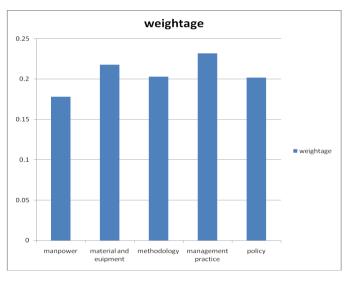
3. SELECTION OF OPTIMUM NUMBER OF WASTE MANAGEMENT INFLUENCE FACTOR

Optimum number of waste management influence factor can be selected by the calculation of mean, mode, standard deviation. In this process all collected waste management factors mean, standard deviation are calculate by the use of Microsoft excel, arranged all the factor as per rank order. Listed below in table, highest mean factor are written in top most level and also written standard deviation. Manpower category factors are listing in top ten. As such it can concluded that, management practice participation is critical in sustained. Industry policy factors also under top ten listing factor in waste management practice. On the basis of static analysis top five ranked factors were effectively identified as most significant in waste management.

- B2. Minimizing rework on construction phase
- A1. Commitment of contractor's representative at a site
- B1. Collecting packed material back by suppliers
- A3.co-operation of sub-contractors
- C7. Notice on waste type, responsible staff

By the static analysis result can simply imply an identified waste management factor in term of relative importance. It is noteworthy that highest scored factors have relatively low standard deviation. All the 59 factors were divided into five category and weight of each category were calculated.

3.1. WEIGHTAGE INDEX GRAPH OF ALL CATEGORY


Highest weightage category is management practice. The weight value is 0.28, material equipment, construction method, manpower are listed in descending order.

4. CONVERSION OF ALL FATORS INTO QUESTION **RESPONSE FORMATE**

Waste management tool as much power full when we have quantification approach. The entire 59 waste management factor are difficult manage. Top half of the factors are considered for waste management tool. These 30 factors are affectively assessing the level of waste management performance. All of the 30 factors, six factors belongs to policy category, policies are varies from industry to industry that's why all these factor belongs to policy category were excluded from question response format. Left over 24 factors were converted into question response format` these 24 factors are finalized for waste management tool. User subjected to select best option for each factor. For example

Is the contractor representative committed to waste in order to quality there are four option management based degree of commitment (a) strongly agree (b) somewhat agree (c) moderate agree (d) somewhat disagree (e) strongly disagree. All the finalized 24 waste management factors are converted into question response format. It is noteworthy that some of the factors have more than one question to be answer. Responses are collected different building construction for the calculation total index. Response score collected between 0 and 1. 0 is the minimum score and 1 is the maximum score for management factor, intermediate score are (0.5, 0.75 etc.)

These factor score are used for calculation of total index

WEIGHTAGE INDEX GRAPH-1

International Research Journal of Engineering and Technology (IRJET)

IRJET Volume: 09 Issue: 04 | Apr 2022

www.irjet.net

FACTOR IDENTIFICATIO N	QUESTION	RESPONSE OPTION	SCORE
A1	Is the contractor's representative committed to waste management?	A. strongly agree B. somewhat agree C. moderate D. somewhat disagree E. strongly disagree	1 0.75 0.5 0.25 0
A2	Are there any laborers solely in charge of wastes disposal?	A. yes B. no, worker on contractor side partly in change C. no worker on subcontract side partly in change D. none is designed	0.84 0.62 0.47 0.26
A3	Are subcontractors cooperative for waste management? Are wastes decreased by cooperation of subcontractors?	A. strongly agree B. somewhat agree C. moderate D. somewhat disagree E. strongly disagree A. strongly agree B. somewhat agree C. moderate D. strongly disagree	1 0.75 0.5 0 1 0.75 0.5 0
Α4	Is there an organization breakdown structure for waste management?	A. yes, well structured B. yes, informal C. no	0.87 0.72 0
A5	Is an education program for waste management	A. yes, periodical basis B. yes, once in while C. no	0.95 0.53 0

RESPONSE TABLE-3

5. RESULT AND ANALYSIS

It is a computer based waste management method. It is based on Microsoft excel, at first in this method. Input information like factor score, factor weight, and category weight are provided by us. Including project name, location and date of evaluation, factors response score are collected from face to face interview. Empirical relations are as follows

TOTAL INDEX =	
$\sum_{i=1}^{4} \left(\sum_{j=1}^{l} (\sum_{k=1}^{m} \mathbf{RSijk} * \mathbf{RWijk}) * \mathbf{FWij} \right) *$	CWI

Where RS_{ijk} =score of kth response for jth factor in ith category; RW_{ijk} =weightofkthresponseforjthfactorinithcategory(0< $RWijk \le l 0$);C W_i =weight of ith category (0 < CWi \le 10);

 FW_{ij} =weight of *j*th factor in *i*th category (0 < $FW_{ij} \le 10$);

l=number of factors in ith category; and= number of responses

For jth factor in ith category.

In quantitatively developing a measurable indicator, the system uses three different types of weights, including response, factor, and category. The computation for these weights is currently based on the industry survey and expert experience and knowledge. It is noteworthy; therefore, the tool results should be rigorously validated in terms of applicability and reliability of the outcome. Although the factors identified in this study come from a rigorous data collection, weight quantification falls short of extensiveness. One of the main reasons for this deficiency comes from the short history of familiarity to the environment in the construction industry compared to other issues of interest, such as theand cost savings.

By multiplying the option scores for each WMIF with the three types of weightings, the TI is easily obtained, and ranges from 0 to 1000

RESULT TABLE

category	fac tor	facto r scor e(a)	factor weigh t(b)	value(c= a*b)	sum of value(d =∑c)	categ ory weigh t(e)	categor y index(f= d*e)	total index(g=∑f)
	A1	3	18.18	54.54				
	A2	2	12.12	24.24				
man	A3	5	30.3	151.5	358.74	0.22	78.9228	
power	A5	3	18.18	54.54				
	A7	3.5	21.12	73.92				
	B1	2	14.81	29.62				
material	B2	3	22.22	66.66				
and	B3	3	22.22	66.66	1	0.26	62.0997	260.6 1
equipme	B7	2	14.81	29.62	238.85			
nt	B8	2	14.81	29.62				
	B9	1.5	11.11	16.665				
	C1	3	20	60		0.24	65.5968	
	C2	2	13.33	26.66				
construc	C6	3	20	60				
tion	C7	3	20	60	273.32			
method	C8	3	20	60]			
	C1				1			
	2	1	6.66	6.66				
	D1	2	14.28	28.56			8 53.9868	
	D3	1	7.14	7.14		0.28		
	D4	3	21.43	64.29				
manage ment	D5	1	7.14	7.14	192.81			
practice	D6	2	14.28	28.56				
	D9	2	14.28	28.56				
	D1 6	2	14.28	28.56				
	¥	-	21.20	20.00				

RESUL TABLE-4

RATING INDEX TABLE

INDEX	RATING	DESCRIPTION
RANGE		Rectangular S
801-1000	EXCELLENT	Waste management performance in
		this site is very effective in decreasing
		wastes and increasing recycling. Please
		keep attention to waste management.
601-800	GOOD	Waste management performance in
		this site is little effective in decreasing
		waste and increasing recycling. If you
		concern about weak part such as
		factor and category.
401-600	POOR	- .
		this site is ineffective in decreasing
		wastes and increasing recycling. Please
		perform factors such as categories and
		factor having strong influence.
0-400	BAD	Waste management performance in
0.00		
		-
401-600 0-400	POOR	Waste management performance in this site is ineffective in decreasing wastes and increasing recycling. Plea perform factors such as categories ar

RATING INDEX TABLE-5

The result of this thesis is calculated different sites of Gwalior. It is an average result of all the building construction sites of Gwalior. In this result, we are noticed that the result came in the range of 0-400. Waste management performance in this site is very ineffective in decreasing wastes and increasing recycling. Please establish or correct waste management plan of your site with referring this tool.

We can calculate total index for a specific site so that we can check the level of performance for building construction site.

6. CONCLUSIONS

- Its case study for Gwalior area related to construction waste management.
- Here two pronged approach were identified first one is the identification of waste management influence factor and other is to check the level of waste management performance for building construction project.
- We are mainly focused on the planning or design phase with little emphasis on construction phase, the performance of building highly affect environment damage and economic loss.

- Good Sincerity by project practitioner like laborers subcontractors and general contractors, engineers and project manager are more important in effective waste management.
- Questionnaire survey has been conducted which is helpful for selection of optimum number of waste management influence factors.
- Empirical formula of total index is used for calculation of total index value; these values can be related with the waste management performance for building construction project.

REFERENCES

[1] Bennett, M., and James, P. 1999. "The evolution of integrated environmental performance evaluation and reporting at Baxter International."

[2] Boss ink, B., and Brouwer's, H. 1996. "Construction waste: Quantification and source evaluation." J. Constr. Eng. Manage.

[3] Department for Communities and Local Government DCLG. 2006. "Code for sustainable homes:

[4] Formoso, C., Soibelman, L., Cesare, C., and Isatto, E. 2002. "Material waste in building industry: Main causes and prevention. [5] Kim, J., Kim, J., Cha, H., and Shin, D. 2006. "Development of the construction waste management performance evaluation tool." Proc., 23rd Int. Symp. On Automation and Robotics in Construction, IAARC, Tokyo, 263–268.

[6] Seo, S., Aramaki, T., Hwang, Y., and Hanaki, K. 2004. "Environmental impact of solid waste treatment methods in Korea." Environ. Eng., 130(1), 81-89

[7] Tam, V., Tam, C., Yiu, k., and Cheung, S. (2006). Critical factors for environmental performance assessment (EPA) in the Hong Kong construction industry." Constr. Manage. Econom. 24, 1113-1123.

(8) WANG jia-yuan, KANG XIANG-PING. Study construction waste minimization. Journal of huazhong university of science and technology (urban science), 21(2004)26-27

(9) PANG yong-shi, yang li. Building rubbish reclamation management research. Building science, 22(2006)77-779

(10) Hee sung cha. Identifying and assessing influence factors on improving waste management. performance for building construction projects. Journal of construction engineering and management, 6(2009)647-656