
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 05 | May 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1295

A Survey on Distributed Transactional Memory System with a

Proposed Design for Parallel Processors

Dr.G.Muneeswari1

1Professor, School of Computer Science and Engineering, VIT-AP University, Amaravati, Andhra Pradesh, India

---***---

Abstract - The main aim of this review is to investigate on a
comprehensive hardware support to transactional computing.
In the modern technology many research work is going on
with respect to the transactional requirement like hardware
support, system software support and runtime environment
support etc., For the concurrency control in transactions, many
lock based synchronization methods have been evolved but
they are limited to the speed of the execution. A method which
can be proposed to an alternate to the lock based approach is
transactional memory which allows the transaction to execute
concurrently and later resolves the conflicts. This survey,
reviews several variants of transactional memory schemes and
two new design mechanisms are proposed for the
implementation of transactional memory.

Key Words: Transactional Memory, Cache Coherency,
Concurrency, Context Switching, Locking, Hardware
architecture

1. INTRODUCTION

In the modern world, mostly speculation-based transaction
processing and some programming language constructs and
system software changes provides an alternate solution to
the traditional concurrency control mechanisms. The
objective of this proposal is to investigate on development of
novel hardware architecture, related software
techniques/algorithms and their respective implementations
to support transactions on any concurrent environment as a
whole, and as a fine grained technique applicable for many
cores with course grain threaded, efficient distributed
systems.

In a nutshell, for the multiple patallel architectures and for
the multicore systems, inorder to provide concurrency
support, locking techniques are basically used which leads to
the complexity of the system software and overheads related
to performance metrics. The main issues proposed for
investigation are as follows:

 Investigation on hardware architectures for

deploying the Hardware Transactional Memory
leads to provide a best solution for concurrency
problems and a suitable alternate to locks.

 To compare the proposed HTM system with lock-

based systems from a performance and scalability
points of view.

 The proposed HTM shall be enhanced to take into
account issues like exception handling, paging and
context switching.

In this paper section 2 describes about literature survey
and section 3 elaborates on the proposed TM design.
Section 4 concludes the paper.

2. LITERATURE SURVEY

This section presents some previous approaches to
Transactional Memory as reported in the literature. The
section also highlights the drawbacks of those in reference to
the modern architectures. The actual representation of
transactional memory was first introduced by Herlihy and
Moss [1,4]. Their implementation was an extension to the
cache-coherence protocol and cache mechanisms used in
general-purpose architectures. The primary goal of this
model was to provide a mechanism for implementing atomic
operations with ease. However, this model imposes
restrictions on the size of the transaction and cannot survive
context switching.

Transactional Lock Removal (TLR) [2,5]: With the help of
this idea, the concurrency control mechanism using locks
can be freely executed without enabling locks. This can be
successfully completed irrespective of the existence of some
module conflicts or changes in the code or non-existence of
programmer. This model already incorporating all the
relevant features of current computing systems and its
associated features. The main advantage of this system is
scalability, extended programming features and
performance. Another major problem with the existing
critical problem solution is blocking behavior and that is
totally avoided in this transactional lock removal
mechanism.

 Speculative Lock Elision (SLE) [3,6]: This method mainly
focusses on multithreaded program execution. It is a
hardware based approach where unwanted serializability
using concurrent locks can be avoided in the execution
phase. One of the vital part of the execution of threads here is
that the read locks and write locks need not be obtained for
the proper functionality of the code. Some of the instructions
required for the concurrency control can be predicted and
various threads can be executed parallel or concurrently in a
critical section enforced by the similar locks. There is a
chance for the misprediction and this may be identified using

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 05 | May 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1296

traditional caching mechanism and it at all failure occurs
during transaction then rollback recovery mechanism will be
enabled. This mechanism can be implemented as part of the
micro architecture without any additional hardware or
software modifications.

Large Transactional Memory (LTM): This mechanism is an
extended version of Hardware Transactional Memory
(HTM) that uses cache memory for its implementation.
Inside the operating system code, a table is maintained
which will be filled up with all the transaction information.
The major disadvantage here is the physical or main memory
size is very small and that leads to the complexity with
respect to the detection of conflicts.

Unbounded Transactional Memory (UTM) [7]: The
disadvantage of LTM is eliminated in UTM in which the
transactions with context switches can be efficiently handled
here. Actually in the case of LTM, the transaction is limited
by the size of the physical memory but in UTM it is restricted
only by the virtual memory which can handle huge number
of transactions. Initially, if the transaction is not handled by
the physical address space, then it can be handled in the
thread virtual address space. The disadvantage of UTM is
that for certain transactions with I/O operations are not
supported.

Virtual Transactional Memory (VTM) [8]: It is an efficient
method which handles the transaction execution in both
hardware and software architecture module design. It
supports full implementation of cache overflows and also
handles transactional context switching. But this model does
not have any implementation model for system calls or
waited I/O or interrupts during the transaction execution.
All the nested transactions are identified with virtual
address space with an improved thrashing capabilities.

Transactional memory Coherence and Consistency (TCC)[9]:
This model incorporates atomic transaction and it is a basic
unit of concurrency and the transaction information is sent
as a message with a designated packet and this packet can be
broadcasted to the physical memory atomically into a large
block. Ideally, this method eliminates the requirement of the
traditional bus based coherence protocols. There may be
some problem associated with a simultaneous read and
write access to the shared data and this can be resolved
using rollbacks that make use of hardware mechanism. The
major problem here is the number of messages transferred
here is more and increases the bandwidth of the processor
messages.

Log-Based Transactional memory (LogTM) [10]: This
transactional memory mechanism will make the operation of
commit faster by updating the before image values in the log
maintained in the virtual memory. This enables the after
image value to be updated in the actual original place. This
method identifies the conflict by extending the MOESI
directory protocol.

Only commit operation will be handled in hardware but
abort operation will be handled in software only. The major
problem with this mechanism is other kind of I/O operation,
context switching and run time OS interactions can’t be
addressed. Unrestricted Transactional Memory (UrTM)[11]:
The major contribution in this model is a design that can
handle operating system calls, I/O operations of a
transaction in an efficient way. This mechanism handles two
types of transaction operation. One is restricted and another
one is unrestricted. These transactions can be implemented
on the hardware which makes the entire system faster. Each
process is permitted to execute only one unbounded
transaction and optimization [12] is achieved with respect to
the memory blocks. Serializability is incorporated on top of
the transaction.

Our proposed Goals try to address several key issues in
transactional memory system:

 To Design, implement and test Hardware
Transactional Memory (STM) systems that will
facilitate automatic program parallelization

 To Evaluate Hardware Transactional Memory
Performance on traditional hard-to-parallelize
applications (E.g., SPEC 2000 CPU INT, Splash,
Splash-2, etc.)

 Explore the opportunities brought by Transactional
Memory and study their impact on traditional
spectrums of parallelism

 Evaluating the fundamental approaches in

development of HTM platforms for the new class of
multi-core machines

 Building the support needed by the transactions in
hardware, compilation, library support, and the
interoperation HTM and STM systems

 Measuring the tradeoffs in handling overflow in
hardware vs handling in software. Fine grain
locking must be compared against HTMs and STMs
in this issue.

 Investigating what programming language
transactional constructs would best help in
programming, and what are the issues with their
implementation.

 Addressing the operating system challenges
(context switching, I/O, Interrupts) in HTM and
providing solutions for it

 Efficient workload creation that clearly identify the
advantages and disadvantages of providing TM
support at different layers of the
software/hardware stack

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 05 | May 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1297

 Integrating a TM system into a legacy system, such
that the user achieves at least the same level of
performance with a TM system as opposed to a
system without one

3. PROPOSED DESIGN

An RTL model for a simple Hardware Transactional
Memory with multi core support has been developed. In this
model we have essentially used a centralized directory based
MSI (Modified, Shared, Invalid) cache coherency protocol and
also the De-centralized MOESI (Modified, Owned, Exclusive,
Shared, Invalid) directory based cache coherency protocol is
used for conflict detection. The memory model for this simple
TM consists of L1 level Cache (local for every processor), a
common L2 level cache and a main memory.

Multicore System Design - I:

L1 level Cache with inclusive two-level cache hierarchy is
implemented using verilog HDL. L1 level cache is designed
with write-back, LRU replacement policy. The centralized
directory is built with the support of full bit vector scheme
sharer list. The L2 level cache is common for all the
processors and it uses round robin replacement policy. The
policy that is used for handling cache writes is Write-Back
policy. We Basically use the Write-back caching because it
saves the system from performing many unnecessary write
cycles to the system RAM, which can lead to noticeably faster
execution. Main memory is designed in such a way that it will
transfer only one word per clock cycle. It requires 20 clock
cycle latency for a block of 16 words. Apart from this memory
model a simple state machine based processor is designed
and it can handle one instruction at a time.

Automation using Perl:

Perl is used to generate the multicore design in verilog HDL
taking the parameters like Number of processors, Main
memory size, Cache block size, L1 size its set associativity
and L2 size its set associativity.

Multicore System Design - II:

L1 level cache is implemented with write-back, LRU
replacement policy. The De-centralized MOESI (Modified,
Owned, Exclusive, Shared, Invalid) directory based cache
coherency protocol is built with the support of full bit vector
scheme sharer list. The L2 level cache and interconnection
network yet to be implemented. Similar to design-I, a simple
state machine based processor is designed and it can handle
one instruction at a time.

Feeds from Simics:

The simulation framework uses Virtutech Simics [9], a full-
system functional simulator, accurately models the Ebony
processor. A cross compiler of the Ebony processor is used

to create the executables from a given 'c' code. From the
given C code with lock instructions, the support for our
SimpleTM interface will be added using Simics “magic”
instructions. A Python script captures the load/store
requests made by the program and outputs to a file. All other
instructions are treated as no-ops. The feeds obtained are
given as input to the processors in verilog. We are Currently
working on getting feeds per thread. The main important
work here is that we need to store information like thread
creation time.

Simple TM – Design Stage:

The Version management policy of transactional memory
will be implemented in verilog HDL. The Conflict detection
mechanism will extend the MSI cache coherence protocol to
detect conflict. Conflict resolving mechanism will be coded in
'e' verification language. Our Simple TM will not handle
overflows beyond L2 level. It is currently not supported with
context switch or system calls or I/O features. But Simple TM
design can be extended easily to handle overflows and
context switches at a later point. Process management and
memory management will be done using 'e' verification
language.

4. CONCLUSION

In this paper we have discussed the problems related to
traditional locking mechanism and the suitable solutions for
the earlier concurrent control mechanisms. The
comprehensive review of several Transaction Memory
concepts are discussed extensively and the merits and
demerits of every type of Transactional Memory systems are
analyzed in detail. Apart from the review of the transactional
memory concepts the major two designs of the system with
respect to cache coherence protocol and software design has
also been proposed which will be an efficient mechanism for
concurrency control that can handle I/O processing, context
switching and child process execution.

REFERENCES

[1] J. Zeng, S. Issa, P. Romano, L. Rodrigues and S. Haridi,
"Investigating the semantics of futures in transactional
memory systems", Proceedings of the 26th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, pp. 16-30, 2021.

[2] R. Filipe, S. Issa, P. Romano and J. a. Barreto, "Stretching
the capacity of hardware transactional memory in ibm
power architectures", Proceedings of the 24th Symposium
on Principles and Practice of Parallel Programming, pp. 107-
119, 2019.

[3] Z. Shang, J. X. Yu and Z. Zhang, "TuFast: A lightweight
parallelization library for graph analytics", IEEE 35th
International Con. on Data Engineering, pp. 710-721, 2019.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 05 | May 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1298

[4] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In ISCA
20, pp. 289–300, May 1993.

[5] R. Rajwar and J. R. Goodman Transactional lock-free
execution of lock-based programs. In ASPLOS-X: Proceedings
of the 10th international conference on Architectural support
for programming languages and operating systems, pages 5–
17, New York, NY, USA, October 2002. ACM Press.

[6] R. Rajwar and J. R. Goodman. Speculative Lock Elision:
Enabling Highly Concurrent Multithreaded Execution. In
Proceedings of the 34th International Symposium on
Microarchitecture, December 2001.

[7] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson,
and S. Lie. Unbounded Transactional Memory. In
Proceedings of the Eleventh International Symposium on
High Performance Computer Architecture, February 2005.

[8] Ravi Rajwar, Maurice Herlihy, and Konrad Lai.
Virtualizing Transactional Memory. In Proc. of the 32nd
Annual Intl. Symp. On Computer Architecture, Jun. 2005.

[9] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J.
D.Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis,
and K. Olukotun. Transactional Memory Coherence and
Consistency. In Proceedings of the 31st Annual International
Symposium on Computer Architecture, June 2004.

[10] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A.
Wood. LogTM: Log-based Transactional Memory. In
Proceedings of the 12th Symposium on High-Performance
Computer Architecture, Feb. 2006

[11] C. Blundell, E. C. Lewis, and M. M. Martin. Unrestricted
Transactional Memory: Supporting I/O and System Calls
within Transactions. Technical Report TR-CIS-06-09,
University of Pennsylvania, June 2006.

[12] Peter S. Magnusson et al. Simics: A Full System
Simulation Platform. IEEE Computer, 35(2):50–58, Feb.
2002.

