
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 295

IMAGE SEGMENTATION AND ITS TECHNIQUES

Kesha Chavda1, Gauraja Deo2, Sakshi Dhanu3, Prof. Mohan Bonde4

1,2,3 Information Technology, Usha Mittal Institute of Technology, Mumbai, India
4Assistant Professor, Usha Mittal Institute of Technology, Mumbai, India

---***--
Abstract— In digital image processing and computer
vision, image segmentation is a process that involves
separating a wide variety of images into various
segments. The goal of this procedure is to simplify and
improve the representation of an image. The role of
image segmentation is very important in image
processing. The partitioning of an image into multiple
segments makes it easier for further process. Thus,
after completing the operations, the image will be re-
joined. Segmentation increases the accuracy of
recognizing the object in an image and reduces the loss.
Semantic segmentation and Instance segmentation are
the types of image segmentation established on the
problem we use image segmentation.

Index Terms— LSTM, SVR, Linear Regression,
Sentimental Analysis, Stock Market Prediction

I. INTRODUCTION

An image contains a lot of useful information.
Understanding the image and extracting information from
the image to accomplish something is an application of
digital image technology. Therefore, the start in
understanding the image is Image Segmentation. In
practice, it’s often not inquisitive about all parts of the
image, but just for some certain areas which have identical
characteristics. Image segmentation is a vital basis for
image recognition. It is based on the group to divide an
input image into a number of the same nature of the group
in order to obtain the area in which people are interested.
And it’s the idea behind Image Analysis and understanding
of Image Feature Extraction and Recognition. Image
Segmentation is a way to partition an image into numerous
segments (subgroups) that help in reducing the intricacy of
the image, hence making the analysis of the image easier.
Various algorithms are used to allocate a certain set of
pixels together to form an image. We are basically assigning
labels to the pixels by doing so. Pixels with the same tag fall
under a category where they have some or the other thing
familiar in them. Using these labels, we are able to specify
boundaries, draw lines, and separate the foremost required
objects in a picture from the remainder of the not-so-
important ones.

II. PROPOSED SYSTEM

The aim of this project is to compare various Image
Segmentation techniques with Machine Learning, using

OpenCV, NumPy, TensorFlow, Keras, Scikit-Image, Python
Image Library (Pillow/PIL), and other python libraries, that
would help detect and identify the objects present around
one’s surroundings and compare their results.

III. RELATED WORK

 In [1], the K-mean technique was used to implement image
segmentation on the image. An RGB image was transformed
into l*a*b* colour space because the RGB image was very
large. They concluded that in the K-mean algorithm, the
number of clusters was very important. If the number of
clusters was very high or very low, then the result was not
so good. K-mean showed every cluster in a new window,
and it made it easier to analyse the image for further
information. In Köhler’s method [2], Adaptive thresholding
was one of the most frequently used techniques in many
applications because it was fast to evaluate and when
merged with previous filters, it gave sturdy decision rules
for pattern recognition. In [3], the proposed segmentation
system provided a complete solution for both unsupervised
and supervised segmentation of colour images built on
neural networks. In the system, unsupervised segmentation
was implemented by SOM-based colour reduction and SA-
based colour clustering. The supervised segmentation was
achieved by HPL learning and pixel classification. The
system proposed in [4], presented and compared different
criteria to optimize segmentation parameters, when
examples are available. They also exposed another way to
take advantage of ground truth, in changing the data space
before applying the segmentation algorithm. It was shown
that using this knowledge to guide the segmentation
enables to produce better results, even better than
manually produced segmentation by an expert. The paper
[5] mainly focused on the study of the soft computing
approach to edge detection for image segmentation. The
soft computing approaches namely, fuzzy-based approach,
Genetic algorithm-based approach, and Neural network-
based approach were applied on a real-life example image
of a nature scene and the results showed the efficiency of
image segmentation. In [6] they proposed a conceptually
easy, pliable, and general framework for object instance
segmentation. Their approach efficiently detected objects in
an image while at once generating a high-quality
segmentation mask for each instance by using Mask R-CNN.
Mask R-CNN extends Faster R-CNN by appending a branch
for predicting an object mask aligned with the existing
branch for bounding box recognition. The paper [7]

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 05 | May 2022 www.irjet.net p-ISSN: 2395-0072

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 05 | May 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 296

proposed that the histogram thresholding was proposed to
enhance image segmentation. Thresholding of the final
histogram is done relatively easy with the definition of a
low pass filter and the amplification and attenuation of the
peaks and valleys respectively or the standard deviation of
the presumed Gaussian modes.

IV. IMPLEMENTATION

1. Region-based Segmentation

We started our implementation by installing and importing
some very important modules namely NumPy, Matplotlib,
Scikit-image, TensorFlow, Keras and OpenCV.

We then imported the Mask-RCNN or the MRCNN model.
And then we imported the Coco dataset. COCO signifies
Common Objects in Context. It is wide-ranging object
detection, segmentation, and captioning dataset. It presents
a thorough statistical analysis of the dataset in comparison
to PASCAL, ImageNet, and SUN. And it also provides
baseline performance analysis for bounding box and
segmentation detection results. We then defined the path
for the pretrained weights and the images on which we
performed the segmentation.

We then created an inference class that was used to infer
the Mask R-CNN model. The inference is the method of
taking a model and implementing it onto a machine, which
will then process inbound data to look for and classify
whatever it has been trained to perceive. The inference is
the step in which a trained model is used to foresee the
testing.

Fig. 1.1: Model Configuration

We can see the various specifications of the Mask R-CNN
model that we have used. The backbone is Resnet-101.
ResNet, is an ideal neural network used as a backbone for
various computer vision tasks.

ResNet-101 is a convolutional neural network that
is 101 layers deep. The pretrained network can classify

images into many groups, such as keyboard, mouse, pencil,
and many animals. As a result, the network has learned rich
feature representations for a variety of images. The
network has an image input size of 1024-by-1024.

The mask shape that will be restored by the model
is 28X28, as it is trained on the COCO dataset. And we have
an overall 81 classes (including the background). We can
also see various other statistics as well, like the input
shapes, the Number of GPUs to be used, and Validation
steps, among other things.

Fig. 1.2: COCO classes

Next, we created our model and loaded the pretrained
weights. The model is pre-trained on the COCO dataset. This
dataset includes overall 80 classes (plus one background
class) that you can detect and segment from an input image
(with the first class being the background class). We then
defined the classes of the COCO dataset which will assist us
in the prediction phase.

A random image was loaded and then the objects were
detected within that image. An abounding box was created
around each object and each object was identified correctly
with great accuracy.

Fig. 1.3: RCNN Output

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 05 | May 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 297

2. Thresholding-based Segmentation

A. Simple Thresholding

We started off the implementation by importing a few
modules: NumPy, matplotlib, and Skimage. We then loaded
the image and displayed it.

We want the pixels belonging to the shapes to be “on,”
while turning the remaining pixels “off,” by setting their
colour channel values to zeros. The skimage library has
several different methods of thresholding. We started
with the only version, which involves a crucial step, i.e.,
human input. Specifically, during this simple, fixed-level
thresholding, we must provide a threshold value t. We
then loaded the original image, converted it to grayscale,
and de-noised it.

Grayscale images contain pixel values within the range
from 0 to 1, so we are trying to find a
threshold therein closed range and the geometric shapes
are “darker” than the white background so, a method to
work out a “good” value for t is to refer the histogram of
the image and inspect to identify what grayscale ranges
correspond to the shapes within the image or the
background. Since the image features a white background,
most of the pixels within the image are white. This
corresponds nicely to what we see within the

histogram: there is a peak near 1.0.

If we might wish to pick the shapes and not the
background, we would like to show off the white
background pixels, while leaving the pixels for the shapes
turned on.

Fig.2.1: Plotting Histogram of the grayscale and de-noised
image

So, we should always choose the value of ‘t’ somewhere
before the massive peak. So, we chose t as 0.9. To apply the
threshold, we used the comparison operators to make a
mask. We want to show “on” all pixels which have values
smaller than the threshold, so we use the less than operator
and the operator returns a mask. It has just one channel,
and every one of its values is either 0 or 1. The areas where
the shapes were within the original image are now white,
while the remainder of the mask image is black. We can
now apply the binary mask to the original-coloured image
and what we are left with is only the coloured shapes from
the original image.

Fig. 2.2: Applying binary mask and showing the foreground

B. Automatic Thresholding

As ahead, we started off by importing the same modules.
We also loaded the image and displayed it. We also used the
Gaussian blur to denoise the image and colluded a
histogram of the denoised image. The histogram has a
significant peak around 0.2 and an alternate, lower peak
veritably near1.0. So, we will say that this image may be
a good candidate for thresholding with Otsu’s system. The
Otsu’s system finds a threshold value linking the 2 peaks of
a grayscale histogram.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 05 | May 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 298

Fig. 2.3: Blurring, de-noising the Image, and plotting its
Histogram

We've automatic thresholding strategies that can determine
the threshold automatically for us. One similar system is
Otsu’s system. It's particularly useful for situations where
the grayscale histogram has two or further peaks that
resemble the background and objects of interest.

The Otsu function from the Skimage library can be used to
ascertain the threshold automatically through Otsu’s
method. Also, comparison operators can be used to apply it.
For this image, the estimated threshold value is0.4113. Now
we can produce a binary mask. As we've seen ahead, pixels
above the threshold value are going to be turned on, and
those below the edge are going to be turned off. Eventually,
we use the mask to choose the focus.

Fig. 2.4: Applying binary mask and showing the forepart

3. Clustering-based Segmentation

A. K-means Clustering

We started off the implementation by importing a few
modules namely NumPy, MatplotLib, and OpenCV. We then
read the image and transformed it to an RGB image. We
then organised the data for the K-Means process. The image
was a 3-dimensional but to utilize k-means clustering on it
we required to reform it to a 2-dimensional array. We used
the NumPy reshape() function for this.

We designed a criterion for the algorithm to stop
executing, which will occur if 100 iterations are executed or
the epsilon (which is the required accuracy) inclines to
85%. We then performed the k-means clustering with total
number of clusters as 3, and random centres were
randomly chosen for k-means clustering. We then
converted the data into 8-bit values, reshaped the data into
the original image dimensions, and plotted it.

Fig 3.1: Image after K-Means, k=3

Fig 3.2: Image after K-Means, k=6

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 05 | May 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 299

B. Fuzzy C-means Clustering

In Fuzzy - c means clustering we started off the
implementation by importing a few modules namely
NumPy, MatPlotlib, PIL, Skimage, Skfuzzy, and
Google.Collab.Patches and OpenCV. We then read the image
and transformed it to an RGB image.

The image was a 3-dimensional but to utilize k-means
clustering on it we required to reform it to a 2-dimensional
array, similar to k means clustering. We used the NumPy
reshape() function for this. We used the transpose function
to focus the cluster prediction based on the colour pixels
which is RGB format rather than other features.

Fig. 3.3 Image after applying Fuzzy C-means, k=6

We then organised the data for the Fuzzy-c means
algorithm. We created a change_color_fuzzycmeans()
function to predict the features of particular pixels and
append them to an array.

We then performed the fuzzy-c means clustering
with a number of clusters defined as 6, and various other
parameters were chosen for fuzzy-c means clustering.
Finally, we reshaped the finalized data into the original
image dimensions and plotted it.

Fig. 3.4: Image after applying Fuzzy C-means, k=10

4. Edge-based Segmentation

A. Gradient-based Segmentation

Under Gradient-based segmentation, we first implemented
the Sobel operator followed by the Prewitt Operator. We
started off the implementation by importing a few modules:
NumPy, MatplotLib, OpenCV, and PIL.

We then loaded the image and converted it to grayscale. We
then rounded the pixel values to their nearest integers, in
this case, 0s and 1s. We then assigned variables h, w to the
image’s respective height and width. And defined the Gx
and Gy kernels.

Fig. 4.1: Sobel Kernel

Fig. 4.2: Prewitt Kernel

Then by using loops, we applied both the horizontal and
vertical filter to the image. And, with the new Gx and Gy
values, we calculated the gradient magnitude and displayed
the image.

Fig. 4.3: Output image after applying Sobel filter

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 05 | May 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 300

Fig. 4.4: Output image after applying Prewitt filter

B. Gaussian-based Segmentation

Under Gaussian-based segmentation, we first implemented
the Laplacian operator followed by the Canny Operator. We
started off by importing the cv2 and MatplotLib modules
and reading the input image. We then applied the Gaussian
filter to denoise the image and converted the de-noised
image to grayscale. Using the in-built Laplacian and Canny
filters, we detected the edges.

Fig. 4.5: Output image after applying Laplacian filter

Fig. 4.6: Output image after applying Sobel filter

V. CONCLUSION

We implemented 4 types of Image segmentation techniques
i.e.

Region-based segmentation where we learned how to use
Mask R-CNN to perform instance segmentation. Contrary to
object detection, which only gives you the bounding box (x,
y)-coordinates for an object in an image, instance
segmentation takes it a step further, complying with pixel-
wise masks for each object. By applying instance
segmentation, we actually segment an object from the input
picture. One of the most prominent applications of region-
based segmentation is objection detection and recognition.

Thresholding-based segmentation is used to convert a
multilevel/grayscale image into a binary image. The
advantage of acquiring first a binary image is that it
minimizes the complexity of the data and simplifies the
process of recognition and classification. The binary images
acquired by thresholding are held in two-dimensional
NumPy arrays as they need just one colour value channel.
they're Boolean, and accordingly contain the values 0 (off)
and 1 (on). Thresholding-based segmentations are used in
cases where the foreground needs to be separated from the
background, therefore, they are mostly used for object
detection.

Clustering-based segmentation during which we used (a) K-
means algorithm which is an iterative algorithm that tries
to divide the dataset into K pre-defined clear non-
overlapping subgroups (clusters) where each data point
belongs to just one group. It aims to form the intra-cluster
data points as alike as possible while also keeping the
clusters as contrasting (far) as possible. (b) Fuzzy-C means
an algorithm that works by assigning membership to each
data point corresponding to each cluster centre on the basis
of the distance between the cluster centre and the data
point. The more the data is nearby to the cluster centre, the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 05 | May 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 301

closer its membership is close to the precise cluster centre.
Clustering-based segmentation are primarily used for
pattern recognition and data analysis.

Edge-based segmentation remits to the process of
identifying and locating sharp discontinuities in an image.
The discontinuities are instantaneous changes in pixel
intensity that distinguish the boundaries of objects in a
scene. In this technique, we implemented the Sobel
Operator, Prewitt Operator, Canny Operator, and Laplacian
of Gaussian. From the experiment performed, it was
observed that the Canny result is the superior one when
compared to the other detectors for the selected image
since different edge detectors work better under different
conditions. Edge-based segmentation techniques are used
where finding out edges is important such as fingerprint
sensors.

VI. REFERENCES

[1] B. Tanwar, R. Kumar, and G. Gopal, ”Clustering
Techniques for Digital Image Segmentation”, vol. 7, no. 12,
pp. 55–60, 2016.

[2] Ralf Kohler, “A segmentation system based on
thresholding, Computer Graphics and Image Processing”,
Volume 15, Issue 4, ISSN 0146-664X, 1981.

[3] Guo Dong and Ming Xie, ”Learning for image
segmentation based on neural networks,” in IEEE
Transactions on Neural Networks, vol. 16, no. 4, pp., July
2005.

[4] I. Levner and H. Zhang, ”Classification-Driven
Watershed Segmentation,” in IEEE Transactions on Image
Processing, vol. 16, no. 5, pp., May 2007.

[5] N Senthilkumaran and Rajesh, Reghunadhan, “Edge
Detection Techniques for Image Segmentation - A Survey of
Soft Computing Approaches”, International Journal of
Recent Trends in Engineering, November 2007.

[6] Kaiming He, Georgia Gkioxari, Piotr Doll´ar, and Ross
Girshick,”Mask RCNN” ,IEEE International Conference on
Computer Vision (ICCV), 2017.

[7] P.Daniel Ratna Raju and G.Neelima, ”Image
Segmentation by using Histogram Thresholding”, 2012.

[8] K. Simonyan and A. Zisserman, ”Very deep convolutional
networks for largescale image recognition”, 2015.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun,
“Deep Residual Learning for Image Recognition”, December
2015

