
          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 09 Issue: 05 | May 2022              www.irjet.net                                                                        p-ISSN: 2395-0072 

  

© 2022, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 3398 
 

Optical Recognition of Handwritten Text 

Soham Bhagwat1, Pratik Dharu2, Abhishek Dixit3, Bhadrayu Godbole4 

1,2,3,4Dept. of Computer Engineering, P.E.S. Modern College of Engineering, Maharashtra, India 
---------------------------------------------------------------------***---------------------------------------------------------------------

Abstract - The project focus on the creation of OCR software 
for the off-line recognition of handwriting. OCR programs can 
recognize printed text with nearly perfect accuracy. The 
recognition of handwriting is harder due to the many different 
styles and inconsistent nature of handwriting. Handwritten 
text recognition (HTR) is an open field of research and a 
relevant problem that helps automatically process historical 
documents.   

In recent years great advances in deep learning and computer 
vision have allowed improvements on document and image 
processing including HTR. Handwritten text recognition plays 
an important role in the processing of vital information. 
Processing of digital files is cheaper than processing 
traditional paper files even though a lot of information is 
available on paper.  

The aim of an OCR software is to convert handwritten text into 
machine readable formats. Despite such advances in this field, 
little has been done to produce open-source projects that 
address this problem as well as methods that utilize graphical 
process units (GPUs) to speed up the training phase.  

Key Words: OCR, HTR, GPU, CNN, BRNN, CTC, DIA, MRZ 

1. INTRODUCTION 

Optical Character Recognition (OCR) deals with recognition 
of different characters from a given input that might include 
an image, a real time video, or a manuscript / document. By 
using OCR, one can transform the text into a digital format, 
thus allowing rapid scanning and digitization of documents 
in physical format as well as real time text-recognition (in 
case of videos). Similarly, this interpretation of OCR 
methodology involves pre-processing of input, text area 
detection, application of the best pre-trained models and 
finally, detection of text as an output. All of this is made 
possible with an offline software UI compatible with a 
Windows operating system.  

1.1 Problem Definition and Objectives 

To develop Optical Character Recognition (OCR) software 
for the recognition of handwriting using following 
algorithms: 

 - CNN  

 - BRNN 

 - CTC 

1.2 Project Scope 

Presently, OCR is capable in reading screenshots which 
has facilitated the transferring of information between 
incompatible technologies. By using OCR for handwritten 
text manual entries on paper will also be legible to computer 
systems. Additionally, OCR can be used to perform Document 
Image Analysis (DIA) by reading and recognizing text in 
research, governmental, academic, and business 
organizations that are having a large pool of documented, 
scanned images. Thirdly, OCR can be used to automate 
documentation and security processes at airports by 
automatically reading the Machine-Readable Zone (MRZ) 
and other relevant parts of a passport. In this way, OCR has a 
scope in a wide range of applications. 

1.3 Limitations 

Having considered some of the benefits of using OCR 
software, it also comes along with its own shortcomings. To 
begin with, straight OCR without additional AI or technology 
specifically trained to recognize ID types will lack the 
requisite accuracy one needs to deliver a good user 
experience. Thus, structuring the extracted/detected data 
involves more than just OCR. Secondly, considering pictures 
of ID documents - these images usually need to be de-
skewed if the image was not aligned properly and reoriented 
so that the OCR technology can properly extract the data. 
Thus, OCR must combine with image rectification. Lastly, 
when there is glare or blurriness in the ID image, the 
probability of data extraction mistakes is significantly 
higher. Thus, glare and blur can cause mistakes.  

2. SOFTWARE REQUIREMENTS SPECIFICATION 

Mentioned below are some requirement specifications for the 
efficient working of the OCR software.  

2.1 Assumptions and Dependencies 

Before the commencement of the project, there are some 
assumptions that the project works with: 

- The input image selected by the user is in a jpg/png 
format. 

 

      - The text to be detected and recognized is in English. 

      - The input image provided by the user is upright. 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 09 Issue: 05 | May 2022              www.irjet.net                                                                        p-ISSN: 2395-0072 

  

© 2022, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 3399 
 

 2.2 System Features 

        - The user should be able to choose and upload an image 
of his choice through the file browser window upon clicking 
of the upload image button on the software UI. 
 
        - The user should be able to get instant output of the 
chosen image in the output window, and user should also be 
shown intermediate stages in output detection for better 
understanding upon clicking of the button successively on the 
software UI.         

2.3 External Interface Requirements 

 
        - The software is a single screen display where the user 
uploads an image as per interest. 
 
        - The image is cropped, resized and detected text output 
is displayed after the user presses indicated buttons. 
        
        - The software is designed to run on all PCs having at 
least a Windows 8 OS along with Python 3.9 installed. 
 
        - The frontend is managed using Tkinter library of Python 
while the backend is handled by os library of Python. 
 
        - The software runs on the saved model files that have 
been trained on a cloud infrastructure named Google 
Colaboratory. 
 
2.3 Non-functional Requirements 

        - The models have already been trained and optimized on 
Google Colaboratory GPUs beforehand, so the performance 
requirements of users have been reduced to a minimum 8 GB 
RAM along with a suitable quad core processor and minimum 
5 GB free HDD to make space for the whole software suite. 
 
       - With the above hardware specifications, a user takes 
around 30 to 50 seconds to get an output in the provided 
output window in the UI. 
 
        - As no user data is collected, there aren’t any security 
concerns. 
 
        - As this software is offline, there isn’t any vulnerability 
posed from the network side. 
 
        - The traces of data are deleted once the user closes the 
UI. 

     

 

 

3. SYSTEM DESIGN 

3.1 System Architecture 

 
Fig -1: System architecture diagram 

3.2 Use Case Diagram 

 

Fig -2: Use-case diagram 

3.3 Sequence Diagram 

 
Fig -3: Sequence diagram 

 

 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 09 Issue: 05 | May 2022              www.irjet.net                                                                        p-ISSN: 2395-0072 

  

© 2022, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 3400 
 

3.4 Component Diagram 

 

Fig -4: Component diagram 

 4. PROJECT IMPLEMENTATION 

4.1 Overview of Project Modules 

        - Document Detection: This module helps to detect 
document present in the image. It further helps in cropping 
the image by removing the background so that the only the 
document is visible and further resizes the image so as to 
make it usable by the other modules. 
 
        - Text-area Detection: This module scans over the areas 
in the image and makes a rough estimate of text areas that 
might be present in the image. It further draws bounding 
boxes over the detected text areas in the image. 
 
        - Text Recognition: This module scans over the bounding 
boxes in the image and gives a rough estimate of recognized 
text that might be present in the bounding boxes. This is done 
with the help of different pre-trained models. 
 
        - Output: This module stores the text that has been 
recognized from the image. It further generates an output in 
the output window and makes a text file. 
 
4.2 Algorithm for Hough Line Detection 

The algorithm for detecting straight lines can be divided into 
the following steps: 

      - Edge detection, e.g. using the Canny edge detector. 
      - Mapping of edge points to the Hough space and storage 
in an accumulator. 
 
      - Interpretation of the accumulator to yield lines of infinite 
length. The interpretation is done by thresholding and 
possibly other constraints. 
 
      - Conversion of infinite lines to finite lines. The finite lines 
can then be superimposed back on the original image. 

This in turn will help us in detecting a document present in 
the image. 

This process is used to further crop and resize the image from 
removing the background in a way that just the text remains. 

4.3 Algorithm for Text Recognition 

The algorithm for text recognition through different models 
can be divided into the following common steps: 

      - Perform pre-processing on the image by removing noise 
and document background using the Hough line detector 
mentioned above. 
 
      - Detect text areas in the image and draw bounding boxes 
over the detected text areas by making use of packages in 
Python. 
 
      - Use feature extraction/labelling on existing datasets for 
un-supervised learning. 
 
      - Build different neural networks and train with the pre-
processed data viz. CNN, BRNN, CTC for outputs with varied 
accuracies on test data. 
 
      - Record observations after using different models and 
images and choose the one with the best accuracy for text 
recognition. 

This will help us in detecting and recognizing text from the 
given image document present in the image. 

This output will then be shown on the UI for the user along 
with a text-file that will be generated. 

5. IMAGES OF MODELS 

5.1 CTC Model 

 

Fig -5: CTC model summary 

 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 09 Issue: 05 | May 2022              www.irjet.net                                                                        p-ISSN: 2395-0072 

  

© 2022, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 3401 
 

5.2 BRNN Model 

 

Fig -6: BRNN model summary 

5.3 CTC Model Graph (Loss) 

 

Graph -1: CTC model loss 

5.3 BRNN Model Graph (Loss) 

 

Graph -2: BRNN model loss 

5.4 Sample word detection 

 

Fig -7: Sample word detection using pre-processed data 
and saved model files 

6. IMAGES OF SOFTWARE 

6.1 UI screen 

 

Fig -8: Main UI window 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 09 Issue: 05 | May 2022              www.irjet.net                                                                        p-ISSN: 2395-0072 

  

© 2022, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 3402 
 

6.2 Input Image 

 

Fig -9: Input image (raw) 

6.3 Input Image after Pre-processing 

 

Fig -10: Input image after pre-processing 

 

 

 

 

6.4 Final Output 

 

Fig -11: Final output image in UI 

7. CONCLUSIONS 

In recent years, great advances in deep learning and 
computer vision have allowed improvements on document 
and image processing and HTR. Processing of digital files is 
cheaper than processing traditional paper files. The aim of 
an OCR software is to convert handwritten text into machine 
readable formats and by making use of data pre-processing 
that involved cropping, resizing, normalization, thresholding 
of an image and then further splitting of datasets and 
applications of models viz CNN, CTC and BRNN, we’re able to 
perform Optical Character Recognition of Text through the 
provided UI. The aforesaid models can be further optimized 
to improve the accuracy of the detected text. 

REFERENCES 

[1] Rosebrock, A. “Automatically OCR’ing Receipts and 
Scans,” PyImageSearch, 2021, 
https://pyimagesearch.com/2021/10/27/automatically
-ocring-receipts-and-scans/.  

[2] H. Li, R. Yang and X. Chen, "License plate detection using 
convolutional neural network," 2017 3rd IEEE 
International Conference on Computer and 
Communications (ICCC), 2017, pp. 1736-1740, doi: 
10.1109/CompComm.2017.8322837. 

[3] Schuster, Mike & Paliwal, Kuldip. (1997). Bidirectional 
recurrent neural networks. Signal Processing, IEEE 
Transactions on. 45. 2673 - 2681. 10.1109/78.650093. 

[4] O. Nina, Connectionist Temporal Classification for 
Offline Handwritten Text Recognition, BYU Conference 
Center, 2016. 

https://pyimagesearch.com/2021/10/27/automatically-ocring-receipts-and-scans/
https://pyimagesearch.com/2021/10/27/automatically-ocring-receipts-and-scans/

