
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 702

Data De-Duplication Engine for Efficient Storage Management

Kajol Pawar1, Vrushali Phatale2, Ranu Kumari3, Ashwini Kanade4, Swapnil Ujgare5

123Student, Department of Information Technology, Bharati Vidyapeeth’s College of Engineering for Women, Pune,
Maharashtra, INDIA

4 Assistant Professor, Dept. of Information Technology Engineering, Bharati Vidyapeeth’s College of Engineering for
Women, Pune, Maharashtra, INDIA

5Software Engineer, Veritas Technologies LLC, Pune, Maharashtra, INDIA
---***---

Abstract: In today’s world where we depend on internet for
every small piece of information or for sharing the data, we
generate new data every second. This data can include texts,
videos, audios, images, etc. and storing or maintaining this big
data is of concern. Businesses invest heavily in data storage
and this is why there is a need to manage big data. De-
duplication is emerging technology for removing redundant
or duplicate data. De-duplication can be applied to any type of
storage data like primary storage, secondary storage and also
for cloud storage. De-duplication reduces the data to be stored
hence the cost is reduced, also the bandwidth required for
data sharing is reduced considerably. These are some of the
advantages of using de-duplication. Data de-duplication is
efficient for large scale storage systems rather than
traditional approaches. This paper focuses on data de-
duplication and its various types and the main stream is the
implementation of de-dupe engine.

Key Words: Big data, de-duplication, client-server,
chunking, fingerprints, inter-process communication

1. INTRODUCTION:

In the era where data, specifically digital data has self-
evident importance in the age of globalization, it has become
essential to eliminate any circumstances or drawbacks in the
field of data processing and management. One such
challenge is data redundancy or duplication, where multiple
copies of same digital data take up storage space on our
system, and numerous other issues like bandwidth
inefficiency, increased hardware and backup cost and
network inefficiency. Reasons of redundancy:

An enormous portion of internet data is redundant for 2
reasons. Firstly, because of the significant decline in the
storage cost per GB, people tend to store multiple copies of
same file for data safety or user convenience. Secondly,
while incremental (differential) data backups or disk image
files for virtual desktops tend not to have duplicated whole

file copies, there is still large fraction of duplicated data
portion from the modification and revision of the files.

Chunks are the small divided portion of the complete data
that may be fixed sized or variable sized. The techniques
that track and eliminate any duplicate chunks of data in the
specific storage unit are implemented, such techniques are
called data de-duplication techniques. Data de-duplication is
more important at the shared storage level, however
implemented in software as well as database. Basically, de-
duplication takes place at file level and block level. In file
level de-duplication, it eliminates duplicate or redundant
copies of same file. This type of de-duplication is called
Single Instance Storage (SIS). In block level de-duplication, it
eliminates redundant or duplicate blocks of data which is
present in unique files. Block level de-duplication reduces
more space than SIS, this type of de-duplication is known as
variable block or variable length de-duplication. De-
duplication on more finely grained chunks at block level
shows better performance in removing duplicate data and
thus creates more opportunities for space savings, but it
may reduce the sequential layout of some files. Alternatively,
whole file de-duplication is simpler and eliminate file-
fragmentation concerns.

Fig.1. General De-duplication

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 703

With the help of data de-duplication on our storage
environment, only one and unique copy of data is retained
on storage media, and redundant or duplicate data is placed
with pointer to unique data copy. That is, it looks at the data
on a sub file or block level, and attempts to determine if it is
seen the data before. If it has not, it stores it. If it has seen it
before, it ensures that it is stored only once, and all other
references to that duplicate data are mere pointers. De-
duplication provides the benefits such as increased network
efficiency, bandwidth efficiency and storage efficiency,
improved speed replication, reducing backup window and
thereby cost.

2. CLASSIFICATION:

There are various ways to classify, but generally 4 ways of
classification are-

i. Point of application
ii. Time of application

iii. Granularity
iv. Algorithm

Fig.2. General Classification

2.1. Source De-duplication

Source de-duplication is in where the redundancies are
removed before transmitting the data to backup target. This

offer a reduced bandwidth and network storage. For
large amounts of data, source de-duplication may be
slower than the target de-duplication but the rate of
transfer is pretty good as the duplicate data has been
removed before the backup transmission. Due to
extensive workload on the servers overall time required
for backup may increase. This type of de-duplication is
suited for backing up small backup sets.

Fig.3. Source De-duplication

This de-duplication takes place at client-side or at
server-side. Only the unique segments or block of data
which has been changed since previous backup is only
considered for the backup. The cost of traditional
backup infrastructure like hardware, software, tapes,
courier, drives, etc. gets eliminated. Advantages of
source based de-dupe are-

1. Rapid backup window
2. Reduction in network traffic
3. Data transfers are efficient

2.2. Target De-duplication

The redundancies are removed from the backup
transmission as it passes through the appliance between
source and the backup target. Intelligent Target Disks
(ITD) and Virtual Tape Libraries (VTL) use target de-
duplication. Same as source de-duplication, target de-
duplication reduces the amount of storage required but
it does not reduce the amount of data to be transferred

for backup. This type of de-duplication requires hardware
but it is sometimes considered as a drawback.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 704

Fig.4. Target De-duplication

Target de-duplication provides faster performance for big
datasets. This de-duplication can be used for protecting
large SQL or Oracle databases. Target de-duplication can
integrate with the existing infrastructure of the backup
system. This de-duplication reduces the consumption of
primary storage resources. Advantages of target de-
duplication-

1. Reduction in backup windows
2. Make minor changes in system to improve

efficiency

2.3. Post Process De-duplication

Post process de-duplication is also called as asynchronous
or offline de-duplication. In this, the removal of redundant
data is done after backup is complete and data has been
written on storage. As compared to inline de-duplication
post process de-duplication is faster. In this technique,
duplicate data is removed and replaced with a pointer. This
requires a lot of storage space as duplicates are removed
after storing data and this is a drawback. Advantage of this
de-duplication is that it is straight-forward and takes less
time. Post process products are ExaGrid EX.

Fig.5. Post Process De-duplication

2.4 Inline De-duplication

Inline de-duplication is also called as synchronous or
online de-duplication. Redundancies and duplicate data
is removed while writing data on backup device. Inline
de-duplication can make system work slower because
the devices are in the data path between the servers and
backup disk systems. This system can work as source or
target-based.

Fig.6. Inline De-duplication

Inline de-duplication requires less space than post process
as the redundancies are removed before storing and do not
require temporary space. Inline de-duplication can cause
bottleneck slowing down the overall process. NetApp’s
SolidFire division offer products with inline de-duplication.
Some famous inline de-duplication products are IBM
Spectrum Virtualize, Veritas NetBackup.

2.5. File-based De-duplication

File-based de-duplication is commonly known as Single
Instance Storage (SIS). In this de-duplication, whole file

is compared with the files already stored by checking its
attributes. If the new file is unique then it is stored and if the
file is repeated only a pointer to existing file is stored.
Duplicates are not stored. This technique requires less
processing power due to smaller indexes and less number of
comparisons.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 705

Fig.7. File level De-duplication

The time required for computation is less. The main big
advantage of file-level de-duplication is that it requires less
resources but it also has a major drawback that it cannot
eliminate smaller redundant chunks of data. Hashing
algorithms like MD5 or SHA-1 are used for calculating the
hash of file and then comparing hash values to find the
duplicates.

2.6. Sub-file based De-duplication

Block-level de-duplication works on sub-file level. In this, a
file is broken into chunks or blocks that are then checked for
redundancy with previously stored information. For this
hashing algorithm is the best. Using the hashing algorithm, it
creates a unique id or fingerprint for each block. If the id
exists previously then the block is already processed.

The size of block depends on different peoples. Some may
have fixed size block and some have variable size block. For
fixed block the usual size is 8 KB or 64 KB. Smaller block size
has more probability of finding the redundancies. This
means very less storage space is required as there is almost
no duplicates available after processing the data. There is an
issue with this fixed size blocks that if a file is updated and
the system uses the same old blocks of data then it might not
detect any redundancy.

Fig.8. Block level De-duplication

The variable sizes of blocks used in variable-sized block
de-duplication creates confusion. This approach can find
redundant data even if the file is been shifted to another
place. There is high de-duplication ratio as compared to
file-base de-duplication.

3. METHODOLOGY

For implementing de-dupe engine for files with de-
duplicate data, we established client server
communication using sockets for inter process
communications. We first created server that will be a
daemon process. When client requests server to fulfill
its requirements, server receives those messages
through sockets. Thus, server could bind and listen to
client before accepting the client requests. The
messages between client and server are simultaneously
stored at log file created. The client utility is basically a
process that could parse user entered arguments and
perform actions accordingly. Our implementation is able
to parse arguments that could either be name of input
file or name of output file.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 706

 Fig.9. Architecture of De-dupe Engine

The input file is used by client for asking the server to fulfill
its different kind of requirements for the given file. The
requirements (tasks) may include:

 identifying unique chunks of data,
 writing the unique chunks and its related information to

metadata file,
 incrementing the reference count of any duplicate

chunks in the metadata file at the
 corresponding metadata position,
 creating backup file for original file using only the

metadata file created above.

The output file name is given so that it is used to read or
restore from metadata created. The in-memory fingerprint
is dumped on disk, which is referred to as metadata file.
Dumping is done to have the in-memory fingerprints
available for reference all time. The metadata is essentially
an array of user defined structure namely de-dupe footprint.
The elements of this structure are:

 data buffer
 data length
 data checksum
 reference count
 dedupe offset
 submeta (sub structure which includes the elements

filename and offset)
 next pointer referencing this structure type itself (for

purpose of adding structures dynamically)

Suppose client utility wants to write a file, server process
read that input file in chunk of 128 KB. While reading the file
from beginning, the first 128 KB data is read and stored into
data buffer, which forms our chunk that we are stating
throughout project. The checksum of this data chunk gets

calculated. Checksum is calculated using md5sum
checksum algorithm. Since each unique chunk has
unique checksum, and duplicate chunks have same
checksum being calculated, we will be using this fact of
matter during our project implementation. We search
that checksum in in-memory fingerprint.

At the start the first data chunk will be unique with its
respective checksum. This checksum is also used to
determine the hash index position in the in-memory
fingerprint and metadata file. The remainder obtained
on dividing the checksum value by the hash table size, is
used as our hash index position where the data and the
metadata of the chunk gets stored directly.

As we move further to read next 128 KB of data, we may
face following situations: -

1. The checksum of this data chunk is found in the in-
memory fingerprint –

 In this case, data and metadata of this duplicate
chunk is not stored, just the reference count of
respective metadata will be incremented, its de-dupe
offset will be stored and submeta for additional
information of the duplicate chunk will be updated in
the in-memory fingerprint as well as metadata file
for backup or restore purpose. This optimizes the
storage space and cost.

2. The checksum is not found in the in-memory
fingerprint but hash index calculated will be one
which is occupied by metadata of earlier chunks –

In this case, the chunk is unique, but since hash index
position is already occupied, it will append this node
of metadata to the previous node at that particular
hash index using its next pointer, in the in-memory
fingerprint as well as in the metadata file. This allows
dynamic insertion of data structures and optimize
space by eradicating the use of static structures with
large hash index values.

3. The checksum is not found in the in-memory
fingerprint as well as hash index will be one which is
unoccupied—

In this case, the chunk is unique as well as its hash
index position is unoccupied, so the data of this
chunk and its metadata can be directly stored at this
hash index position of the in-memory fingerprint as
well as of the metadata file.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 707

Whatever the data remaining at end, which may be less than
128 KB are stored in metadata file along with its respective
metadata, similarly.

Thus, the complete data file is read and simultaneously its
chunks are searched and identified if duplicate or not, and
instead of storing each chunk in system and occupying more
storage space, we use it to create metadata that optimizes
storage space as well as cost. This could also be used for
backup purpose, when original file contents may be lost.
This is done by creating a restore file that completely
replicates the original file, without any data loss, by only
using this metadata file created.

The restore file is created as described below: -

The particular filename in in-memory fingerprint is
searched for and matched with filename of original file of
whose restore file is to be created. If found, we look for the
corresponding offset and accordingly write the
corresponding complete data from its data buffer at the
offset position in restore file. The filename and offset of next
node in in-memory fingerprint is searched and written to its
restore file at particular offset in similar way. This is done in
iteration until complete restore file is written of original
input file is written.

Thus, we used de-duplication technique with fingerprinting
phenomenon is used to write de-duped metadata for backup
and storage efficiency purposes, and log files for referring
the communication between client and server processes.

4. IMPLEMENTATION

For initial testing of code, a large text file of size 50 MB was
taken onto the system which is having LINUX environment
(Ubuntu). For ease, we took small portion of this file of
around 1 MB which also includes duplicate data portions
inside it. Our task was to perform block level de-duplication
over this file. We divided this file into fixed size chunks or
blocks of data of size 128 KB, performed hashing over these
chunks and stored the resultant hash value into the memory.

We used MD5 hashing algorithm for generating the
checksum. This checksum will be unique for every unique
chunk. Small changes to any particular block of data or
chunk produces different checksum that is uncorrelated
with its previous checksum. Thus, we verified that adding or
deleting some portion of data into the file at some places,
produces different checksum and assured that the algorithm
performed well cryptographically. Thus, the chunks are

produced in the cryptographic algorithm to yield a
corresponding checksum or digital print for it.

Because of the hash properties each and every block
maintain its unique identifier if those blocks are unique, that
is, there is no any duplication. If the block is repeated, we
can identify it easily with the help of its repeated checksum.
Using this principle, only the unique blocks are saved into
the hard disk or secondary memory, and its metadata is
created into the hash table with its reference count of
occurrence. This hash table is implemented using arrays of
linked list and the nodes of these linked list being structures
that represents the metadata.

Even though, same hash index is generated from any
hashing formula for two or more chunks, its checksum will
be different for different chunks. Thus, metadata of these
chunks will be stored at same index in the hash table array
with the help of linked list at the particular index.

If duplicate chunks are already present in the memory,
according to user requirement we have implemented
function to search and delete those duplicate chunks, and
corresponding changes are made to the hash table. Such
kind of hash table is dumped into the hard disk or secondary
memory, which is then used by the client-server
architecture model.

In the client-server model, the server accepts and processes
the requests from clients, with the help of sockets. Sockets
act as carrier of utility requests and required inputs between
clients and server, which are requested by clients. Server
accepts and performs the utilities with the help of the hash
table in hard disks, and successfully returns the result to
clients. Server thus acts as daemon process in this
architecture which continuously feed utilities to clients
when requested. Thus, we aim to perform block level de-
duplication with the help of client-server architecture.

5. RESULTS AND EVALUATIONS

In the results, we found that after de-duplication process the
read/write time required for a particular time is decreased.
For this, we took text file of few kilo bytes (KB). We chunked
it and created a metadata in hash table and dumped it into
memory. The in-memory fingerprint of hash table is used for
maintaining the records even after the program termination.
The server can read data from this file and create a restore
file if there is any data corruption or data loss.

As the chunks are of small size, duplicate data identification
is done on large scale. It is very difficult to identify duplicate
data in a larger chunk size. Also, for future use if the client

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 708

requires on a specific data chunk then only that can be send.
This also requires less bandwidth and transmission time.

The client-server communication allows many clients/users
to connect at a time with the single server. Simultaneous
read/write processes can be done. This saves time of users
and there is user satisfaction. The checksum algorithm helps
to detect if the data is corrupted or not. Fingerprints are
very useful to identify the duplicate data chunks. They work
as unique identifiers for each unique chunk.

Hence, we can measure de-duplication engine performance
based on time and space. It can be used for backup and
restore of data. In big organizations, the performance of de-
dupe engine will help gain more profit.

6. CONCLUSION AND FUTURE WORK

Data storage is important issue. Many individuals as well as
organizations face this issue. There are many ways for
storage which aren’t cost effective. Also the methods should
be reliable. The data must remain safe. Due to big data there
is problem of network traffic. Due to multiple copies of same
data there is a lot of confusion between employees and end
consumers.

Data de-duplication is efficient way for storing backups and
big data. De-duplication reduces the space required for the
storage. As the space is reduced the cost also reduces. The
problem of network traffic reduces and bandwidth wastage
for transferring the data is also reduced. As de-duplication
cleans the data and stores only the unique copies of data,
productivity increases.

Also the brand reputation is intact as there is no confusion
for end consumers. Time is saved to greater extent and can
be utilized for more creativity and productivity rather than
cleaning data manually.

In the future, we will add an important module of deleting
the duplicate chunks from the input file and receive a file
without duplicate data. This will reduce the storage space
required and reduce the read/write time required.

ACKNOWLEDGEMENT

To complete any type of project work is team work. It
involves all the technical/non-technical expertise from
various sources. The contribution from the experts in the
form of knows-how and other technical support is of its vital
importance. We are indebted to our inspiring guide Prof.
A.V. Kanade and our project coordinator Prof. Dr. K.A.

Malgi. We are thankful to Mr. Swapnil Ujgare for guiding us
in technical coding part of the project and for lending
support throughout the project.

We are also very thankful to Prof. Dr. D. A. Godse for her
valuable guidance. We have great pleasure in offering big
thanks to our honorable principal Prof. Dr. S. R. Patil. Last
but not least, we would like to thank all the direct and
indirect help provided by all the staff and our entire class for
successful completion of this project.

REFERENCES

1. E. Manogar, S. Abirami, International Conference on
Advanced Computing (ICoAC), “A Study on
Deduplication Techniques for Optimized Storage”,
2014.

2. Wen Xia, Hong Jiang, Dan Feng, Fred Douglis, Philip
Shilane, Yu Hua, Min Fu, Yucheng Zhang, Yukun
Zhou, “A Comprehensive Study of the Past, Present
and Future of Data Deduplication”, IEEE 2016, Vol.
104.

3. Zhou Lei, Zhao Xin Li, Yu Lei, YanLing Bi, Luokai Hu,
Wenfeng Shen, “An Improved Image File Storage
Method Using Data Deduplication”, IEEE 2014.

4. Chao Tan, Luyu Li, Chentao Wu, Jie Li, “DASM: A
Dynamic Adaptive Forward Assembly Area Method
to Accelerate Restore Speed for Deduplication based
Backup Systems”, published by Springer
International Publishing AAG 2016.

5. Panfeng Zhang, Ping Huang, Xubin He, Hua Wang,
Ke Zhou, “Resemblance and Mergence based
Indexing for High Performance Data Deduplication”,
Journal of Systems and Software, Science Direct,
2017.

6. Meyer D. T., & Bolosky W. J., “A Study of Practical
Deduplication”, ACM Transactions on Storage, 7(4),
1–20. doi:10.1145/2078861.2078864

7. Ahmed Sardar M. Saeed, Loay E. George,
“Fingerprint-based Data Deduplication Using a
Mathematical Bounded Linear Hash Function”,
Symmetry 2021, 13.

8. Dutch T. Meyer, William J. Bolosky, “A Study of
Practical Deduplication”, ACM Transactions on
Storage, Vol. 7, No. 4, Article 14, January 2012

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | June 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 709

9. https://linux-kernel-
labs.github.io/refs/heads/master/lectures/intro.ht
ml

10. https://www.tutorialspoint.com/unix/unix-file-
system.htm

11. https://github.com/libfuse/libfuse

12. https://www.kernel.org/doc/html/latest/filesyste
ms/fuse.html

13. https://docs.microsoft.com/en-us/windows-
server/storage/data-deduplication/overview

14. https://opensource.com/article/19/4/interprocess
-communication-linux-networking

15. https://beta.computer-
networking.info/syllabus/default/exercises/socket
s.html

16. https://vdc-repo.vmware.com/vmwb-
repository/dcr-public/c509579b-fc98-4ec2-bf0c-
cadaebc51017/f572d815-0e80-4448-a354-
dff39a1d545e/doc/vsockAppendix.8.3.html

17. https://en.wikipedia.org/wiki/Cyclic_redundancy_c
heck#:~:text=This%20is%20a%20practical%20alg
orithm,%C2%A7%20Multi%2Dbit%20computation
).

18. https://www.thegeekstuff.com/2012/02/c-
daemon-process/

BIOGRAPHIES

 Ms. Kajol Pawar is perusing B.E.
(IT) from Bharati Vidyapeeth
College of Engineering for
Women, Pune and presently is in
Fourth Year.

Ms. Vrushali Phatale is perusing
B.E. (IT) from Bharati Vidyapeeth
College of Engineering for
Women, Pune and presently is in
Fourth Year.

 Ms. Ranu Kumari is perusing B.E.
(IT) from Bharati Vidyapeeth
College of Engineering for
Women, Pune and presently is in
Fourth Year.

 Mrs. A.V. Kanade is working as a

assistant professor in department
of IT, Bharati Vidyapeeth College
of Engineering for Women.

Mr. Swapnil Ujgare is currently
working as Software Engineer in
Veritas Technologies LLC.

https://linux-kernel-labs.github.io/refs/heads/master/lectures/intro.html
https://linux-kernel-labs.github.io/refs/heads/master/lectures/intro.html
https://linux-kernel-labs.github.io/refs/heads/master/lectures/intro.html
https://www.tutorialspoint.com/unix/unix-file-system.htm
https://www.tutorialspoint.com/unix/unix-file-system.htm
https://github.com/libfuse/libfuse
https://www.kernel.org/doc/html/latest/filesystems/fuse.html
https://www.kernel.org/doc/html/latest/filesystems/fuse.html
https://docs.microsoft.com/en-us/windows-server/storage/data-deduplication/overview
https://docs.microsoft.com/en-us/windows-server/storage/data-deduplication/overview
https://opensource.com/article/19/4/interprocess-communication-linux-networking
https://opensource.com/article/19/4/interprocess-communication-linux-networking
https://beta.computer-networking.info/syllabus/default/exercises/sockets.html
https://beta.computer-networking.info/syllabus/default/exercises/sockets.html
https://beta.computer-networking.info/syllabus/default/exercises/sockets.html
https://vdc-repo.vmware.com/vmwb-repository/dcr-public/c509579b-fc98-4ec2-bf0c-cadaebc51017/f572d815-0e80-4448-a354-dff39a1d545e/doc/vsockAppendix.8.3.html
https://vdc-repo.vmware.com/vmwb-repository/dcr-public/c509579b-fc98-4ec2-bf0c-cadaebc51017/f572d815-0e80-4448-a354-dff39a1d545e/doc/vsockAppendix.8.3.html
https://vdc-repo.vmware.com/vmwb-repository/dcr-public/c509579b-fc98-4ec2-bf0c-cadaebc51017/f572d815-0e80-4448-a354-dff39a1d545e/doc/vsockAppendix.8.3.html
https://vdc-repo.vmware.com/vmwb-repository/dcr-public/c509579b-fc98-4ec2-bf0c-cadaebc51017/f572d815-0e80-4448-a354-dff39a1d545e/doc/vsockAppendix.8.3.html
https://en.wikipedia.org/wiki/Cyclic_redundancy_check#:~:text=This%20is%20a%20practical%20algorithm,%C2%A7%20Multi%2Dbit%20computation).
https://en.wikipedia.org/wiki/Cyclic_redundancy_check#:~:text=This%20is%20a%20practical%20algorithm,%C2%A7%20Multi%2Dbit%20computation).
https://en.wikipedia.org/wiki/Cyclic_redundancy_check#:~:text=This%20is%20a%20practical%20algorithm,%C2%A7%20Multi%2Dbit%20computation).
https://en.wikipedia.org/wiki/Cyclic_redundancy_check#:~:text=This%20is%20a%20practical%20algorithm,%C2%A7%20Multi%2Dbit%20computation).
https://www.thegeekstuff.com/2012/02/c-daemon-process/
https://www.thegeekstuff.com/2012/02/c-daemon-process/

