

A RESEARCH ON ANALYSIS OF PROGRESSIVE COLLPSE OF RCC BUILDING WITH BLAST LOADING AND SEISMIC LOADING

Ruchika B Raibole¹, Dr. A.B.Pujari²

¹Post Graduate Student, Department of Civil Engineering, KJ College of Engineering & Management Research, Pune-411048, India ²Associate Professor, Department of Civil Engineering, KJ College of Engineering & Management Research,

Pune-411048, India

ABSTRACT-This research work presents the progressive collapse analysis of RCC building for blast and seismic loading. The term progressive collapse defined as the ultimate failure or proportionately large failure of a portion of a structure due to spread of a local failure from element to element throughout the structure. Progressive collapse analysis is performed on low rise for G+4, medium rise for G+17 and high rise for G+22 building and its validation in accordance with General Services Administration 2013 Guidelines, to check Demand Capacity Ratio of a respective structure. The response of RCC framed structure under blast and seismic loading is checked in this work. Regular framed structures of G+4, G+17,G+22 are designed and analyzed using Staad proV8i SS5. Time history analysis method is used for progressive collapse analysis and for blast analysis time history load is calculated as per IS 4991.Natural frequency, storey drift, base shear ,vertical displacement before and after column removal are calculated and Demand Capacity ratio is checked. The obtained DCR values shows that columns are safe for low rise(DCR is 1.5) and high rise building(DCR is 1.9) and for medium rise G+17 building (DCR is 2.8) collapsed element has been redesigned and additional reinforcement is required to limit the DCR within the acceptance criteria, in order to save partially stable structure.

Keywords: Progressive Collapse,Demand capacity ratio, column removal, blast and seismic loading,Staad pro.

1. INTRODUCTION:

Explosive loading incidents have become a serious problem that must be addressed quite frequently. Many buildings that could be loaded by explosive incidents are moment resistant frames either concrete or steel structures, and their behavior under blast loads is of great interest. Besides the immediate and localized blast effects, one must consider the serious consequences associated with progressive collapse that could affect people and property. Progressive collapse occurs when a structure has its loading pattern, or boundary conditions, changed such that structural elements are loaded beyond their capacity and fail in the past, structures designed to withstand normal load conditions were over designed, and have usually been capable of tolerating some abnormal loads. Modern building design and construction practices enabled one to build lighter and more optimized structural systems with considerably lower over design characteristics. Essential techniques for increasing the capacity of a building to provide protection against explosive and seismic effects shall be discussed both with an architectural and structural approach. Damage to the assets, loss of life and social panic are factors that have to be minimized if the threat of terrorist action cannot be stopped. Designing the structures to be fully blast resistant is not a realistic and economical option, however current engineering and architectural knowledge can enhance the new and existing buildings to mitigate the effects of an explosions and seismic activities.

Aim

To Study progressive collapse analysis Of RCC low, medium and high rise building during progressive collapse with blast and seismic loading using staad pro.

Objectives

- To perform progressive collapse analysis on low, medium and high rise building and its validation in accordance with GSA 2013.
- To check Response of RCC frame structure under blast and seismic loading.

- To check c/d ratio of low rise building, high rise building for different earthquake zones in according with GSA 2013
- To analyse the time of collapse of building.

2. THEORETICAL CONTENT

2.1 Explosion and Blast Phenomenon

An explosion occurs when a gas, liquid or solid material goes through a rapid chemical reaction. When the explosion occurs, gas products of the reaction are formed at a very high temperature and pressure at the source. These high pressure gasses expand rapidly into the surrounding area and a blast wave is formed. An explosion is a rapid release of stored energy characterized by a bright flash and an audible blast. Part of the energy is released as thermal radiation (flash) and part is coupled into the air as air-blast and into the soil (ground) as ground shock, both as radially expanding shock waves.

2.2Ground motions and linear time history analysis

Dynamic analysis using the time history analysis calculates the underground structure responses at discrete time steps using discretized record of synthetic time history as base motion. If three or more-time history analyses are performed, only the maximum responses of the parameter of interest are selected. Time history analysis is the study of the dynamic response of the structure at every addition of time, when its base is exposed to a particular ground motion.

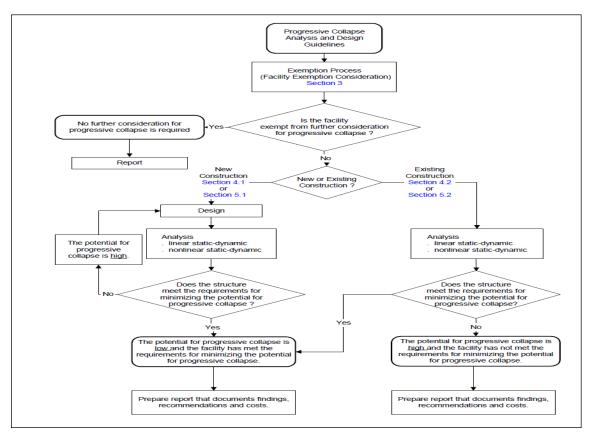


Fig.20verall flow for consideration of progressive collapse.[4]

3.MODELING AND ANALYSIS

3.1Modeling of frame

The space frame building is modeled in STAAD-Pro. The beams and columns are modeled as beam elements and the slab is modeled as a plate element

Table -1: Models Specifications

Specification	G+4	G+17	G+22
Beam Size	230*500mm	230 X 500 mm	230 X 500 mm
			Slab Thickness: 150 mm
			Storey Height:3m
			Grade of concrete:M25
			Explosive type: C4 type of explosive
Column Size	230*600mm	Column up to fourth floor Size: 230 X450 mm	Column up to fourth floor Size: 230 X450 mm
		Column up to fourth floor to seventh floor Size: 230 X 420 mm	Column up to fourth floor to seventh floor Size: 230 X 420 mm
		Column up to seventh floor to tenth floor Size: 230 X400 mm	Column up to seventh floor to tenth floor Size: 230 X400 mm
		Column up eleventh floor to seventeen floors: 230 X 380mm	Column up eleventh floor to twenty second floor: 230 X 380mm
Slab Thickness	150mm	150 m	150mm
Storey Height	3m	3m	3m
Grade of concrete	M25	M25	M25
Explosive type	C4 explosive	C4 explosive	C4 explosive

3D View of models in Staad Pro.

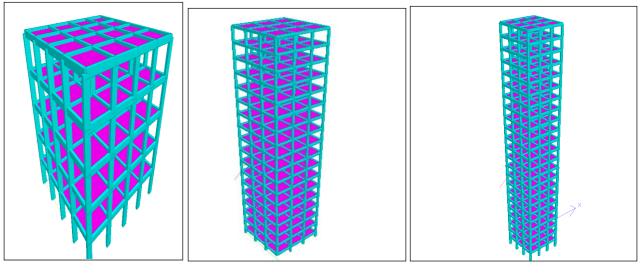
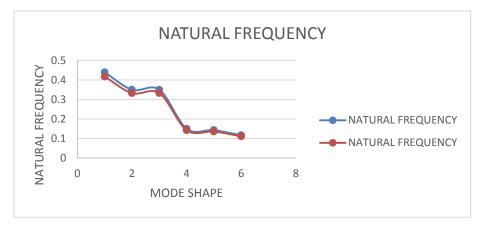


Fig.3 G+4 storey building

G+17 storey building

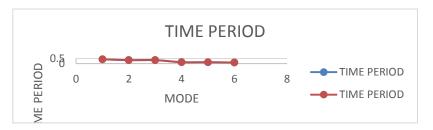

G+22 storey building

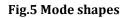
4. RESULTS AND DISCUSSION

4.1 Progressive collapse analysis for G+4 building with blast loading results is as follows

	NATURAL FREQUENCY				
Mode	BEFORE REMOVAL	AFTER REMOVAL			
1	2.280	2.166			
2	2.854	2.711			
3	2.860	2.717			
4	6.687	6.352			
5	6.972	6.623			
6	8.582	8.152			

Table-2:Natural Frequency Hz




Fig.4.Natural frequency Vs Mode shapes

From the above graph the Natural frequency of frame before removal of column is greater than after removal.

Table -3:Time period

	TIME PERIOD					
Mode BEFORE REMOVAL		AFTER REMOVAL				
1	0.439	0.41705				
2	0.35	0.3325				
3	0.35	0.3325				
4	0.15	0.1425				
5	0.143	0.13585				
6	0.117	0.11115				

From the above graph the Time Period of frame before removal of column is greater than after removal.

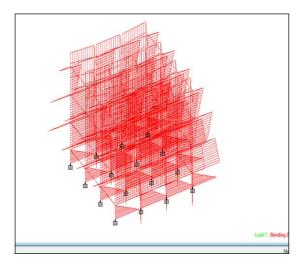


Fig.6.1 Bending moment diagram before removal of column

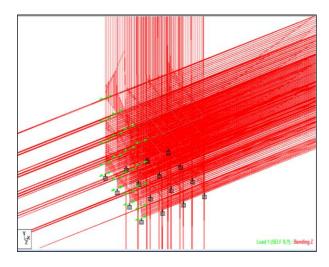


Fig.6.2Bending moment diagram after removal of column

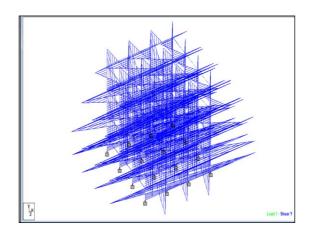


Fig.6.3Shear force diagram before removal of column

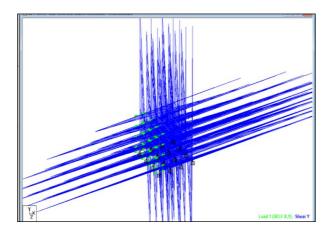
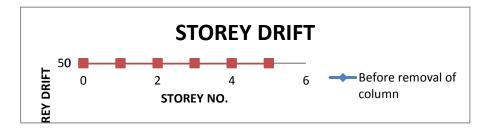



Fig.6.4 Shear force diagram after removal of column

4.2 G+4 Building Storey Drift, Base Shear and Displacement

	RCC frame				
Storey no.	Before removal of column	After removal of column			
0	0	0			
1	1.54	1.54			
2	6.16	6.17			
3	13.87	13.89			
4	24.66	24.7			
5	34.35	34.4			

Table -4: Storey drift

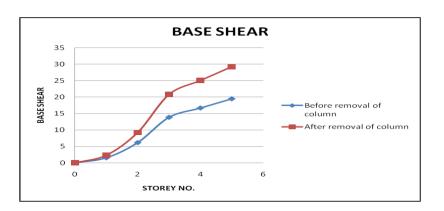


Fig. 6.5 Drift in X direction

From the above graph the Drift in X direction before removal of column is up to 34.35 and after removal is up to 34.4, Drift in X direction after removal greater than before removal.

	RCC frame				
Storey no.	Before removal of column	After removal of column			
0	0	0			
1	3.91	3.934			
2	15.709	15.736			
3	35.346	35.405			
4	62.838	62.942			
5	87.513	87.658			

Table-5 : Base shear

Fig.6.6Base shear in X direction

From the above graph the Base shear in X direction before removal of column is up to 87.513 and after removal is up to 87.658 ,Base shear in X direction after removal greater than before removal.

	RCC frame				
Storey no.	Before removal of column	After removal of column			
0	0	0			
1	0.464	0.585			
2	0.836	1.054			
3	1.114	1.405			
4	1.296	1.636			
5	1.383	1.747			

Table-6: Vertical displacement

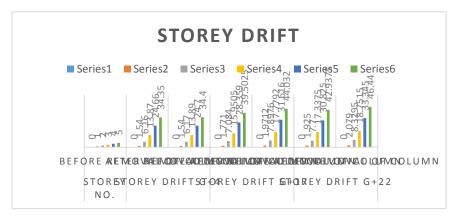
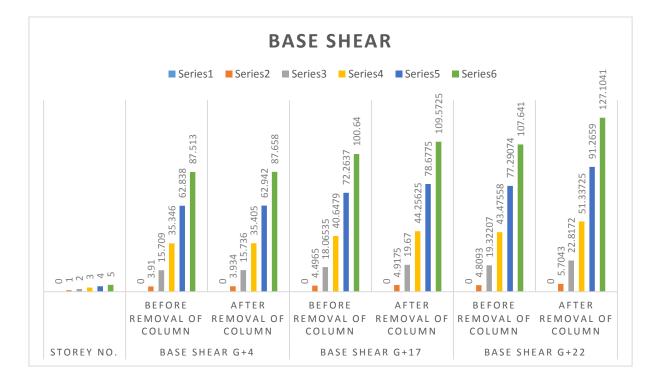


Fig. 6.7Displacement in X direction

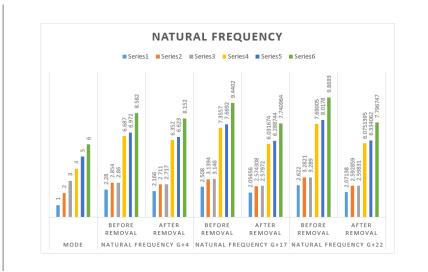
From the above graph the Displacement in X direction, before removal of column is up to 1.383 and after removal is up to 1.747, Base shear in X direction after removal greater than before removal.

4.3.Combined results of all models:

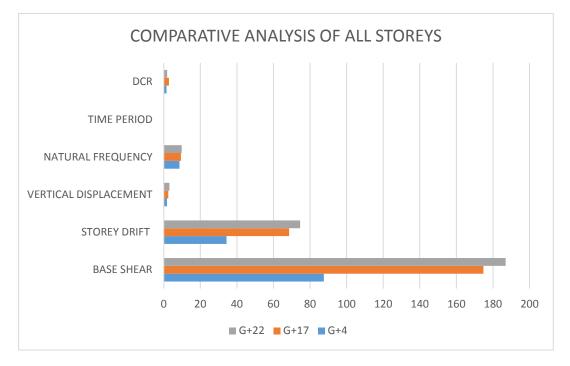
	Storey I	Drift G+4	Storey Drift G+17		Storey Dri	ft G+22
Storey no.	Before removal of column	After removal of column	Before removal of column	After removal of column	Before removal of column	After removal of column
0	0	0	0	0	0	0
0	, , , , , , , , , , , , , , , , , , ,	-	-	-	1.925	2.079
1	1.54	1.54	1.771	1.9712		
2	6.16	6.17	7.084	7.8976	7.7	8.3295
3	13.87	13.89	15.9505	17.7792	17.3375	18.7515
4	24.66	24.7	28.359	31.616	30.825	33.345
5	34.35	34.4	39.5025	44.032	42.9375	46.44



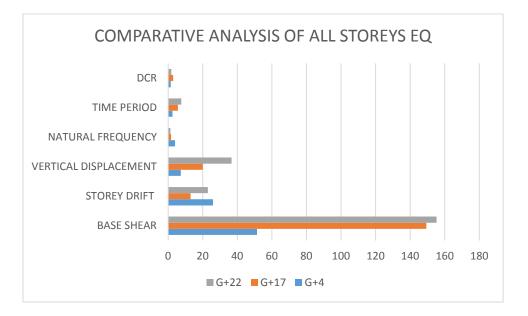
Base Shear G+4		Base Shear G+17		Base Shear G+22			
Storey no.	Before removal of column	After removal of column	Before removal of column	After removal of column	Before removal of column	After removal of column	
0	0	0	0	0	0	0	
1	3.91	3.934	4.4965	4.9175	4.8093	5.7043	
2	15.709	15.736	18.06535	19.67	19.32207	22.8172	
3	35.346	35.405	40.6479	44.25625	43.47558	51.33725	
4	62.838	62.942	72.2637	78.6775	77.29074	91.2659	
5	87.513	87.658	100.64	109.5725	107.641	127.1041	


International Research Journal of Engineering and Technology (IRJET) IRJET

Volume: 09 Issue: 06 | Jun 2022


www.irjet.net

	NATURAL F	REQUENCY				
G+4		NATURAL FREQUENCY G+17		NATURAL FREQUENCY G+22		
Widde	BEFORE REMOVAL	AFTER REMOVAL	BEFORE	AFTER	BEFORE	AFTER
1	2.28	2.166	REMOVAL	REMOVAL	REMOVAL	REMOVAL
			2.508	2.05656	2.622	2.07138
2	2.854	2.711	3.1394	2.574308	3.2821	2.592859
3	2.86	2.717	3.146	2.57972	3.289	2.59831
4	6.687	6.352	7.3557	6.031674	7.69005	6.0751395
5	6.972	6.623	7.6692	6.288744	8.0178	6.334062
6	8.582	8.152	9.4402	7.740964	9.8693	7.796747



MODEL	G+4	G+17	G+22
BASE SHEAR	87.513	174.753	186.91
STOREY DRIFT	34.35	68.58	74.55
VERTICAL DISPLACEMENT	1.747	2.5	3.1
NATURAL FREQUENCY	8.582	9.44	9.86
TIME PERIOD	0.117	0.105	0.101
DCR	1.5	2.88	1.9

Dcr ratio for earthquake time history analysis

MODEL	G+4	G+17	G+22
BASE SHEAR	51.37	149.326	155.29
STOREY DRIFT	26	13	23
VERTICAL DISPLACEMENT	7.4	20	36.7
NATURAL FREQUENCY	4.017	1.749	1.34
TIME PERIOD	2.5	5.72	7.6
DCR	1.5	2.11	1.4

DISCUSSION OF RESULTS

In this paper DCR value, story drift, Base Shear, Time period, natural frequency is compared for G+4, G+17, G+22 for earthquake analysis and blast load analysis. For earthquake analysis the column from extreme left i.e. plinth level first column is removed and it's observed that low rise and high rise is safe. However for blast load analysis the columns for maximum load is removed and it's observed that low rise and high rise is safe same as earthquake.

7. CONCLUSION

From non-linear dynamic analysis of building subjected to blast load before column removal and after column following conclusions are drawn.

- 1. Column removals have significant effect on blast performance of buildings.
- 2. For G+4 100 kg TNT, due to column removal there is 40.82%, 36.10% & 27.83% increase in displacement, velocity and acceleration respectively.
- 3. For G+4 200 kg TNT, due to column removal there is 44.96%, 32.87% & 23.03% increase in displacement, velocity and acceleration respectively.
- 4. For G+4 300 kg TNT, due to column removal there is 44.44%, 31.6% & 21.558% increase in displacement, velocity and acceleration respectively.
- 5. For G+4 400 kg TNT, due to column removal there is 44.186%, 31.24% & 21.51% increase in displacement, velocity and acceleration respectively.
- 6. For G+17 100 kg TNT, due to column removal there is 17.82%, 16.25% & 14.23% increase in displacement, velocity and acceleration respectively.
- 7. For G+17 200 kg TNT, due to column removal there is 18.92%, 17.1% & 15.5% increase in displacement, velocity and acceleration respectively.
- 8. For G+17 300 kg TNT, due to column removal there is 19.4%, 18.2% & 21.58% increase in displacement, velocity and acceleration respectively.
- 9. For G+17 400 kg TNT, due to column removal there is 21.2%, 19.4% & 22.4% increase in displacement, velocity and acceleration respectively.

- 10. For G+22 100 kg TNT, due to column removal there is 15.20%, 15.30% &13.15% increase in displacement, velocity and acceleration respectively.
- 11. For G+22 200 kg TNT, due to column removal there is 17.84%, 15.63% & 14.25% increase in displacement, velocity and acceleration respectively.
- 12. For G+22 300 kg TNT, due to column removal there is 18.54%, 16.59% & 20.35% increase in displacement, velocity and acceleration respectively.
- 13. For G+22 400 kg TNT, due to column removal there is 20.26%, 17.56% & 21.35% increase in displacement, velocity and acceleration respectively.
- 14. DCR ratio in all cases exceeds by 2 hence sections need to be redesigned considering blast load
- 15. While comparing base shear, storey drift and vertical displacement the amplitude due to removal of column increased by 25-30% for shear, storey drift and vertical displacement because stiffness of structure decreased due to removal of column

For low rise building the difference after column removal is more than that of high rise building as high rise building will have more stiffness

FUTURE SCOPE

In the further study the DCR value will be revised for medium rise building i.e. G+17, the DCR value can be decreased by increasing steel, revising sections or changing design

8. REFERENCES:

- 1. Yara M. Mahmoud, Maha M. Hassan, Sherif A. Mourad, Hesham S. Sayed 'Assessment of progressive collapse of steel structures under seismic loads' 2018
- 2. RoholaRahnavarda, FaramarzFathiZadehFardb, Ali Hosseinic, Mohamed Suleimand 'Nonlinear analysis on progressive collapse of tall steel composite Buildings'2018
- 3. Yash Jain1, Dr.V.D. Patil2 ' Assessment of Progressive Collapse for a Multi-Storey RC Framed Structure using Linear Static Analysis Technique' Volume 60 Number 3 June 2018
- 4. Y.A. Al-Salloum a, H. Abbas a, T.H. Almusallam a, T. Ngo b, P. Mendis b 'Progressive collapse analysis of a typical RC high-rise tower' 2018
- 5. Rinsha C1, Biju Mathew2 'Progressive collapse analysis of steel frame structures' Volume: 04 Issue: 05 | May -2017
- 6. Ramon Codina, Daniel Ambrosini, Fernanda de Borbona 'Alternatives to prevent progressive collapse protecting reinforced concrete columns subjected to near field blast loading' 2017
- 7. Ahmed Elshaer, Hatem Mostafa, and Hamed Salem 'Progressive Collapse Assessment of Multistory Reinforced Concrete Structures Subjected To Seismic Actions'2016