

Rahul Patil¹, Parth Punekar², Rohan Patil³

¹⁻²Department of Mechanical Engineering, Dr.D.Y.Patil Institute of Engineering, Management & Research, Akurdi, Pune, Maharashtra, India

³Department of Mechanical Engineering, K.K. Wagh Institute of Engineering Education & Research, Nashik, Maharashtra, India

***____

Abstract - Lithium-ion batteries are used for their high energy efficiency and are frequently used by electric car manufacturers typically employ them (EVs). However, abrupt temperature changes cause these batteries to lose efficiency quickly. Liquid cooling, a majorly used thermal management approach that increases battery pack service life, is one way to limit temperature rises (whether ambient or created by the battery itself). Because of their low rate of self-discharge, high energy density, and long life cycle, lithium-ion batteries have a wide range of applications. They have a high energy density in relation to their weight. Choosing the right cooling mechanism for a lithium-ion battery pack for electric vehicles and developing an appropriate cooling control plan to maintain the heat contained within a safe range of 15 to 40 degrees Celsius is critical to boosting safety, extending the pack durability, and lowering cost. The design and analysis of the battery pack are presented in this paper. The temperature difference between the battery cell and the cooling fluid is depicted in this paper.

Key Words: Electric vehicle, Lithium-ion batteries, Aluminium tubes.

1. INTRODUCTION

The industry for electric drive vehicles (EDVs) is growing, and it has much more potential if batteries have more power, can travel longer ranges, and are less costly. The battery thermal management technology in electric vehicles (EVs) and hybrid electric vehicles (HEVs) should keep temperatures within a proper range of 15 0C to 40 0C to keep lithium-ion (Li-ion) battery packs functioning safely and extending their life. The battery pack generates a large amount of heat during vehicle operation, which must be dissipated. The removal of heat generated and having a constant temperature in EDVs has become a challenge due to the higher demand for gravimetric and volume energy. A variety of cooling techniques are proposed and tested.

A battery in an electric vehicle is usually cooled in one of the following ways:

- 1. Air cooled
- 2. Liquid-cooled

3. Cooling by fins

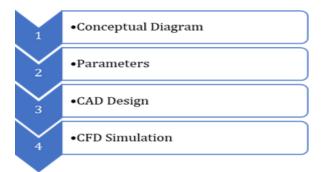
4. PCM (phase change material) cooling

Despite the fact that each cooling method has pros and cons, studies show that liquid cooling is a viable option for Li-ion battery packs in EVs due to its size, weight, and power requirements. Even though immediate liquid cooling requires drenching the battery cells in the fluid, a low (or no) conductivity cooling liquid is essential. For indirect liquid cooling to work, the battery cells do not need to be in immediate contact with the cooling medium.

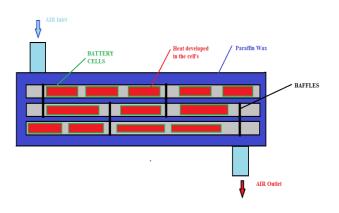
Alternatively, the liquid coolant can be circulated through the system's metal pipes, which necessitates the use of anticorrosion protection on the metal. Liquid cooling, an efficient thermal management strategy that extends battery pack service life, is one way to control temperature rises (whether environmental or generated by the battery itself). Engineers can use Multiphysics simulation to study liquid cooling in batteries and optimize thermal management.

1.1Problem Statement

Heat makes electric vehicle batteries work harder, and it is a major battery killer. Batteries will stop working, swell, bubble, cause sparks and flames, harm your device, or blow up if they are exposed to too much heat. Extreme heat can shorten the life of a battery by causing corrosion.


The components inside lithium-ion batteries begin to degrade when they are overcharged or overheated, releasing oxygen, carbon dioxide, and other gases in the process. As pressure builds, the heated battery expands from a rectangle to a pillow shape. For increasing safety, extending pack service life, and lowering costs, selecting the right cooling method for a lithium-ion (Li-ion) battery pack for electric drive vehicles (EDVs) and developing an optimal cooling control strategy to keep the temperature between 15 and 40 degrees Celsius is critical. Prices, complexity, weight, cooling effects, temperature uniformity, and parasitic power are all factors to consider when choosing a cooling technology and developing strategies.

1.2 Objective


- •To efficiently lower the battery's temperature.
- Lower the cost of an electric vehicle's cooling system.
- Cooling systems must be working within a safe range of 15 to 40 degrees Celsius for the battery pack.
- Using CATIA v5 or Space-clime software to create a 3D conceptual modal.
- Using ANSYS fluent R1 2020 soft to solve the FEM solution to the intended modal.
- Changing the working medium
- Record the temperature variation for different Work in the medium.

2. Methodology

2.1 Conceptual Design

We got the idea for the design and development of the battery pack from research papers, and we can increase the cooling efficiency by combining paraffin wax with water. So I wrapped paraffin wax around the aluminum plate, and there were battery cells inside the aluminum plate. We will investigate heat transfer efficiency around the battery cells, aluminum tubes, and chamber using the ANSYS fluent system and the transient method.

2.2 Parameters and Specification

For the purposes of this project, the battery and shell parameters are assumed.

Solid shell for exchanging heat

Length = 60 cm Diameter = 27.5 cm Shell thickness = 1.5 cm

Shell inlet and outlet

Outer Diameter= 6cm Inner Diameter= 3.5cm

Aluminum tube

Thickness = 0.1 cm Length = 30 cm Outer dia= 6 cm Inner dia = 5.8 cm

Battery Cells

Diameter= 5.8cm Length = 12cm

Baffle Plate

Thickness =0.5cm Outer Diameter= 8cm Inner Diameter= 6cm

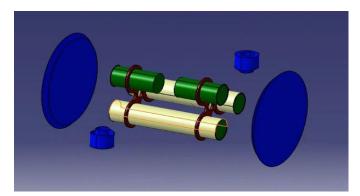
PCM Solid coating

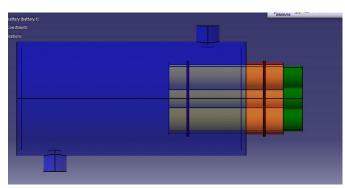
Thickness = 0.2 cm Length = overall aluminum tube

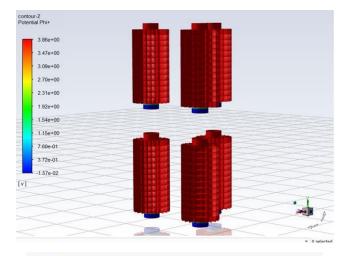
The velocity of the water entering the tube

Velocity = pi*d*n/60 N = rpm of the water motor is considered as = 1400 D =3.5 cm V =2.56 approx Temperature = normal room temperature at 24^o Celsius

Battery model parameter


Single battery condition with series and parallel setup Volts = capacity/current rate The capacity of the battery to produce amp/hour = 14.2 Current rate = 0.3 Approx. 4.26 analytical IRJET


International Research Journal of Engineering and Technology (IRJET)Volume: 09 Issue: 06 | Jun 2022www.irjet.net


e-ISSN: 2395-0056 p-ISSN: 2395-0072

2.3 CAD Design

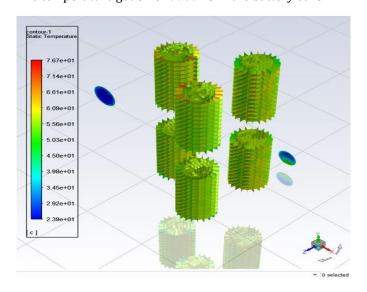
In this system, we are developing a 3D modal using CATIA v5 $\ensuremath{\mathsf{R20}}$

Calculation complete.

(v)	Area-Weighted Average Potential Phi+
3.8620729	interior-solid cell
0	wall-tabnegative zone
3,8620729	wall-tabpositive zone
3.8377325	Net
	Area-Weighted Average
(kg/m3)	Density
0	interior-solid_cell
0	wall-tabnegative_zone
0	wall-tabpositive_zone
0	Net
	Area-Weighted Average
(c)	Static Temperature
64.999994	interior-solid cell
64.999946	wall-tabnegative_zone
64.999916	wall-tabpositive_zone
64.999993	Net

2.4 Ansys

Boundary Conditions for Cooling


The boundary condition for all cooling mediums is the same. We consider laminar flow with velocity 2.5m/s and temperature 23.999994 °c.

e Name et					
Iomentum	Thermal	Radiation	Species	DPM	Multiphase
Velocity S	Specification N	Method Magnit	ude, Normal t	to Bounda	ry
	Reference	Frame Absolut	te		
	Velocity Mag	gnitude (m/s) 2	2.5		
unersonic/In	itial Gauge Pr	essure (pascal)		

2.5 Ansys Results

Potential volt generated for 1 hour. Potential Phi of the battery max 3.8 volts from positive to 0 at the negative terminal and without using any cooling medium 64.999994 ^oC got

Iteration 1 Cooling with Water at a given boundary condition The temperature got 57.379999 °C in the battery cells.

International Research Journal of Engineering and Technology (IRJET)e-ISSVolume: 09 Issue: 06 | Jun 2022www.irjet.netp-ISS

e-ISSN: 2395-0056 p-ISSN: 2395-0072

	Calculation complete.
(c)	Area-Weighted Average Static Temperature
23.999994	inlet
(c)	Area-Weighted Average Static Temperature
36.432541	outlet
(c)	Area-Weighted Average Static Temperature
57.379999	interior-solid_cell
(c)	Area-Weighted Average Static Temperature
58.655378	interior-solid_cell-shadow Area-Weighted Average Potential Phi+
3.870492	interior-solid_cell wall-tabnegative_zone
3.870492	wall-tabpositive_zone
3.8582534	Net

Iteration 2 - Air Results

The temperature got 57.338504 °C in the battery cells.

```
Calculation complete.
```

Writing "| gzip -2cf > FFF-1-1-00010.dat.gz"...

Writing temporary file C:\Users\GANESH~1\AppData\Local\Temp\flntgz-44924 \dots Done.

Area-Weighted Average Static Temperature	(c)
wall-solid_shell	57.338504
Area-Weighted Average Static Pressure	(pascal)
inlet outlet	6.5252861 -0.00048038088
Net	3.262403

(m/s)	Area-Weighted Average Velocity Magnitude
2.5 2.4742687	inlet outlet
2.4871343	Net.

Iteration 3 - Ethylene glycol Results

The temperature got 57.379999 ^oC in the cells.

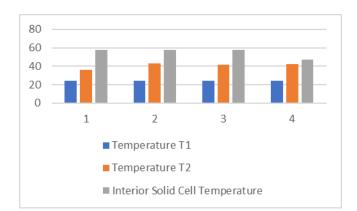
57.379999 49.952687 57.257271	interior-solid_cell wall-solid_shell wall-tabnegative_zone
53.906648	Net
(c)	Area-Weighted Average Static Temperature
57.379999	interior-solid_cell

eighted Average ocity Magnitude (m/s)	Area-Weighted Av Velocity Magn
inlet 2.5 outlet 2.5136373	
Net 2.5068187	
-	Area-Weighted Avera Static Pressu
inlet 6738.8717 outlet 0	
Net 3369.436	1

Iteration 4- Water with PCM of 0.2 cm thickness

The temperature at the battery cell is 47.302372 °C.

Area-Weighted Average Static Temperature	(c)
inlet	23.999994
inneralu pipe-contact region-contact :	region 15-
contact region 2-contact region 3-cont	act region 6-
contact region 15-contact region 16-co	
contact region 2-contact region 20-cor	stact region 43-
contact_region_2-contact_region_20-cor	
contact_region_19-contact_region_20-co	
contact_region_19-contact_region_20-co 37.71753	ontact_r
contact_region_19-contact_region_20-co 37.71753 interior-solid_cell	ontact_r
contact_region_19-contact_region_20-co 37.71753 interior-solid_cell outlet	ontact_r 48.296991 42.211524
contact_region_19-contact_region_20-co 37.71753 interior-solid_cell outlet wall-tabnegative_zone	0ntact_r 48.296991 42.211524 48.290702
contact_region_19-contact_region_20-co 37.71753 interior-solid_cell outlet	ontact_r 48.296991 42.211524


3. CONCLUSIONS

Materials are expensive, and obtaining components required for specific rages is difficult. With these research findings, other direct cooling methods have entered the market. However, this was our attempt to put the model into action. A water cooling system with PCM coating over aluminum is effective. We've created tables and graphs to compare the temperature differences between various cooling mediums.

Sr.No.	Type of	Outlet	Interior-
	Working	Temperature	Solid Cell
	Medium	T2 ºC	0 C
1	Water	36.432541	57.379999
2	Air	42.884944	57.338504
3	Glycol	41.444251	57.379999
4	РСМ	42.211524	47.302372

International Research Journal of Engineering and Technology (IRJET)e-ISSN: 2395-0056Volume: 09 Issue: 06 | Jun 2022www.irjet.netp-ISSN: 2395-0072

REFERENCES

- Saw, L. H., Tay, A. A. O., & Zhang, L. W. (2015, March). Thermal management of lithium-ion battery pack with liquid cooling. In 2015 31st thermal measurement, modeling & management symposium (SEMI-THERM) (pp. 298-302). IEEE.
- [2] Chen, D., Jiang, J., Kim, G. H., Yang, C., & Pesaran, A. (2016). Comparison of different cooling methods for lithium-ion battery cells. *Applied Thermal Engineering*, 94, 846-854.
- [3] Sun, H., & Dixon, R. (2014). Development of cooling strategy for an air-cooled lithium-ion battery pack. *Journal of Power Sources*, *272*, 404-414. K. Elissa, "Title of paper if known," unpublished.
- [4] Behi, H., Karimi, D., Behi, M., Ghanbarpour, M., Jaguemont, J., Sokkeh, M. A., ... & Van Mierlo, J. (2020). A new concept of thermal management system in Liion battery using air cooling and heat pipe for electric vehicles. *Applied Thermal Engineering*, 174, 115280.
- [5] Khateeb, S. A., Amiruddin, S., Farid, M., Selman, J. R., & Al-Hallaj, S. (2005). Thermal management of Li-ion battery with phase change material for electric scooters: experimental validation. *Journal of power sources*, 142(1-2), 345-353.
- [6] Lyu, Y., Siddique, A. R. M., Majid, S. H., Biglarbegian, M., Gadsden, S. A., & Mahmud, S. (2019). Electric vehicle battery thermal management system with thermoelectric cooling. *Energy Reports*, *5*, 822-827.