STUDY OF ARMOUR STONE SHAPE CHARECTERESTICS AND PACKING EFFICIECY OF SEAWALL STRUCTURE

Shafna K J ${ }^{\mathbf{1}}$,Aswin Subhan ${ }^{2}$,Sathyajith $\mathbf{P}^{\mathbf{3}}$,Anagha Ullas ${ }^{4}$,Shereena M J ${ }^{\mathbf{5}}$, Twinkle Thomas ${ }^{\mathbf{6}}$
Assistant Professor, SNMIMT, Kerala ${ }^{1}$
Assistant Engineer projects, PMU Chellanam²
UG Students , SNMIMT, Kerala ${ }^{3,4,5,6}$

1. INTRODUCTION

A seawall is a structure made of stones, concrete, masonry or sheet piles, built parallel to the shore at the transition between the beach and the mainland or dune. Seawalls are generally made of armourstone. The stones are readily available and are not considered as a manufactured product just because they come directly from quarry. Since they are naturally formed, they are not a threat to marine life in any way. The stones generally have a longer life compared to the rest of the safety measures. The only threat is that they may be washed away due to the high tide strength.

Armour stone packaging is important for preparing goods for containment, protection, transport, handling, distribution, delivery and presentation. During the construction of seawalls, it is necessary to have proper packing of armour stone. It's impossible to arrange the stones one by one manually for the construction of the seawall because of the following reasons-

- Working on the shores is both difficult and dangerous at the same time
- A very large number of labours are required
- Its impossible to handle very stones using manual labours
- It'll literally take years for the construction if it's done manually.
- As a lot of labours are required the cost is increase drastically.

Therefore one way of achieving packing efficiency is to arrange armour stone using heavy machineries like a crane or a JCB.
While packing stones it is essential to have voids of a certain percentage. This is because a structure packed in 0% void can be easily broken by wave action. When a void is given, a certain amount of seawater passes through it and the impact of the wave on the sea wall decreases.

Packing affects the shape of the structure so it is important to have proper packing. Usually while construction of a seawall the only gradation of armour stones are considered, but if only gradation is considered the quality and overall bill are affected. For example if the design condition is to have stones of grade 350-700 and we used any stones within this grade irrespective of their shape and quality there is a chance of huge void formation within the structure which can adversely affect the bill and overall stability of the structure. Thus shape is an important factor that has to be considered.

The Armourstone for the construction of the seawalls are obtained from the quarry's. The stones obtained from the quarry are blasted to become the product we want. Stones blasted in this way are available in various shapes and sizes. In the old days, we used split stones for the construction of sea wall. It was made of exactly the same cubical shape. The void ratio between them was less than 5% as it is not available for construction now, blasted stones are used instead.

The blasted stones come in various shapes and size like flaky, cubical, elongated etc. Therefore it is very important to select the appropriately shaped stones during construction. In this project we have used two parameters to determine which shaped stones are suitable and which is not one is aspect ratio and the other is blockiness.

1.1 PARAMETERS

ASPECT RATIO

Aspect Ratio (Length-to-thickness ratio) is defined as the maximum length(m) divided by the minimum distance, d (m), between parallel lines through which the particle would just pass. This form description is the industry standard now embodied in EN 13383 for both armourstone and aggregates.

FIG 4.2 ASPECT RATIO OF STONE

BLOCKINESS

- Blockiness (BL) is defined as the volume of a stone divided by the volume of the enclosing XYZ orthogonal box with a minimum volume.
- Higher blockiness can lead to higher density, more numbers of contact points and finally it will result into greater interlock.

FIG 4.3 BLOCKINESS OF STONE
(a) CUBICAL (b) FLAKEY STONE (c) ELONGATED STONE

Armour stone with an aspect ratio greater than 3 is considered as an elongated or Flaky stone so such stones should not be used and it should be rejected .Stones with an aspect ratio between 1 to 2 are most preferred as they provide better packing.

Blockness of a perfectly cubic stone is 100% so as the number goes down the shape of the stone becomes lesser cubic and more of an elongated or flakey shaped stone, but 100% blocky stones is nearly impossible to obtain because these are obtained from blasting there for the cubic stones that we get usually have a blockness of 60 to 70% sometimes up to 80 percentage.

2. EXPERIMENT 1- CONSTRUCTION OF SEAWALL EMBANKMENT USING MIXED STONES

We collected 70 samples of armour stone for this experiment. 70 stones were randomly taken and had different shapes and sizes. Using these stones we constructed a frustum embankment by dropping each stones.

FIG 1 EMBANKMENT USING MIXED STONE
The dimensions of the so formed embankment were measured and noted down,
The resultant embankment has the following dimensions.
Base length $=170 \mathrm{~cm}$
Base width $=90 \mathrm{~cm}$
Top length $=110 \mathrm{~cm}$
Top width $=50 \mathrm{~cm}$
Height=75cm
Using the obtained data's we were able to calculate the volume of the frustum section. Each stone from the embankment were taken out to measure it's weight and dimensions(length,breadth,depth).These readings were noted down. Using these readings, we calculated the aspect ratio(Aspect Ratio=(L/D) and blockiness (BL=[Vstone/Vcubical] x100) of each stone.

Now to find Volume of voids we need to subtract the total volume of stones from the volume of the embankment. Next step is to find the value Void Ratio \& Porosity.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 07 | July 2022
www.irjet.net

Void Ratio $=$ (Volume of Voids/Total volume of stones)
Porosity = (Volume of Void / Total volume of embankment)

3. EXPERIMENT 2- CONSTRUCTION OF SEAWALL EMBANKMENT USING CUBIC STONES

We collected 84 samples of cubical armourstone for this experiment. Although these are cubical stones they are not exactly cubical but resembles cubical stones .Using these stones we constructed another frustum embankment by dropping each stones.

FIG2 EMBAKMENT USING CUBICAL STONE
The dimensions of the so formed embankment were measured and noted down,
The resultant embankment has the following dimensions
Base length $=160 \mathrm{~cm}$
Base width $=90 \mathrm{~cm}$
Top length $=100 \mathrm{~cm}$
Top width $=30 \mathrm{~cm}$
Height=70cm

International Research Journal of Engineering and Technology (IRJET)
Volume: 09 Issue: 07 | July 2022 www.irjet.net

FIG3 MINIATURE EMBAKMENT USING CUBICAL STONES
Using the obtained data's we were able to calculate the volume of the frustum section. One by one each stone from the embankment were taken out to measure it's weight and dimensions(length,bredth,depth).These readings were noted down. Using these readings we calculated the aspect ratio(Aspect Ratio=(L/D) and blockiness (BL=[Vstone/Vcubical] x100) of each stone

Fig 4 CUBICAL STONES

Now to find Volume of voids we need to subtract the total volume of stones from the volume of the embankment. Next step is to find the value Void Ratio \& Porosity.

SI no.	Weight	Length	Width	Depth	Aspec ratio	Vol of stone	Vol of stone in cubical	Blockiness
1	61	41.8	36.2	28.2	1.482269504	0.022592593	4523131.872	$4.9949 \mathrm{E}-07$
2	8.2	25.4	17.4	13.9	1.827338129	0.003037037	651177.864	$4.66391 \mathrm{E}-07$
3	7.8	25.2	19.6	14.8	1.702702703	0.002888889	774855.696	$3.72829 \mathrm{E}-07$
4	11.4	27.5	20.6	16.9	1.627218935	0.004222222	1014822.1	$4.16055 \mathrm{E}-07$
5	5.8	20.6	14.6	13.7	1.503649635	0.002148148	436757.672	$4.9184 \mathrm{E}-07$
6	16.6	28	23	18.5	1.513513514	0.006148148	1262878	4.86836E-07
7	10.6	23.6	19.3	17.5	1.348571429	0.003925926	844909.4	$4.64656 \mathrm{E}-07$
8	20.8	31.3	24.1	18.3	1.710382514	0.007703704	1463243.334	$5.26481 \mathrm{E}-07$
9	9	26.3	15.2	15.7	1.675159236	0.003333333	665274.592	$5.01046 \mathrm{E}-07$
10	7.6	21.4	17.7	13.8	1.550724638	0.002814815	554073.384	$5.08022 \mathrm{E}-07$
11	18.2	31.2	21.8	17.9	1.74301676	0.006740741	1290529.584	$5.22324 \mathrm{E}-07$
12	25.4	35.5	28.1	26.6	1.334586466	0.009407407	2812685.98	$3.34463 \mathrm{E}-07$
13	20.8	32.3	25.4	18.2	1.774725275	0.007703704	1582748.264	4.8673E-07
14	30.8	41.2	24.4	21.3	1.9342723	0.011407407	2269715.184	5.02592E-07
15	12.3	28.4	14.1	15.6	1.820512821	0.004555556	662161.584	6.87982E-07
16	6.8	20	18.1	10.8	1.851851852	0.002518519	414411.6	$6.07734 \mathrm{E}-07$
17	6.8	22.4	20.4	12.5	1.792	0.002518519	605466	$4.15964 \mathrm{E}-07$
18	3.2	17.8	16.7	9.7	1.835051546	0.001185185	305636.732	$3.87776 \mathrm{E}-07$
19	3.6	20.4	11.4	12.6	1.619047619	0.001333333	310601.136	$4.29275 \mathrm{E}-07$
20	4.6	18.1	12.4	14.2	1.274647887	0.001703704	337821.088	$5.04321 \mathrm{E}-07$
21	4	20.1	14.4	8	2.5125	0.001481481	245439.12	$6.03604 \mathrm{E}-07$
22	4.6	17.2	14.7	10.3	1.669902913	0.001703704	276044.712	6.17184E-07
23	6.2	22.6	16.8	15.4	1.467532468	0.002296296	619783.632	3.705E-07
24	3.4	17.6	17.5	5.6	3.142857143	0.001259259	182822.8	$6.88787 \mathrm{E}-07$
25	2.6	15.92	14	7	2.274285714	0.000962963	165370.96	$5.82305 \mathrm{E}-07$
26	7.2	13.8	14.2	13.5	1.022222222	0.002666667	280412.76	$9.50979 \mathrm{E}-07$
27	2.4	15.9	11.5	7.8	2.038461538	0.000888889	151174.38	$5.87989 \mathrm{E}-07$
28	13.8	33	24.5	12.6	2.619047619	0.005111111	1079826.6	4.73327E-07
29	4	19.5	13	9.9	1.96969697	0.001481481	266016.9	5.56913E-07
30	15	32.6	28.21	18	1.811111111	0.005555556	1754678.568	3.16614E-07
31	5.2	19.8	18.5	12.5	1.584	0.001925926	485341.5	$3.96819 \mathrm{E}-07$
32	8.6	25	18.2	10.8	2.314814815	0.003185185	520878	6.11503E-07
33	7.8	25.5	17	13	1.961538462	0.002888889	597357	$4.83612 \mathrm{E}-07$
34	7.2	26.5	24	9	2.944444444	0.002666667	606738	4.39509E-07
35	7.2	33.5	12	10.9	3.073394495	0.002666667	464464.8	$5.74138 \mathrm{E}-07$
36	11.8	39.4	19.5	12	3.283333333	0.00437037	977271.6	$4.47201 \mathrm{E}-07$
37	6.6	16.9	15.3	16	1.05625	0.002444444	438528.72	$5.57419 \mathrm{E}-07$
38	7.6	22.5	16.5	14	1.607142857	0.002814815	550929	5.10922E-07
39	19	31	20.6	13.9	2.230215827	0.007037037	940907.24	7.47899E-07
40	9.8	22.8	19	17	1.341176471	0.00362963	780620.4	4.64967E-07
41	14.8	29	21.8	14	2.071428571	0.005481481	938178.8	$5.84268 \mathrm{E}-07$
42	9.2	23.5	16.9	29.2	0.804794521	0.003407407	1229252.68	2.77193E-07
43	8.2	23	22.5	11.2	2.053571429	0.003037037	614370	$4.94334 \mathrm{E}-07$
44	2	12.4	11	9.5	1.305263158	0.000740741	137348.8	$5.39314 \mathrm{E}-07$
45	4.8	19.8	18.5	12.8	1.546875	0.001777778	496989.84	3.57709E-07
46	6.8	25.6	16.8	10	2.56	0.002518519	455878.8	5.52454E-07
47	4.6	18.6	17.4	13.5	1.377777778	0.001703704	463122.84	3.67873E-07
48	1	12.3	9	5.8	2.120689655	0.00037037	68052.36	$5.44243 \mathrm{E}-07$
49	5.8	23.5	15.6	11.5	2.043478261	0.002148148	446879.4	$4.807 \mathrm{E}-07$
50	14.4	28.2	15	16.5	1.709090909	0.005333333	739821	7.20895E-07
51	31.4	38.2	32.8	19.6	1.948979592	0.01162963	2603143.696	$4.46753 \mathrm{E}-07$
52	2.2	15.1	10.6	6	2.516666667	0.000814815	101792.16	8.00469E-07
53	42.8	40	37.1	24	1.666666667	0.015851852	3775290	$4.19884 \mathrm{E}-07$
54	21.6	37	21	18.8	1.968085106	0.008	1548399.6	5.16662E-07
55	4.8	20.6	20.2	11	1.872727273	0.001777778	485189.92	$3.66409 \mathrm{E}-07$
56	9.6	24	16.2	19.2	1.25	0.003555556	791279.76	$4.49342 \mathrm{E}-07$
57	8.4	23	22.1	15.6	1.474358974	0.003111111	840518.88	$3.70142 \mathrm{E}-07$
58	36.8	37	33.4	18.3	2.021857923	0.01362963	2397198.84	$5.68565 \mathrm{E}-07$
59	8.4	20.9	20.9	12.9	1.620155039	0.003111111	597287.994	$5.20873 \mathrm{E}-07$
60	1.2	12.5	9.6	7.2	1.736111111	0.000444444	91578	$4.85318 \mathrm{E}-07$

61	1.4	13.7	9.6	10.8	1.268518519	0.000518519	150558.096	3.44398E-07
62	2.6	19.7	13.8	7.9	2.493670886	0.000962963	227649.564	4.23002E-07
63	8.8	26.6	16.3	12.9	2.062015504	0.003259259	592871.292	5.49741E-07
64	6.8	22.9	21.9	9.5	2.410526316	0.002518519	505014.57	4.98702E-07
65	4.4	18.3	15	13.9	1.316546763	0.00162963	404442.3	$4.02933 \mathrm{E}-07$
66	21.8	35.5	31.3	12.6	2.817460317	0.008074074	1484045.94	5.44058E-07
67	17	36.2	23.5	16	2.2625	0.006296296	1442781.2	$4.364 \mathrm{E}-07$
68	12.8	28.2	22.6	15	1.88	0.004740741	1013332.8	4.67837E-07
69	20.6	24.2	28.4	13.3	1.819548872	0.00762963	968921.344	$7.87435 \mathrm{E}-07$
70	30.8	29	21.5	12	2.416666667	0.011407407	793086	1.43836E-06
71	6.6	24	19.9	10.8	2.222222222	0.002444444	546750.48	4.47086E-07
72	17	35.4	26.2	18.2	1.945054945	0.006296296	1789288.416	3.51888E-07
73	4.6	20.5	19.2	14.4	1.423611111	0.001703704	600785.04	2.8358E-07
74	21.2	31	28.6	20.3	1.527093596	0.007851852	1907779.88	4.1157E-07
75	25.2	32.3	31.6	20.1	1.606965174	0.009333333	2174654.808	4.29187E-07
76	12.4	31.7	22.3	13.2	2.401515152	0.004592593	989102.472	$4.64319 \mathrm{E}-07$
77	15.8	30.9	29.5	13.9	2.223021583	0.005851852	1343071.77	4.35707E-07
78	10.8	22.4	23.1	17.1	1.30994152	0.004	937905.744	4.26482E-07
79	25.8	41.5	27.1	23.3	1.78111588	0.009555556	2777654.57	3.44015E-07
80	30.2	46.7	23	23.2	2.012931034	0.011185185	2641420.72	4.23453E-07
81	9.2	26	23	14.5	1.793103448	0.003407407	919120	3.70725E-07
82	5.6	28	27.5	16.3	1.717791411	0.002074074	1330400	1.55899E-07
83	7.8	30	23.5	29.2	1.02739726	0.002888889	2182110	$1.3239 \mathrm{E}-07$
84	17.2	39	13.5	21.9	1.780821918	0.00637037	1222211.1	5.21217E-07

TABLE 1MEASUREMENT AND CALCULATION USING CUBICAL STONE

CALCULATION

Total volume of stones $=0.39337 \mathrm{~m}^{\wedge} 3$
Volume of embankment $=0.0 .55936 \mathrm{~m}^{\wedge} 3$
Volume of voids =Volume of embankment - Total volume of stones
$=0.16599 \mathrm{~m}^{\wedge} 3$
Void Ratio (e) = (Volume of Voids / Total volume of stones)
$0.16599 / 0.39337=0.42196$
Porosity (n) = (Volume of Void / Total volume of embankment)
$0.16599 / 0.55936=\underline{\underline{0.2967}}$
=29\%

4. EXPERIMENT 3- CONSTRUCTION OF SEAWALL EMBANKMENT USING FLAKEY \& ELONGATED STONES

We collected 46 samples of flaky and elongated armourstone for this experiment. Now it's clearly visible that the no of stones decreased drastically this shows the presence of voids \& decrease in stone volume. Using these stones we again constructed a frustum embankment by dropping each stones.

FIG5 EMBAKMENT USING FLAKEY STONES
The dimensions of the so formed embankment were measured and noted down,
The resultant embankment has the following dimensions
Base length $=160 \mathrm{~cm}$
Base width $=90 \mathrm{~cm}$
Top length $=95 \mathrm{~cm}$
Top width $=50 \mathrm{~cm}$
Height=70cm

FIG 6 MINIATURE EMBAKMENT USING FLAKEY STONE

Using the obtained data's we were able to calculate the volume of the frustum section. One by one each stone from the embankment were taken out to measure it's weight and dimensions (length,bredth,depth). These readings were noted down. Using these readings we calculated the aspect ratio(Aspect Ratio=(L/D) and blockiness (BL=[Vstone/Vcubical] x100) of each stone

FIG 7 FLAKEY STONES
Now to find Volume of voids we need to subtract the total volume of stones from the volume of the embankment. Next step is to find the value Void Ratio \& Porosity.

TABLE2 MEASUREMENT AND CALCULATION USING FLAKEY STONE

CALCULATION

Total volume of stones $=0.2623 \mathrm{~m}^{\wedge} 3$
Volume of embankment $=0.6398 \mathrm{~m}^{\wedge} 3$
Volume of voids =Volume of embankment - Total volume of stones
$=0.3775 \mathrm{~m}^{\wedge} 3$
Void Ratio (e) = (Volume of Voids / Total volume of stones)
$0.3775 / 0.2623=1.43$

Porosity (n) = (Volume of Void / Total volume of embankment)
$=0.3775 / 0.6398=\underline{\underline{\mathbf{0 . 5 9 0}}}$
$=59 \%$

SI no.	Weight	Length	Width	Depth	Aspec ratio	Vol of stone	Vol of stone in cubical	Blockiness
1	16.9	30.75	22	20.1	1.529850746	0.006259259	0.01359765	46.03191919
2	3.4	21.3	19.8	12.6	1.69047619	0.001259259	0.005313924	23.6973517
3	6.8	22	16.8	13.3	1.654135338	0.002518519	0.00491568	51.23438707
4	9.6	32.5	22	17.8	1.825842697	0.003555556	0.012727	27.93710659
5	5.6	24.2	16.1	12.2	1.983606557	0.002074074	0.004753364	43.63381542
6	13.4	30.1	20.9	19.4	1.551546392	0.004962963	0.012204346	40.66553802
7	8	25.6	19.4	13.8	1.855072464	0.002962963	0.006853632	43.23201133
8	6.6	27.6	13.7	11.6	2.379310345	0.002444444	0.004386192	55.73044783
9	6.6	13.7	19	10.2	1.343137255	0.002444444	0.00265506	92.06738998
10	7.2	30.7	14.9	14.3	2.146853147	0.002666667	0.006541249	40.76693406
11	7	21.9	19.5	15.3	1.431372549	0.002592593	0.006533865	39.67931068
12	4.6	16.6	15.1	13.4	1.23880597	0.001703704	0.003358844	50.72291847
13	25.2	30.6	30.1	21.9	1.397260274	0.009333333	0.020171214	46.2705583
14	26.2	36.4	20.9	23.5	1.54893617	0.009703704	0.01787786	54.27776984
15	4.8	15.6	12	11.1	1.405405405	0.001777778	0.00207792	85.55564111
16	9.2	23.9	17.9	14.5	1.648275862	0.003407407	0.006203245	54.92943463
17	26.6	34.5	26.5	19.4	1.778350515	0.009851852	0.01773645	55.54579328
18	3.8	20.4	13.4	12.8	1.59375	0.001407407	0.003499008	40.22304057
19	3.2	20.9	11.1	10.9	1.917431193	0.001185185	0.002528691	46.86951412
20	3.2	23.5	12.1	10.2	2.303921569	0.001185185	0.00290037	40.86324108
21	32.6	34.2	29.6	21.6	1.583333333	0.012074074	0.021866112	55.21820282
22	36.08	45.2	34.9	23.1	1.956709957	0.013362963	0.036439788	36.6713521
23	18.3	37	20.1	19	1.947368421	0.006777778	0.0141303	47.96626949
24	32.2	39	33.5	20.2	1.930693069	0.011925926	0.0263913	45.18885362
25	30.8	40.5	29.4	22.9	1.768558952	0.011407407	0.02726703	41.83590001
26	21.6	40.2	23	26	1.546153846	0.008	0.0240396	33.27842393
27	23	31.1	29.5	25.2	1.234126984	0.008518519	0.02311974	36.84521763
28	18	29.3	20.1	21	1.395238095	0.006666667	0.01236753	53.90459264
29	35.6	34.9	26.1	30	1.163333333	0.013185185	0.0273267	48.25019188
30	16.8	29.2	21.4	18.6	1.569892473	0.006222222	0.011622768	53.53477091
31	21.4	31.1	22.1	17.6	1.767045455	0.007925926	0.012096656	65.52162784
32	19	37.7	30.1	18.6	2.02688172	0.007037037	0.021106722	33.34026495
33	23	37.7	26.6	20.7	1.821256039	0.008518519	0.020758374	41.03654033
34	13.2	29	22.2	30.8	0.941558442	0.004888889	0.01982904	24.65519707
35	22.8	14.4	24.5	14.4	1	0.008444444	0.00508032	166.2187509
36	4.4	17	14.8	14.2	1.197183099	0.00162963	0.00357272	45.61313592
37	17.6	32	26.6	16.8	1.904761905	0.006518519	0.01430016	45.58353556
38	25	37.6	27	24	1.566666667	0.009259259	0.0243648	38.00260728
39	15.8	27.6	25.5	21.9	1.260273973	0.005851852	0.01541322	37.96644602
40	14.6	34.6	26.2	17	2.035294118	0.005407407	0.01541084	35.08833657
41	25.8	35	29.5	21.4	1.635514019	0.009555556	0.0220955	43.24661382
42	13	27.7	26.4	16.6	1.668674699	0.004814815	0.012139248	39.66320496
43	10	29.6	21.4	18.9	1.566137566	0.003703704	0.011972016	30.93634108
44	6.4	24	21.5	11.6	2.068965517	0.00237037	0.0059856	39.60121576
45	9.2	24.1	21.3	20.9	1.153110048	0.003407407	0.010728597	31.76004661
46	10.6	36.5	18.1	15	2.433333333	0.003925926	0.00990975	39.61680089
47	19.4	38.6	33.5	17.6	2.193181818	0.007185185	0.02275856	31.57135243
48	17.5	28.9	16.2	20	1.445	0.006481481	0.0093636	69.21997396
49	18.6	37	27.5	16.6	2.228915663	0.006888889	0.0168905	40.78558295
50	14.2	31.6	30.3	18.1	1.745856354	0.005259259	0.017330388	30.347037
51	11.6	26.5	24	8.6	3.081395349	0.004296296	0.0054696	78.54863786
52	7.4	38	29	17.5	2.171428571	0.002740741	0.019285	14.21177465
53	15.2	30.6	26.5	17.8	1.719101124	0.00562963	0.01443402	39.00250678
54	15	34.4	20.1	15.7	2.191082803	0.005555556	0.010855608	51.17682543
55	15.2	32.2	30.3	15	2.146666667	0.00562963	0.0146349	38.46715474
56	6.6	25.5	22.2	14.2	1.795774648	0.002444444	0.00803862	30.40875728
57	19	33.9	21.5	14.5	2.337931034	0.007037037	0.010568325	66.58611499
58	15.6	33.9	25.8	18.5	1.832432432	0.005777778	0.01618047	35.70834332
59	10	32.4	25.7	13	2.492307692	0.003703704	0.01082484	34.21485864
60	13.2	30.2	25.4	16.6	1.819277108	0.004888889	0.012733528	38.39382839

61	11.6	36.5	21.4	11.2	3.258928571	0.004296296	0.00874832	49.10995821
62	11.8	29.4	20.2	12.4	2.370967742	0.00437037	0.007364112	59.34687536
63	10.2	20.9	21.2	14.1	1.482269504	0.003777778	0.006247428	60.46932878
64	8.4	22.6	21.6	14.5	1.55862069	0.003111111	0.00707832	43.95267678
65	8.8	30.6	19.1	12.2	2.508196721	0.003259259	0.007130412	45.7092698
66	8.8	33.8	19.8	11.3	2.991150442	0.003259259	0.007562412	43.0981446
67	7.2	24.6	15.4	15.4	1.597402597	0.002666667	0.005834136	45.70799629
68	6.8	21.4	14.6	15.9	1.34591195	0.002518519	0.004967796	50.69689896
69	7.6	23.6	16.4	16	1.475	0.002814815	0.00619264	45.45419748
70	6.6	23.3	20.2	9.2	2.532608696	0.002444444	0.004330072	56.45274361
		Total				0.37533		

TABLE 3 MEASURMENT AND CALCULATION OF MIXED STONES

CALCULATION

Total volume of stones $=0.375 \mathrm{~m}^{\wedge} 3$
Volume of embankment $=0.749 \mathrm{~m}^{\wedge} 3$
Volume of voids =Volume of embankment - Total volume of stones
$=0.37367 \mathrm{~m}^{\wedge} 3$
Void Ratio (e) = (Volume of Voids / Total volume of stones)
0.37367 / $0.37533=\underline{\mathbf{0 . 9 9 5}}$

Porosity (n) = (Volume of Void / Total volume of embankment)
$0.37367 / 0.749=\underline{\underline{0.5}}$
=50\%

FIG 8 MIXED STONES

5.PAYMENT ISSUES

There are two bulk volumes to consider. Before construction the design bulk volume, Vd , is required. This volume equals the area A times the orthogonal thickness Td, which is a theoretically predicted average thickness that the engineer has introduced for the design drawings, using recommended layer thickness coefficients. Clearly, for a given range of armourstone weights or sizes, the best design guidance on the expected single or double layer thickness is required. These volume calculations are necessary for ordering the quantities prior to construction. After construction, in addition to profile tolerance conformance checks, it may be necessary to determine volumes for payment purposes. Having surveyed the under layer surface and the armour layer surface, the average cross-sectional area, D , times the chainage length L gives the surveyed bulk volume, Vs. From D and the down-slope length, an actual average orthogonal thickness can be deduced and this often makes an interesting comparison with the orthogonal thickness shown on the design drawings. Large differences generally lead to contractual problems.

6. HOW VOIDS AFFECT THE OVERALL COST OF THE PROJECT

Consider building a seawall with dimensions $2 \mathrm{~m}, 3 \mathrm{~m} \& 5 \mathrm{~m}$.
Let this seawall extend to a length up to 5 km .

Volume of the entire embankment $=([3+5] / 2)^{*} 2 * 5000=40000 \mathrm{~m}^{\wedge} 3$

- For 30% voids
$40000^{*} 0.7=28000 \mathrm{~m}^{\wedge} 3$ volume of stones are needed
ie $40000^{*} 0.3=12000 \mathrm{~m}^{\wedge} 3$ volume is just voids
Weight of the stones in ton = volume of stones in embankment * specific gravity of stone
Weight $=28000 * 2.65=\underline{\mathbf{7 4 2 0 0}}$ ton stones are needed (Ideal)
- For 10% voids
$40000^{*} 0.9=36000 \mathrm{~m}^{\wedge} 3$ volume of stones are needed
Example $40000^{*} 0.1=4000 \mathrm{~m}^{\wedge} 3$ volume is just voids
Weight of the stones in ton =Volume of stones in embankment * specific gravity of stone
Weight $=36000 * 2.65=\underline{\mathbf{9 5 4 0 0}}$ ton stones are needed
- For 40% of voids
$40000^{*} 0.6=24000 \mathrm{~m}^{\wedge} 3$ volume of stones are needed ie $40000^{*} 0.4=16000 \mathrm{~m}^{\wedge} 3$ volume is just voids

Weight of the stones in ton = volume of stones in embankment * specific gravity of stone
Weight $=24000 * 2.65=\underline{\mathbf{6 3 6 0 0}}$ ton stones are needed

- For 20% decrease in voids with respect to 30% voids -Increase in stones volume $=95400-74200=21200$ ton(for the contractor)

Considering the cost 1 ton of stone costs 710rs
Example if 10% volume of voids are considered total cost would be
95400*710=6.77 CR
Cost of stones for 30% voids $=74200 * 710=5.26$ CR
Example 6.77-5.26=1.51CR extra cost for 20\% decrease in voids with respect to 30\% voids

- For 10% increase in voids with respect to 30% volume -decrease in stones volume $=74200-63600=10600$ ton(for the company)
Considering the cost, 1 ton of stone costs 710 rs
Example if 40% volume of voids are considered total cost would be
63600*710=4.51 CR
Cost of stones for 30% voids $=74200 * 710=5.26$ CR
Example 5.26-4.51= $\underline{\mathbf{0 . 7 5}} \underline{\text { CR decrease in cost for } \mathbf{1 0} \% \text { increase in voids with respect to } \mathbf{3 0 \%} \text { voids } . ~}$

7. CONCLUSION

Among the three experiments conducted cubical stones gave better packing with a porosity 30%. The 30% void gives favourable cost for buyers and sellers in Sea wall construction.

Good interlocking property was provided for the sea wall when using cubicle stone. Secondly, we used flaky stones for the experiment in which the structure was not stable with this stone. With flaky stones R valuable to lateral forces. These kinds of stones tend to break when dropped from a certain height since it's porosity value is more.

Finally, mixed stones like flaky, elongated and cubical were used for the structure the porosity value that we got for the structure is 50% so it's better to use cubicle stones which is better for the construction of seawall than mixed stone structure.

REFERENCES

1. BS EN 1097-1. 2004. Tests for Mechanical and Physical Properties of Aggregates Part 1: Determination of the Resistance to Wear (Micro-Deval). BSI, London
2. CIRIA, CUR, CETMEF. 2007. "The Rock Manual. The Use of Rock in Hydraulic Engineering (2nd Edition)". C683, CIRIA, London
3. Curtis, R.V., Juszczyk, A.S., Analysis of strength data using two- and three parameter Weibull models. J. Mater. Sci. 33, 1151-1157, 1988.
4. Davies, I.J., 2001. "Empirical correction factor for the best estimate of Weibull modulus obtained using linear least square analysis". J. Mater. Sci. Lett. 20, 997-999, 2001.
5. Hudson, R. Y., Design of Quarry-Stone Cover Layers for Rubble-Mound Breakwaters: U.S. Army Engineer Waterways Experiment Station Research Report No. 2-2, Vicksburg, MS, 39 p., 1958.
6. Weibull, W., "A statistical distribution function of wide applicability". J. Appl. Mech., 293-297, 1951.
